mirror of
https://github.com/triqs/dft_tools
synced 2024-12-26 06:14:14 +01:00
Split cpp from hpp (fit_tail)
This commit is contained in:
parent
377a0026ad
commit
558df98786
112
triqs/gfs/local/fit_tail.cpp
Normal file
112
triqs/gfs/local/fit_tail.cpp
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
#include "./fit_tail.hpp"
|
||||||
|
namespace triqs { namespace gfs { namespace local {
|
||||||
|
|
||||||
|
tail fit_tail_impl(gf_view<imfreq> gf, const tail_view known_moments, int n_moments, int n_min, int n_max) {
|
||||||
|
|
||||||
|
tail res(get_target_shape(gf));
|
||||||
|
if (known_moments.size())
|
||||||
|
for (int i = known_moments.order_min(); i <= known_moments.order_max(); i++) res(i) = known_moments(i);
|
||||||
|
|
||||||
|
// if known_moments.size()==0, the lowest order to be obtained from the fit is determined by order_min in known_moments
|
||||||
|
// if known_moments.size()==0, the lowest order is the one following order_max in known_moments
|
||||||
|
|
||||||
|
int n_unknown_moments = n_moments - known_moments.size();
|
||||||
|
if (n_unknown_moments < 1) return known_moments;
|
||||||
|
|
||||||
|
// get the number of even unknown moments: it is n_unknown_moments/2+1 if the first
|
||||||
|
// moment is even and n_moments is odd; n_unknown_moments/2 otherwise
|
||||||
|
int omin = known_moments.size() == 0 ? known_moments.order_min() : known_moments.order_max() + 1; // smallest unknown moment
|
||||||
|
int omin_even = omin % 2 == 0 ? omin : omin + 1;
|
||||||
|
int omin_odd = omin % 2 != 0 ? omin : omin + 1;
|
||||||
|
int size_even = n_unknown_moments / 2;
|
||||||
|
if (n_unknown_moments % 2 != 0 && omin % 2 == 0) size_even += 1;
|
||||||
|
int size_odd = n_unknown_moments - size_even;
|
||||||
|
|
||||||
|
int size1 = n_max - n_min + 1;
|
||||||
|
// size2 is the number of moments
|
||||||
|
|
||||||
|
arrays::matrix<double, 2> A(size1, std::max(size_even, size_odd), FORTRAN_LAYOUT);
|
||||||
|
arrays::matrix<double, 2> B(size1, 1, FORTRAN_LAYOUT);
|
||||||
|
arrays::vector<double> S(std::max(size_even, size_odd));
|
||||||
|
const double rcond = 0.0;
|
||||||
|
int rank;
|
||||||
|
|
||||||
|
for (int i = 0; i < get_target_shape(gf)[0]; i++) {
|
||||||
|
for (int j = 0; j < get_target_shape(gf)[1]; j++) {
|
||||||
|
|
||||||
|
// fit the odd moments
|
||||||
|
// S.resize(size_odd);
|
||||||
|
// A.resize(size1,size_odd); //when resizing, gelss segfaults
|
||||||
|
for (int k = 0; k < size1; k++) {
|
||||||
|
auto n = n_min + k;
|
||||||
|
auto iw = std::complex<double>(gf.mesh().index_to_point(n));
|
||||||
|
|
||||||
|
B(k, 0) = imag(gf.data()(gf.mesh().index_to_linear(n), i, j));
|
||||||
|
// subtract known tail if present
|
||||||
|
if (known_moments.size() > 0)
|
||||||
|
B(k, 0) -= imag(slice_target(known_moments, arrays::range(i, i + 1), arrays::range(j, j + 1)).evaluate(iw)(0, 0));
|
||||||
|
|
||||||
|
for (int l = 0; l < size_odd; l++) {
|
||||||
|
int order = omin_odd + 2 * l;
|
||||||
|
A(k, l) = imag(pow(iw, -1.0 * order)); // set design matrix for odd moments
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
arrays::lapack::gelss(A, B, S, rcond, rank);
|
||||||
|
for (int m = 0; m < size_odd; m++) {
|
||||||
|
res(omin_odd + 2 * m)(i, j) = B(m, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// fit the even moments
|
||||||
|
// S.resize(size_even);
|
||||||
|
// A.resize(size1,size_even); //when resizing, gelss segfaults
|
||||||
|
for (int k = 0; k < size1; k++) {
|
||||||
|
auto n = n_min + k;
|
||||||
|
auto iw = std::complex<double>(gf.mesh().index_to_point(n));
|
||||||
|
|
||||||
|
B(k, 0) = real(gf.data()(gf.mesh().index_to_linear(n), i, j));
|
||||||
|
// subtract known tail if present
|
||||||
|
if (known_moments.size() > 0)
|
||||||
|
B(k, 0) -= real(slice_target(known_moments, arrays::range(i, i + 1), arrays::range(j, j + 1)).evaluate(iw)(0, 0));
|
||||||
|
|
||||||
|
for (int l = 0; l < size_even; l++) {
|
||||||
|
int order = omin_even + 2 * l;
|
||||||
|
A(k, l) = real(pow(iw, -1.0 * order)); // set design matrix for odd moments
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
arrays::lapack::gelss(A, B, S, rcond, rank);
|
||||||
|
for (int m = 0; m < size_even; m++) {
|
||||||
|
res(omin_even + 2 * m)(i, j) = B(m, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
res.mask_view()=n_moments;
|
||||||
|
return res; // return tail
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_tail_from_fit(gf_view<imfreq> gf, tail_view known_moments, int n_moments, int n_min, int n_max,
|
||||||
|
bool replace_by_fit ) {
|
||||||
|
if (get_target_shape(gf) != known_moments.shape()) TRIQS_RUNTIME_ERROR << "shape of tail does not match shape of gf";
|
||||||
|
gf.singularity() = fit_tail_impl(gf, known_moments, n_moments, n_min, n_max);
|
||||||
|
if (replace_by_fit) { // replace data in the fitting range by the values from the fitted tail
|
||||||
|
int i = 0;
|
||||||
|
for (auto iw : gf.mesh()) { // (arrays::range(n_min,n_max+1)) {
|
||||||
|
if ((i >= n_min) && (i <= n_max)) gf[iw] = gf.singularity().evaluate(iw);
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_tail_from_fit(gf_view<block_index, gf<imfreq>> block_gf, tail_view known_moments, int n_moments, int n_min,
|
||||||
|
int n_max, bool replace_by_fit ) {
|
||||||
|
// for(auto &gf : block_gf) set_tail_from_fit(gf, known_moments, n_moments, n_min, n_max, replace_by_fit);
|
||||||
|
for (int i = 0; i < block_gf.mesh().size(); i++)
|
||||||
|
set_tail_from_fit(block_gf[i], known_moments, n_moments, n_min, n_max, replace_by_fit);
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_tail_from_fit(gf_view<imfreq, scalar_valued> gf, tail_view known_moments, int n_moments, int n_min, int n_max, bool replace_by_fit ) {
|
||||||
|
set_tail_from_fit(reinterpret_scalar_valued_gf_as_matrix_valued(gf), known_moments, n_moments, n_min, n_max, replace_by_fit );
|
||||||
|
}
|
||||||
|
|
||||||
|
}}} // namespace
|
@ -18,8 +18,7 @@
|
|||||||
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*
|
*
|
||||||
******************************************************************************/
|
******************************************************************************/
|
||||||
#ifndef TRIQS_GF_LOCAL_FIT_TAIL_H
|
#pragma once
|
||||||
#define TRIQS_GF_LOCAL_FIT_TAIL_H
|
|
||||||
#include <triqs/gfs/imfreq.hpp>
|
#include <triqs/gfs/imfreq.hpp>
|
||||||
#include <triqs/gfs/block.hpp>
|
#include <triqs/gfs/block.hpp>
|
||||||
#include <triqs/gfs/local/tail.hpp>
|
#include <triqs/gfs/local/tail.hpp>
|
||||||
@ -48,112 +47,13 @@ namespace triqs { namespace gfs { namespace local {
|
|||||||
|
|
||||||
// output: returns the tail obtained by fitting
|
// output: returns the tail obtained by fitting
|
||||||
|
|
||||||
tail fit_tail_impl(gf_view<imfreq> gf, const tail_view known_moments, int n_moments, int n_min, int n_max) {
|
tail fit_tail_impl(gf_view<imfreq> gf, const tail_view known_moments, int n_moments, int n_min, int n_max) ;
|
||||||
|
|
||||||
tail res(get_target_shape(gf));
|
|
||||||
if (known_moments.size())
|
|
||||||
for (int i = known_moments.order_min(); i <= known_moments.order_max(); i++) res(i) = known_moments(i);
|
|
||||||
|
|
||||||
// if known_moments.size()==0, the lowest order to be obtained from the fit is determined by order_min in known_moments
|
|
||||||
// if known_moments.size()==0, the lowest order is the one following order_max in known_moments
|
|
||||||
|
|
||||||
int n_unknown_moments = n_moments - known_moments.size();
|
|
||||||
if (n_unknown_moments < 1) return known_moments;
|
|
||||||
|
|
||||||
// get the number of even unknown moments: it is n_unknown_moments/2+1 if the first
|
|
||||||
// moment is even and n_moments is odd; n_unknown_moments/2 otherwise
|
|
||||||
int omin = known_moments.size() == 0 ? known_moments.order_min() : known_moments.order_max() + 1; // smallest unknown moment
|
|
||||||
int omin_even = omin % 2 == 0 ? omin : omin + 1;
|
|
||||||
int omin_odd = omin % 2 != 0 ? omin : omin + 1;
|
|
||||||
int size_even = n_unknown_moments / 2;
|
|
||||||
if (n_unknown_moments % 2 != 0 && omin % 2 == 0) size_even += 1;
|
|
||||||
int size_odd = n_unknown_moments - size_even;
|
|
||||||
|
|
||||||
int size1 = n_max - n_min + 1;
|
|
||||||
// size2 is the number of moments
|
|
||||||
|
|
||||||
arrays::matrix<double, 2> A(size1, std::max(size_even, size_odd), FORTRAN_LAYOUT);
|
|
||||||
arrays::matrix<double, 2> B(size1, 1, FORTRAN_LAYOUT);
|
|
||||||
arrays::vector<double> S(std::max(size_even, size_odd));
|
|
||||||
const double rcond = 0.0;
|
|
||||||
int rank;
|
|
||||||
|
|
||||||
for (int i = 0; i < get_target_shape(gf)[0]; i++) {
|
|
||||||
for (int j = 0; j < get_target_shape(gf)[1]; j++) {
|
|
||||||
|
|
||||||
// fit the odd moments
|
|
||||||
// S.resize(size_odd);
|
|
||||||
// A.resize(size1,size_odd); //when resizing, gelss segfaults
|
|
||||||
for (int k = 0; k < size1; k++) {
|
|
||||||
auto n = n_min + k;
|
|
||||||
auto iw = std::complex<double>(gf.mesh().index_to_point(n));
|
|
||||||
|
|
||||||
B(k, 0) = imag(gf.data()(gf.mesh().index_to_linear(n), i, j));
|
|
||||||
// subtract known tail if present
|
|
||||||
if (known_moments.size() > 0)
|
|
||||||
B(k, 0) -= imag(slice_target(known_moments, arrays::range(i, i + 1), arrays::range(j, j + 1)).evaluate(iw)(0, 0));
|
|
||||||
|
|
||||||
for (int l = 0; l < size_odd; l++) {
|
|
||||||
int order = omin_odd + 2 * l;
|
|
||||||
A(k, l) = imag(pow(iw, -1.0 * order)); // set design matrix for odd moments
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
arrays::lapack::gelss(A, B, S, rcond, rank);
|
|
||||||
for (int m = 0; m < size_odd; m++) {
|
|
||||||
res(omin_odd + 2 * m)(i, j) = B(m, 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// fit the even moments
|
|
||||||
// S.resize(size_even);
|
|
||||||
// A.resize(size1,size_even); //when resizing, gelss segfaults
|
|
||||||
for (int k = 0; k < size1; k++) {
|
|
||||||
auto n = n_min + k;
|
|
||||||
auto iw = std::complex<double>(gf.mesh().index_to_point(n));
|
|
||||||
|
|
||||||
B(k, 0) = real(gf.data()(gf.mesh().index_to_linear(n), i, j));
|
|
||||||
// subtract known tail if present
|
|
||||||
if (known_moments.size() > 0)
|
|
||||||
B(k, 0) -= real(slice_target(known_moments, arrays::range(i, i + 1), arrays::range(j, j + 1)).evaluate(iw)(0, 0));
|
|
||||||
|
|
||||||
for (int l = 0; l < size_even; l++) {
|
|
||||||
int order = omin_even + 2 * l;
|
|
||||||
A(k, l) = real(pow(iw, -1.0 * order)); // set design matrix for odd moments
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
arrays::lapack::gelss(A, B, S, rcond, rank);
|
|
||||||
for (int m = 0; m < size_even; m++) {
|
|
||||||
res(omin_even + 2 * m)(i, j) = B(m, 0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
res.mask_view()=n_moments;
|
|
||||||
return res; // return tail
|
|
||||||
}
|
|
||||||
|
|
||||||
void set_tail_from_fit(gf_view<imfreq> gf, tail_view known_moments, int n_moments, int n_min, int n_max,
|
void set_tail_from_fit(gf_view<imfreq> gf, tail_view known_moments, int n_moments, int n_min, int n_max,
|
||||||
bool replace_by_fit = false) {
|
bool replace_by_fit = false) ;
|
||||||
if (get_target_shape(gf) != known_moments.shape()) TRIQS_RUNTIME_ERROR << "shape of tail does not match shape of gf";
|
|
||||||
gf.singularity() = fit_tail_impl(gf, known_moments, n_moments, n_min, n_max);
|
|
||||||
if (replace_by_fit) { // replace data in the fitting range by the values from the fitted tail
|
|
||||||
int i = 0;
|
|
||||||
for (auto iw : gf.mesh()) { // (arrays::range(n_min,n_max+1)) {
|
|
||||||
if ((i >= n_min) && (i <= n_max)) gf[iw] = gf.singularity().evaluate(iw);
|
|
||||||
i++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void set_tail_from_fit(gf_view<block_index, gf<imfreq>> block_gf, tail_view known_moments, int n_moments, int n_min,
|
void set_tail_from_fit(gf_view<block_index, gf<imfreq>> block_gf, tail_view known_moments, int n_moments, int n_min,
|
||||||
int n_max, bool replace_by_fit = false) {
|
int n_max, bool replace_by_fit = false) ;
|
||||||
// for(auto &gf : block_gf) set_tail_from_fit(gf, known_moments, n_moments, n_min, n_max, replace_by_fit);
|
|
||||||
for (int i = 0; i < block_gf.mesh().size(); i++)
|
|
||||||
set_tail_from_fit(block_gf[i], known_moments, n_moments, n_min, n_max, replace_by_fit);
|
|
||||||
}
|
|
||||||
void set_tail_from_fit(gf_view<imfreq, scalar_valued> gf, tail_view known_moments, int n_moments, int n_min, int n_max, bool replace_by_fit = false) {
|
|
||||||
set_tail_from_fit(reinterpret_scalar_valued_gf_as_matrix_valued(gf), known_moments, n_moments, n_min, n_max, replace_by_fit );
|
|
||||||
}
|
|
||||||
|
|
||||||
|
void set_tail_from_fit(gf_view<imfreq, scalar_valued> gf, tail_view known_moments, int n_moments, int n_min, int n_max, bool replace_by_fit = false) ;
|
||||||
}}} // namespace
|
}}} // namespace
|
||||||
#endif
|
|
||||||
|
Loading…
Reference in New Issue
Block a user