mirror of
https://github.com/triqs/dft_tools
synced 2025-01-03 01:55:56 +01:00
Simplified fleur converter
This commit is contained in:
parent
d99e43161c
commit
5450f0a050
@ -31,9 +31,8 @@ class FleurConverter(ConverterTools):
|
||||
"""
|
||||
|
||||
def __init__(self, filename, hdf_filename = None,
|
||||
dft_subgrp = 'dft_input', symmcorr_subgrp = 'dft_symmcorr_input',
|
||||
parproj_subgrp='dft_parproj_input', symmpar_subgrp='dft_symmpar_input',
|
||||
bands_subgrp = 'dft_bands_input', repacking = False):
|
||||
dft_subgrp = 'dft_input', parproj_subgrp='dft_parproj_input',
|
||||
repacking = False):
|
||||
"""
|
||||
Init of the class. Variable filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so on.
|
||||
"""
|
||||
@ -42,15 +41,9 @@ class FleurConverter(ConverterTools):
|
||||
if hdf_filename is None: hdf_filename = filename
|
||||
self.hdf_file = hdf_filename+'.h5'
|
||||
self.dft_file = filename+'.ctqmcout'
|
||||
self.symmcorr_file = filename+'.symqmc'
|
||||
self.parproj_file = filename+'.parproj'
|
||||
self.symmpar_file = filename+'.sympar'
|
||||
self.band_file = filename+'.outband'
|
||||
self.dft_subgrp = dft_subgrp
|
||||
self.symmcorr_subgrp = symmcorr_subgrp
|
||||
self.parproj_subgrp = parproj_subgrp
|
||||
self.symmpar_subgrp = symmpar_subgrp
|
||||
self.bands_subgrp = bands_subgrp
|
||||
self.fortran_to_replace = {'D':'E'}
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
@ -59,7 +52,7 @@ class FleurConverter(ConverterTools):
|
||||
ConverterTools.repack(self)
|
||||
|
||||
|
||||
def convert_dmft_input(self):
|
||||
def convert_dft_input(self):
|
||||
"""
|
||||
Reads the input files, and stores the data in the HDFfile
|
||||
"""
|
||||
@ -78,7 +71,7 @@ class FleurConverter(ConverterTools):
|
||||
SO = int(R.next()) # flag for spin-orbit calculation
|
||||
charge_below = R.next() # total charge below energy window
|
||||
density_required = R.next() # total density required, for setting the chemical potential
|
||||
symm_op = 1 # Use symmetry groups for the k-sum
|
||||
symm_op = 0 # Use symmetry groups for the k-sum
|
||||
|
||||
# the information on the non-correlated shells is not important here, maybe skip:
|
||||
n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
||||
@ -201,9 +194,6 @@ class FleurConverter(ConverterTools):
|
||||
for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *correlated* orbitals:
|
||||
self.convert_symmetry_input(orbits=corr_shells,symm_file=self.symmcorr_file,symm_subgrp=self.symmcorr_subgrp,SO=self.SO,SP=self.SP)
|
||||
|
||||
|
||||
def convert_parproj_input(self):
|
||||
"""
|
||||
@ -276,151 +266,3 @@ class FleurConverter(ConverterTools):
|
||||
things_to_save = ['dens_mat_below','n_parproj','proj_mat_pc','rot_mat_all','rot_mat_all_time_inv']
|
||||
for it in things_to_save: ar[self.parproj_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *all* orbitals:
|
||||
self.convert_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symmpar_subgrp,SO=self.SO,SP=self.SP)
|
||||
|
||||
|
||||
def convert_bands_input(self):
|
||||
"""
|
||||
Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the
|
||||
HDF5.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading bands input from %s..."%self.band_file)
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,self.band_file,self.fortran_to_replace)
|
||||
try:
|
||||
n_k = int(R.next())
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int)
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
n_orb = self.corr_shells[icrsh]['dim']
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
|
||||
hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian!!!!
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for i in range(n_orb):
|
||||
hopping[ik,isp,i,i] = R.next() * self.energy_unit
|
||||
|
||||
# now read the partial projectors:
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_pc = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
for ik in range(n_k):
|
||||
for ir in range(n_parproj[ish]):
|
||||
for isp in range(self.n_spin_blocs):
|
||||
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Fleur_converter : reading file band_file failed!"
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
|
||||
for it in things_to_save: ar[self.bands_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
|
||||
def convert_symmetry_input(self, orbits, symm_file, symm_subgrp, SO, SP):
|
||||
"""
|
||||
Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading symmetry input from %s..."%symm_file)
|
||||
|
||||
n_orbits = len(orbits)
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,symm_file,self.fortran_to_replace)
|
||||
|
||||
try:
|
||||
n_symm = int(R.next()) # Number of symmetry operations
|
||||
n_atoms = int(R.next()) # number of atoms involved
|
||||
perm = [ [int(R.next()) for i in range(n_atoms)] for j in range(n_symm) ] # list of permutations of the atoms
|
||||
if SP:
|
||||
time_inv = [ int(R.next()) for j in range(n_symm) ] # time inversion for SO coupling
|
||||
else:
|
||||
time_inv = [ 0 for j in range(n_symm) ]
|
||||
|
||||
# Now read matrices:
|
||||
mat = []
|
||||
for i_symm in range(n_symm):
|
||||
|
||||
mat.append( [ numpy.zeros([orbits[orb]['dim'], orbits[orb]['dim']],numpy.complex_) for orb in range(n_orbits) ] )
|
||||
for orb in range(n_orbits):
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat[i_symm][orb][i,j] = R.next() # real part
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat[i_symm][orb][i,j] += 1j * R.next() # imaginary part
|
||||
|
||||
mat_tinv = [numpy.identity(orbits[orb]['dim'],numpy.complex_)
|
||||
for orb in range(n_orbits)]
|
||||
|
||||
if ((SO==0) and (SP==0)):
|
||||
# here we need an additional time inversion operation, so read it:
|
||||
for orb in range(n_orbits):
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat_tinv[orb][i,j] = R.next() # real part
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat_tinv[orb][i,j] += 1j * R.next() # imaginary part
|
||||
|
||||
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Fleur_converter : reading file symm_file failed!"
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar=HDFArchive(self.hdf_file,'a')
|
||||
if not (symm_subgrp in ar): ar.create_group(symm_subgrp)
|
||||
things_to_save = ['n_symm','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
|
||||
for it in things_to_save: ar[symm_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
Loading…
Reference in New Issue
Block a user