3
0
mirror of https://github.com/triqs/dft_tools synced 2024-10-31 19:23:45 +01:00

Add new wrapper generator

- with pytriqs.wrap_test as an example.
This commit is contained in:
Olivier Parcollet 2014-05-08 22:15:15 +02:00
parent 2be9587078
commit 5105e04ac7
15 changed files with 2498 additions and 2 deletions

View File

@ -376,7 +376,7 @@ endif( ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
# pytriqs modules # pytriqs modules
#------------------------ #------------------------
if (PythonSupport) if (PythonSupport)
message( STATUS "-------- Preparing Cython modules -------------") message( STATUS "-------- Preparing python modules -------------")
add_subdirectory(${TRIQS_SOURCE_DIR}/pytriqs ) add_subdirectory(${TRIQS_SOURCE_DIR}/pytriqs )
endif (PythonSupport) endif (PythonSupport)

View File

@ -54,6 +54,7 @@ IF (PYTHON_VERSION_NOT_OK)
MESSAGE(FATAL_ERROR "Python intepreter version is ${PYTHON_VERSION} . It should be >= ${PYTHON_MINIMAL_VERSION}") MESSAGE(FATAL_ERROR "Python intepreter version is ${PYTHON_VERSION} . It should be >= ${PYTHON_MINIMAL_VERSION}")
ENDIF (PYTHON_VERSION_NOT_OK) ENDIF (PYTHON_VERSION_NOT_OK)
EXEC_PYTHON_SCRIPT ("import mako.template" nulle) # check that Mako is there...
EXEC_PYTHON_SCRIPT ("import distutils " nulle) # check that distutils is there... EXEC_PYTHON_SCRIPT ("import distutils " nulle) # check that distutils is there...
EXEC_PYTHON_SCRIPT ("import numpy" nulle) # check that numpy is there... EXEC_PYTHON_SCRIPT ("import numpy" nulle) # check that numpy is there...
EXEC_PYTHON_SCRIPT ("import h5py" nulle) # check that h5py is there... EXEC_PYTHON_SCRIPT ("import h5py" nulle) # check that h5py is there...

View File

@ -0,0 +1,32 @@
# Compile and link with python
include_directories(${PYTHON_INCLUDE_DIRS} ${PYTHON_NUMPY_INCLUDE_DIR})
# This function add the target to build a python module
#
# ModuleName = the python name of the module
# ModuleDest = path in the pytriqs tree [ FOR INSTALLATION ONLY] IMPROVE MAKE THIS OPTIONAL (for test)
macro (triqs_python_extension ModuleName)
message(STATUS "TRIQS: Preparing extension module ${ModuleName} with the interpreter ${TRIQS_PYTHON_INTERPRETER} ")
SET(wrap_name ${CMAKE_CURRENT_BINARY_DIR}/${ModuleName}_wrap.cpp)
# Adjust pythonpath so that pytriqs is visible and the wrap_generator too...
# pytriqs needed since we import modules with pure python method to extract the doc..
add_custom_command(OUTPUT ${wrap_name} DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${ModuleName}_desc.py
COMMAND PYTHONPATH=${CMAKE_BINARY_DIR}/pytriqs/wrap_generator:${CMAKE_BINARY_DIR}/ ${PYTHON_INTERPRETER} ${CMAKE_CURRENT_BINARY_DIR}/${ModuleName}_desc.py ${CMAKE_SOURCE_DIR}/pytriqs/wrap_generator/wrapper.mako.cpp ${CMAKE_CURRENT_BINARY_DIR}/${ModuleName}_wrap.cpp )
add_custom_target(python_wrap_${ModuleName} ALL DEPENDS ${wrap_name})
add_dependencies(python_wrap_${ModuleName} py_copy)
add_library(${ModuleName} MODULE ${wrap_name})
set_target_properties(${ModuleName} PROPERTIES PREFIX "") #eliminate the lib in front of the module name
target_link_libraries(${ModuleName} ${TRIQS_LINK_LIBS} triqs)
if (${ARGN} MATCHES "")
install (TARGETS ${ModuleName} DESTINATION ${TRIQS_PYTHON_LIB_DEST}/${ARGN} )
endif (${ARGN} MATCHES "")
#set_property (GLOBAL APPEND PROPERTY DEPENDANCE_TO_ADD triqs_${NickName} )
endmacro (triqs_python_extension)

View File

@ -12,8 +12,11 @@ add_custom_command (OUTPUT ${py_copy_tar} DEPENDS ${all_py_files}
COMMAND cd ${CMAKE_SOURCE_DIR}/pytriqs && tar cf ${py_copy_tar} ${all_py_files} && cd ${CMAKE_BINARY_DIR}/pytriqs && tar xf ${py_copy_tar} ) COMMAND cd ${CMAKE_SOURCE_DIR}/pytriqs && tar cf ${py_copy_tar} ${all_py_files} && cd ${CMAKE_BINARY_DIR}/pytriqs && tar xf ${py_copy_tar} )
add_custom_target(py_copy ALL DEPENDS ${py_copy_tar}) add_custom_target(py_copy ALL DEPENDS ${py_copy_tar})
# To be removed
find_package(CythonModuleMacro) find_package(CythonModuleMacro)
find_package(PythonWrapperMacro)
SET(PYTHON_SOURCES SET(PYTHON_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/__init__.py ${CMAKE_CURRENT_SOURCE_DIR}/__init__.py
${CMAKE_CURRENT_BINARY_DIR}/version.py ${CMAKE_CURRENT_BINARY_DIR}/version.py

View File

@ -20,7 +20,7 @@
# #
################################################################################ ################################################################################
__all__ = ['archive', 'dmft', 'dos', 'fit', 'gf', 'lattice', 'plot', 'sumk', 'utility', 'parameters'] __all__ = ['archive', 'dmft', 'dos', 'fit', 'gf', 'lattice', 'plot', 'sumk', 'utility', 'parameters', 'wrap_test']
import sys import sys
if 'additional_builtin_modules' in dir(sys) : if 'additional_builtin_modules' in dir(sys) :

View File

@ -0,0 +1,512 @@
import sys
import re
import os
from mako.template import Template
import importlib
# the correspondance c type -> py_type
c_to_py_type = {'void' : 'None', 'int' : 'int', 'long' : 'int', 'double' : "float", "std::string" : "str"}
# Translation for formatting
basic_types_formatting = {'double' : 'd', 'int' : 'i'}
def translate_c_type_to_py_type(t) :
# mainly for doc signatures...
if t in c_to_py_type : return c_to_py_type[t]
m = re.match('std::vector<(.*)>',t)
if m: return "list[%s]"%translate_c_type_to_py_type(m.group(1))
# numpy, etc...
return t
class cfunction :
"""
Representation of one overload of a C++ function.
Data :
- c_name : the name of the function in C++
- doc : the doc string.
- is_constructor : boolean
- rtype : the C++ type returned by the function. None for constructor
- args : The list of arguments, as [ (c_type, variable_name, default_value)]
default_value is None when there is no default.
- signature : (incompatible with rtype and args).
rtype( arg1 name1, arg2 name2, ....)
- calling_pattern : Pattern to rewrite the call of the c++ function,
it is a string, using self_c, argument name and defining result at
the end if rtype != void
e.g., teh default pattern is :
auto result = self_c.method_name(a,b,c).
INCOMPATIBLE with c_name.
If c_name is given, the default calling_pattern is made.
"""
def __init__(self, doc = '', is_method = False, no_self_c = False, **kw) :
""" Use keywords to build, from the data. Cf doc of class"""
self.c_name = kw.pop("c_name", None)
self._calling_pattern = kw.pop("calling_pattern", None)
self.is_constructor = kw.pop("is_constructor", False)
self.no_self_c = no_self_c # do not generate self_c reference, in some rare calling_pattern. Avoid a warning.
assert self.c_name or self._calling_pattern or self.is_constructor, "You must specify c_name or calling_pattern"
assert not(self.c_name and self._calling_pattern), "You can not specify c_name and calling_pattern"
self.doc = doc
self.is_method = is_method
self.args = []
if 'signature' in kw :
assert 'rtype' not in kw and 'args' not in kw, "signature and rtype/args are not compatible"
signature = kw.pop("signature")
m = re.match(r"\s*(.*?)\s*\((.*)\)",signature)
self.rtype, args = m.group(1).strip() or None, m.group(2).strip()
def f(): # analyse the argument, be careful that , can also be in type, like A<B,C>, so we count the < >
acc = ''
for s in args.split(',') :
acc += (',' if acc else '') + s
if acc.count('<') == acc.count('>') :
r, acc = acc,''
yield r
args = [ re.sub('=',' ',x).split() for x in f() if x] # list of (type, name, default) or (type, name)
else:
self.rtype = kw.pop("rtype", None)
args = kw.pop('args',())
for a in args: # put back the default if there is none
if len(a) == 2 : (t,n),d = a,None
elif len(a) == 3 : t,n,d = a
else : raise RuntimeError, "Syntax error in overload: args = %s"%args
self.args.append([t,n,d])
#assert len(kw)==0, "unknown parameters %s"%kw.keys()
if self.is_constructor :
assert self.rtype == None, "Constructor must not have a return type"
self.is_method = False
def calling_pattern(self) :
if self._calling_pattern : return self._calling_pattern
s= "%s result = "%self.rtype if self.rtype != "void" else ""
self_c = "self_c." if self.is_method else ""
# the wrapped types are called by pointer !
# do we want to keep it this way ?
return "%s %s%s(%s)"%(s,self_c, self.c_name , ",".join([ ('*' if t in module_.wrapped_types else '') + n for t,n,d in self.args]))
def signature (self):
"""Signature for the python doc"""
name = self.c_name
rtype = translate_c_type_to_py_type(self.rtype) if self.rtype else ''
args_rep = ", ".join(["%s %s%s"%(translate_c_type_to_py_type(t),n,' = ' + str(d) if d else '') for t,n,d in self.args])
return "({args_rep}) -> {rtype}".format(**locals())
def c_signature (self):
"""Signature for the C++ calling errors"""
name = self.c_name if self.c_name else "(no C++ name)"
rtype = self.rtype if self.rtype else ''
args_rep = ", ".join(["%s %s"%(t,n) for t,n,d in self.args])
return "{name}({args_rep}) -> {rtype}".format(**locals())
def __repr__(self):
return "C++ function of signature : %s"%(self.signature())
def format(self) :
def f(t) :
return basic_types_formatting[t] if t in basic_types_formatting else 'O&'
l1 = [ f(t) for t,n,d in self.args if d==None]
l2 = [ f(t) for t,n,d in self.args if d!=None]
if l2 : l2.insert(0,'|')
return ''.join(l1 + l2)
def generate_doc(self) :
doc = "\n".join([ " " + x.strip() for x in self.doc.split('\n')])
return "Signature : %s\n%s"%( self.signature(),doc)
class pyfunction :
"""
Representation of one python function of the extension
Data :
- py_name : name given in Python
- doc : the doc string.
- overloads : a list of cfunction objects representing the various C++ overloads of the function
- python_precall : a python function_ to be called before the call of the C++ function
The function must take F(*args, **kw) and return (args, kw)
- python_postcall : a python function_ to be called after the call of the C++ function
The function must take a python object, and return one...
- module : module path to the function [pure python only]
"""
def __init__(self, py_name, is_method = False, doc = '', python_precall = None, python_postcall = None, arity = None, **unused) :
""" Use keywords to build, from the data. Cf doc of class"""
self.py_name =py_name # name given in python
self.doc = doc
self.arity = arity
self.is_method = is_method # can be a method, a function...
self.python_precall, self.python_postcall = python_precall, python_postcall
self.overloads = [] # List of all C++ overloads
self.do_implement = True # in some cases, we do not want to implement it automatically, (special methods).
self.is_constructor = False
def add_overload(self, **kw) :
self.overloads.append(cfunction(**kw))
#def __repr__(self):
# return ""
def has_pre_post_call(self) : return self.python_precall or self.python_postcall
def generate_doc(self) :
s = "\n".join([self.doc, "\n"] + [f.generate_doc() for f in self.overloads])
return repr(s)[1:-1] # remove the ' ' made by repr
class pure_pyfunction_from_module :
"""
Representation of one python function defined in Python code in an external module.
Will be use to make a pure python method of an object, or or a module.
Data :
- py_name : name given in Python
- doc : the doc string.
- module : module path to the function [pure python only]
"""
def __init__(self, py_name, module, doc = '') :
""" """
self.py_name, self.module, self.doc = py_name, module, doc
try :
m = __import__(module.rsplit('.')[-1])
f = getattr(m,py_name)
self.doc = f.__doc__ # get the doc and check the function can be loaded.
except :
print " I can not import the function %s from the module %s"%(py_name,module)
raise
#def __repr__(self):
#return ""
def generate_doc(self) :
return self.doc
class python_function:
"""
A python function, given as a function.
Its code gets analysed and will be put into the C++ wrapper, to avoid import.
"""
def __init__(self, name, f) :
""" """
self.name, self.f = name,f
import inspect as ins
self.code = "\n".join(['"%s\\n"'%line.rstrip().replace('"', '\\"') for line in ins.getsourcelines(self.f)[0]])
self.doc = f.__doc__ # UNUSED AT THE MOMENT
class property_ :
"""
Representation of a property of a class
Data :
- name : Name, in python
- getter : the cfunction representing the get part
- setter : the cfunction representing the set part or None if the property if read only
- doc : the doc string.
"""
def __init__(self, name, getter, setter = None, doc = '') :
self.name, self.getter, self.setter, self.doc = name, getter, setter, doc
class member_ :
"""
Representation of a member of a class
Data :
- c_name : name of the variable in C++
- py_name : name of the variable in python
- c_type : type of the C++ variable
- read_only : bool
- doc : the doc string.
"""
def __init__(self, c_name, c_type, py_name = None, read_only = False, doc = '') :
self.c_name, self.c_type, self.py_name, self.doc, self.read_only = c_name, c_type, py_name or c_name, doc, read_only
class iterator_ :
"""
Representation of an iterator
Data :
- c_type : type of the C++ variable
- c_cast_type :
- begin, end :
"""
def __init__(self,c_type = "const_iterator", c_cast_type = None, begin = "std::begin", end = "std::end") :
self.c_type, self.c_cast_type, self.begin, self.end = c_type, c_cast_type, begin, end
def is_type_a_view(c_type) :
return c_type.split('<', 1)[0].endswith("_view") # A bit basic ?
def regular_type_if_view_else_type(c_type) :
return "typename %s::regular_type"%c_type if is_type_a_view(c_type) else c_type
class class_ :
"""
Representation of a wrapped type
Data :
- c_type : C++ type to be wrapped.
- py_type : Name given in Python
- doc : the doc string.
- c_type_is_view : boolean
- methods : a dict : string -> pyfunction for each method name
- constructor : a pyfunction for the constructors.
- properties : a dict : string -> property_
- members : a dict : string -> member_
"""
hidden_python_function = {} # global dict of the python function to add to the module, hidden for the user, for precompute and so on
def __init__(self, c_type, py_type, hdf5 = False, arithmetic = None, serializable = None, is_printable = False, doc = '' ) :
self.c_type = c_type
self.c_type_is_view = is_type_a_view(c_type)
self.implement_regular_type_converter = self.c_type_is_view # by default, it will also make the converter of the associated regular type
if self.c_type_is_view : self.regular_type = 'typename ' + self.c_type + '::regular_type'
self.py_type = py_type
c_to_py_type[self.c_type] = self.py_type # register the name translation for the doc generation
self.hdf5 = hdf5
assert serializable in [None, "boost", "tuple"]
self.serializable = serializable
self.is_printable = is_printable
self.iterator = None
self.doc = doc
self.methods = {}
self.pure_python_methods= {}
self.constructor = None
self.members= []
self.properties= []
# Init arithmetic
# expect a tuple : "algebra", "scalar1", "scalar2", etc...
self.number_protocol = {}
if arithmetic :
abelian_group = arithmetic[0] in ("algebra", "abelian_group", "vector_space")
vector_space = arithmetic[0] in ("algebra", "vector_space")
algebra = arithmetic[0] in ("algebra")
if abelian_group :
# add
add = pyfunction(py_name ="__add__")
add.arity = 2
add.add_overload (calling_pattern = "+", args = [(self.c_type,'x'), (self.c_type,'y')], rtype = self.c_type)
self.number_protocol['add'] = add
#sub
sub = pyfunction(py_name ="__sub__")
sub.arity = 2
sub.add_overload (calling_pattern = "-", args = [(self.c_type,'x'), (self.c_type,'y')], rtype = self.c_type)
self.number_protocol['subtract'] = sub
if vector_space :
# mul
mul = pyfunction(py_name ="__mul__")
mul.arity = 2
for scalar in arithmetic[1:] :
mul.add_overload (calling_pattern = "*", args = [(self.c_type,'x'), (scalar,'y')], rtype = self.c_type)
mul.add_overload (calling_pattern = "*", args = [(scalar,'x'), (self.c_type,'y')], rtype = self.c_type)
self.number_protocol['multiply'] = mul
# div
div = pyfunction(py_name ="__div__")
div.arity = 2
for scalar in arithmetic[1:] :
div.add_overload (calling_pattern = "/", args = [(self.c_type,'x'), (scalar,'y')], rtype = self.c_type)
self.number_protocol['divide'] = div
if algebra :
mul.add_overload (calling_pattern = "*", args = [(self.c_type,'x'), (self.c_type,'y')], rtype = self.c_type)
def prepare_for_generation(self) :
# Called just before the code generation
self.has_mapping_protocol = '__getitem__impl' in self.methods or '__len__impl' in self.methods
if '__setitem__impl' in self.methods and not '__getitem__impl' in self.methods : raise RuntimeError, "Can not generate a class with a setter and no getter"
def add_method(self, py_name, **kw):
"""
Add a method name (or an overload of method name).
All arguments passed by keywords to cfunction construction
"""
f = cfunction(is_method = True, **kw)
if py_name not in self.methods : self.methods[py_name] = pyfunction(py_name = py_name, is_method = True, **kw)
self.methods[py_name].overloads.append(f)
def add_iterator(self, **kw) :
self.iterator = iterator_(**kw)
def add_pure_python_method(self, f, py_name = None):
"""
Add a method name (or an overload of method name).
f can be :
- a string module1.module2.fnt_name
- a function in python...
"""
def process_doc(doc) :
return doc.replace('\n','\\n') if doc else ''
if type(f) ==type('') :
module, name = f.rsplit('.',1)
try :
m = __import__(module.rsplit('.')[-1])
doc = m.__dict__[name].__doc__
except :
raise
self.pure_python_methods[py_name or name] = pure_pyfunction_from_module(py_name = name, module = module), 'module', process_doc(doc)
elif callable(f) :
assert py_name == None
self.hidden_python_function[f.__name__] = f
self.pure_python_methods[f.__name__] = f.__name__, 'inline', process_doc(f.__doc__)
else : raise ValueError, "argument f must be callable or a string"
def add_constructor(self, build_from_regular_type = True, **kw):
"""
Add an overload of a constructor
All arguments passed by keywords to function_ construction
"""
assert 'c_name' not in kw, "No c_name here"
assert 'calling_pattern' not in kw, "No calling_pattern here"
f = cfunction(c_name = "__init__", is_constructor = True, **kw)
build_type = regular_type_if_view_else_type(self.c_type) if self.c_type_is_view and build_from_regular_type else self.c_type
all_args = ",".join([ ('*' if t in module_.wrapped_types else '') + n for t,n,d in f.args])
#all_args = ",".join([ ('*' if t in module_.wrapped_types else '') + n + (' = ' + d if d else '') for t,n,d in f.args])
f._calling_pattern = "((%s *)self)->_c ->"%self.py_type + ('operator =' if not self.c_type_is_view else 'rebind') + " (%s (%s));"%(build_type,all_args)
if not self.constructor :
self.constructor = pyfunction(py_name = "__init__", **kw)
self.constructor.is_constructor = True
self.constructor.overloads.append(f)
def add_member(self, **kw):
"""
Add a class member
All arguments passed by keywords to function_ construction
"""
m = member_(**kw)
self.members.append(m)
def add_property(self, getter, setter = None, name = None, doc = ''):
"""
Add a property
"""
if not isinstance(getter, str) : getter.is_method = True
self.properties.append( property_(name = name or getter.c_name, getter = getter, setter = setter, doc = doc) )
def add_call(self, **kw) :
"""
Add a the __call__ operator
"""
if 'c_name' not in kw and 'calling_pattern' not in kw : kw['c_name']= "operator()"
self.add_method(py_name = "__call__", **kw)
def add_len(self, c_name = None, calling_pattern = None, doc = "Length") :
"""
Add the len operator
"""
if not c_name and not calling_pattern : c_name = "size"
self.add_method(py_name = "__len__impl", c_name = c_name, calling_pattern = calling_pattern, signature="int()", doc= doc)
self.methods['__len__impl'].do_implement = False # do not implement automatically, the signature is special
def add_getitem(self, signature, c_name = None, calling_pattern = None, doc = "operator[]" ) :
"""
Add a the __getitem__ operator
"""
assert not(c_name and calling_pattern)
if calling_pattern :
self.add_method(py_name = "__getitem__impl", calling_pattern = calling_pattern, doc = doc, signature = signature)
else :
self.add_method(py_name = "__getitem__impl", c_name = c_name or "operator[]", doc = doc, signature = signature)
def add_setitem(self, signature, calling_pattern = None, doc = "operator[]", **d ) :
"""
Add a the __setitem__ operator
"""
self.add_method(py_name = "__setitem__impl", calling_pattern = calling_pattern or "self_c[i] = v", doc = doc, signature = signature, **d)
def add_method_copy(self) :
"""Add a method copy, that make a DEEP copy, using triqs make_clone"""
self.add_method(py_name = "copy", calling_pattern = self.c_type + " result = make_clone(self_c)", signature = self.c_type +"()", doc = "Make a copy (clone) of self")
def add_method_copy_from(self) :
"""Add a copy_from, using C++ assignment"""
# other by pointer, it is necessarly a wrapped type
self.add_method(py_name = "copy_from", calling_pattern = " self_c = *other", signature = 'void(' + self.c_type +" other)", doc = "Assignment")
class enum_ :
"""
Representation of an enum
Data :
- c_name : name in C
- values : list of string representing the enumerated
- doc : the doc string.
"""
def __init__(self, c_name, values, doc = '') :
self.c_name, self.values, self.doc = c_name, values, doc
class module_ :
"""
Representation of a module
Data :
- name : name of the module
- imported_modules : name of the modules to import (with their wrapped type converters)
- doc : the doc string.
- classes : dict : string -> class_. Key is the Python type
- c_types : dict : string -> string. Correspondance Python type -> C++ type
- functions : dict : string -> function_. Modules functions. Key is the python name.
- include_list : a list of files to include for compilation
"""
wrapped_types = {}
def __init__(self, full_name, imported_modules = (), doc = '') :
self.full_name = full_name
self.name = full_name.rsplit('.',1)[-1]
self.doc = doc
self.classes = {}
self.functions = {}
self.include_list = []
self.wrapped_types_by_me = {}
self.imported_wrapped_types = {}
self.enums = []
self.using =[]
self.python_functions = {}
self.hidden_python_functions = {}
assert type(imported_modules) in [type(()), type([])]
for m_desc in imported_modules:
m = importlib.import_module("%s_desc"%m_desc)
self.imported_wrapped_types[m_desc] = m.module.wrapped_types
def add_class(self, cls):
if cls.py_type in self.classes : raise IndexError, "The class %s already exists"%cls.py_type
self.classes[cls.py_type] = cls
self.wrapped_types[cls.c_type] = cls.py_type
self.wrapped_types_by_me[cls.c_type] = cls.py_type
def add_function(self, **kw):
if "name" in kw :
assert "py_name" not in kw and "c_name" not in kw, "name or c_name,py_name"
name = kw.pop("name")
kw["py_name"] = name
kw["c_name"] = name
py_name = kw["py_name"]
f = cfunction(**kw)
if py_name not in self.functions : self.functions[py_name] = pyfunction(**kw)
self.functions[py_name].overloads.append(f)
def add_python_function(self, f, name = None, hidden = False) :
assert callable(f)
if not hidden :
self.python_functions[name or f.__name__] = python_function(name or f.__name__, f)
else :
self.hidden_python_functions[name or f.__name__] = python_function(name or f.__name__, f)
def add_include(self, *path) :
self.include_list.extend(path)
def add_using(self,ns) :
self.using.append(ns)
def add_enum(self,**kw) :
self.enums.append( enum_(**kw))
def get_proper_converter(self, t) :
if t in basic_types_formatting : return ''
if t in self.wrapped_types : return ',converter_for_parser_wrapped_type<'+t+'>'
if t.split('<',1)[0].endswith("_view") : return ',converter_for_parser_view_type<'+t+'>'
return ',converter_for_parser_non_wrapped_type<'+t+'>'
def all_args_kw_functions(self) :
l = [ (f, self.name, None) for f in self.functions.values()]
for c in self.classes.values() :
l += [(m,c.py_type, c.c_type) for m in c.methods.values() if m.do_implement]
if c.constructor :
l.append( (c.constructor,c.py_type, c.c_type))
return l
def prepare_for_generation(self) :
for c in self.classes.values() : c.prepare_for_generation()
for n,f in class_.hidden_python_function.items() :
self.add_python_function(f,name = n, hidden=True)
def generate_code(self, mako_template, wrap_file) :
self.prepare_for_generation()
tpl = Template(filename=mako_template)
rendered = tpl.render(module=self, regular_type_if_view_else_type= regular_type_if_view_else_type, is_type_a_view = is_type_a_view)
with open(wrap_file,'w') as f:
f.write(rendered)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,17 @@
SET(PYTHON_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/__init__.py
${CMAKE_CURRENT_SOURCE_DIR}/aux.py
)
# Install python sources
install (FILES ${PYTHON_SOURCES} DESTINATION ${TRIQS_PYTHON_LIB_DEST}/wrap_test)
# Build C extension module
triqs_python_extension(my_module wrap_test)
# ??triqs_set_rpath_for_target(my_module)
include_directories( ${CMAKE_CURRENT_SOURCE_DIR} )
install (FILES ${CMAKE_SOURCE_DIR}/pytriqs/__init__.py.template DESTINATION "include/pytriqs/gf/local" RENAME __init__.py)

View File

@ -0,0 +1,3 @@
# just used in installing pxd files
__all__=[]

193
pytriqs/wrap_test/a.hpp Normal file
View File

@ -0,0 +1,193 @@
#include <iostream>
#include <vector>
#include <ostream>
#include <triqs/arrays.hpp>
//#include <triqs/h5.hpp>
namespace triqs { namespace py_tools {
class reductor;
class reconstructor;
}}
struct A {
private :
double pp =90;
public:
/// Doc of i member
int i = 1;
/// Doc of x,y
double x = 3, y = 89;
A() = default;
A(A&&) = default;
A(A const &) = delete; // to prevent using copy
A &operator =(A&&) = default;
A &operator =(A const &) = default;
std::vector<int> data = { 1, 2, 3, 4, 5, 6 };
using const_iterator = std::vector<int>::const_iterator;
const_iterator begin() const { return data.begin(); }
const_iterator end() const { return data.end(); }
/// The nice doc of m1 ....
double m1(int u, double y) const {
std::cout << " calling m1 " << u << " " << y << std::endl;
return x + 2 * u + 3 * y;
}
double m1(int u) const {
std::cout << " calling m1 one arg " << u << std::endl;
return x + 2 * u;
}
/// m2 has also some doc !
double m2(double u) const {
std::cout << " calling m2 one arg " << u << std::endl;
return x + 20 * u;
}
double &operator[](int i) { return y; }
A operator+(A const &y) {
A a;
a.x = x + y.x;
return a;
}
A operator-(A const &y) {
A a;
a.x = x - y.x;
return a;
}
A operator*(A const &y) {
A a;
a.x = x * y.x;
return a;
}
friend A operator*(A const &x, double s) {
A a;
a.x = x.x * s;
return a;
}
friend A operator*(double s, A const &x) {
A a;
a.x = x.x * s;
return a;
}
A operator/(A const &y) {
A a;
a.x = x / y.x;
return a;
}
A operator/(double y) {
A a;
a.x = x / y;
return a;
}
int _get_i() const { return i; }
void _set_i(int j) { i = j; }
int operator()(int u) {
std::cout << " Calling with u = " << u << std::endl;
return u + i;
}
friend void h5_write(int gr, A const &a) {
std::cout << " mimic h5 writing" << std::endl;
}
/// Write into HDF5
friend void h5_write(triqs::h5::group fg, std::string subgroup_name, A const &a) {
auto gr = fg.create_group(subgroup_name);
h5_write(gr,"x",a.x);
}
/// Read from HDF5
friend void h5_read(triqs::h5::group fg, std::string subgroup_name, A & a) {
auto gr = fg.open_group(subgroup_name);
//TRIQS_RUNTIME_ERROR << "A nasty error in h5read ....";
h5_read(gr,"x",a.x);
}
friend std::ostream &operator<<(std::ostream &out, A const &a) {
return out << " I am an A with x= " << a.x;
}
friend class triqs::py_tools::reductor;
friend class triqs::py_tools::reconstructor;
/// boost serialisation
template <typename Archive>
void serialize(Archive &ar, const unsigned int version) {
ar & i & x;
}
};
/// some function using A
void print_a(A const & a) {
std::cout << "my a is " << a.x << std::endl;
}
/// function with an error
void print_err(A const &a) {
TRIQS_RUNTIME_ERROR << "hum does not look good" << a;
}
/// DOC make_vector...
std::vector<int> make_vector(int size) {
std::vector<int> r(size, 0);
for (int i = 0; i < size; ++i)
r[i] = i;
return r;
}
std::vector<std::vector<int> > make_vector2(int size) {
return { make_vector(size), make_vector(size + 1) };
}
std::vector<int> vector_x2(std::vector<int> const &v) {
auto r = v;
for (auto &x : r)
x *= 2;
return r;
}
using triqs::arrays::matrix;
using triqs::arrays::array;
using triqs::arrays::range;
using namespace triqs::arrays;
void iter_on_range(range r){
foreach(r, [](int i) { std::cout << i << std::endl;});
}
matrix<double> make_matrix(int size) { return make_unit_matrix<double>(size); }
void print_matrix(matrix<double> const &M) {
// std::cout << M <<std::endl;
}
std::function<int(int,int)> make_fnt_ii() {
return [](int i, int j) { return i + 2*j;};
}
std::function<int(int,int,double)> make_fnt_iid() {
return [](int i, int j, double a) { return a+ i + 2*j;};
}
void use_fnt_ii(std::function<int(int,int)> f) {
std::cout << "use_fnt ii \n"<< f(1,2) << std::endl;
}
void use_fnt_iid(std::function<int(int,int,double)> f) {
std::cout << "use_fnt iid \n"<< f(1,2,4.5) << std::endl;
}
std::function<void(int,int)> make_fnt_void() {
return [](int i, int j) { std::cout << " I am a C++ lambda : "<<i <<" "<< j << std::endl;};
}

21
pytriqs/wrap_test/aux.py Normal file
View File

@ -0,0 +1,21 @@
def ffg( *args, **kw) :
""" my doc of ffg in module """
print "calling ffg, with :"
print args
print kw
#return [2*x for x in args], kw
return tuple(2*x for x in args), kw
def post1(res) :
return [res]
def pure_py1(self, i) :
"""
doc of pure_py1 : a nice funciton ,...
"""
i = i/2
print " I am in pure python method pure_py1 %s "%i
return ["pure_py1 return list"]

6
pytriqs/wrap_test/b.hpp Normal file
View File

@ -0,0 +1,6 @@
#include "./a.hpp"
/// some function using A
void print_a2(A const & a) {
std::cout << "module B : my a is " << a.x << std::endl;
}

View File

@ -0,0 +1,10 @@
from wrap_generator import *
# The module
mod = module_(full_name = "pytriqs.wrap_test.my_moduleB", imported_modules = ["my_module"], doc = " Doc of my_module ")
mod.add_include("../c++/b.hpp") # FIX PUT ASOLUTE NAME
mod.add_function (name = "print_a2", signature = "void(A a)", doc = "DOC of print_a")
mod.generate_code(mako_template = sys.argv[1], wrap_file = sys.argv[2])

View File

@ -0,0 +1,104 @@
from wrap_generator import *
# The module
module = module_(full_name = "pytriqs.wrap_test.my_module", doc = " Doc of my_module ")
module.add_include("./a.hpp")
module.add_include("<triqs/arrays.hpp>")
# one class
g = class_(
py_type = "Ac",
c_type = "A",
#serializable= "boost",
serializable= "tuple",
is_printable= True,
hdf5 = True,
arithmetic = ("algebra","double")
)
# add a constructor
g.add_constructor(doc = "DOC of constructor", args = [])
# add a method m1, with 3 overloads in C++ : dispatch is done on the type of the arguments
g.add_method(py_name = "m1", c_name = "m1", signature = "double (int u, double y = 3)", doc = "DOC of m1")
g.add_method(py_name = "m1", c_name = "m1", signature = "double (int u)", doc = "DOC of m1...")
g.add_method(py_name = "m1", c_name = "m2", signature = "double (double u)", doc = "DOC of m1...")
# another version of the method, with some pre/post processing written in python
g.add_method(py_name = "m1p", c_name = "m1", signature = "double (int u, double y = 3)", doc = "DOC of mm", python_precall = "pytriqs.wrap_test.aux.ffg", python_postcall = "pytriqs.wrap_test.aux.post1")
# demo of adding a simple piece of C++ code, there is no C++ method corresponding
g.add_method(py_name = "m1_x", calling_pattern = "bool result = (self_c.x >0) && (self_c.x < 10)" , signature = "bool()", doc = "A method which did not exist in C++")
# alternative syntax
#g.add_method(py_name = "m1", python_precall = "aux.ffg", python_postcall = "aux.post1").add_overload(c_name = "m1", rtype = "double", doc = "DOC of mm", args = [("int","u"), ("double","y",3)])
# older syntax, giving rtype and args (better for automatic scripts).
g.add_method(py_name = "m1f", c_name = "m1", rtype = "double", doc = "DOC of mm", args = [("int","u"), ("double","y",3)])
# add the call operator
g.add_call(signature = "int(int u)", doc = "call op")
# add getitem/setitem ...
g.add_getitem(signature = "double(int i)", doc = " doc [] ")
g.add_setitem(signature = "void(int i, double v)", doc = " doc [] set ")
# We can also add the call to a pure python function !
g.add_pure_python_method("pytriqs.wrap_test.aux.pure_py1")
def ffg2(self, *args, **kw) :
""" my doc of the function ffg2 """
print "calling ffg2 [inline], with :"
print args
print kw
#return [2*x for x in args], kw
print dir()
return tuple(2*x for x in args), kw
g.add_pure_python_method(ffg2)
# public members -> as properties
g.add_member(c_name = "x", c_type = "double", doc = "x field of A ....")
g.add_member(c_name = "y", c_type = "double", doc = "y field of A : read_only", read_only=True)
# properties : transform a couple of methods into properties
g.add_property(name = "i", getter = cfunction(c_name="_get_i", doc = "i prop get doc", signature = "int()"),
setter = cfunction(c_name="_set_i", doc = "i prop set doc", signature = "void(int j)"))
g.add_property(name = "ii", getter = cfunction(c_name="_get_i", doc = "i prop get doc", signature = "int()"))
g.add_iterator()
module.add_class(g)
# various module functions....
module.add_function (name = "print_a", signature = "void(A a)", doc = "DOC of print_a")
module.add_function (name = "print_err", signature = "void(A a)", doc = "DOC of print_a")
module.add_function (name = "make_vector", signature = "std::vector<int>(int size)", doc = "DOC of print_a")
module.add_function (name = "make_vector2", signature = "std::vector<std::vector<int>>(int size)", doc = "DOC ....")
module.add_function (name = "vector_x2", signature = "std::vector<int>(std::vector<int> v)", doc = "DOC of print_a")
module.add_function (name = "make_matrix", signature = "matrix_view<double>(int size)", doc = "DOC ....")
module.add_function (name = "iter_on_range", signature = "void (range r)" , doc = "DOC ....")
module.add_function (name = "make_fnt_ii", rtype = "std::function<int(int,int)>", doc = "....", args = [])
module.add_function (name = "make_fnt_iid", rtype = "std::function<int(int,int,double)>", doc = "....", args = [])
module.add_function (name = "make_fnt_void", rtype = "std::function<void(int,int)>", doc = "....", args = [])
module.add_function (name = "use_fnt_ii", signature = "void(std::function<int(int,int)> f)", doc = "....")
module.add_function (name = "use_fnt_iid", signature = "void(std::function<int(int,int,double)> f)", doc = "....")
def f1(x,y):
print " I am in f1 ", x,y
print y + 1/0.2
print tuple([x])
assert x>0, "an horrible error"
# The code of f1 will be copied verbatim in the module, and compiled at the
# initialisation of the module
module.add_python_function(f1)
if __name__ == '__main__' :
module.generate_code(mako_template = sys.argv[1], wrap_file = sys.argv[2])

View File

@ -0,0 +1,553 @@
#pragma once
#include <Python.h>
#include "structmember.h"
#pragma clang diagnostic ignored "-Wdeprecated-writable-strings"
#pragma GCC diagnostic ignored "-Wdeprecated-writable-strings"
// I can use the trace in triqs::exception
#define CATCH_AND_RETURN(MESS,RET)\
catch(triqs::exception const & e) {\
auto err = std::string("Error " MESS "\nC++ error was : \n") + e.what();\
PyErr_SetString(PyExc_RuntimeError, err.c_str());\
return RET; }\
catch(std::exception const & e) {\
auto err = std::string("Error " MESS "\nC++ error was : \n") + e.what();\
PyErr_SetString(PyExc_RuntimeError, err.c_str());\
return RET; }\
catch(...) { PyErr_SetString(PyExc_RuntimeError,"Unknown error " MESS ); return RET; }\
namespace triqs { namespace py_tools {
//--------------------- pyref -----------------------------
// a little class to hold an owned ref, make sure it is decref at desctruction
// with some useful factories.
class pyref {
PyObject * ob = NULL;
public:
pyref() = default;
pyref(PyObject *new_ref) : ob(new_ref){}
~pyref() { Py_XDECREF(ob);}
operator PyObject *() const { return ob;}
PyObject * new_ref() const { Py_XINCREF(ob); return ob;}
explicit operator bool() const { return (ob!=NULL);}
bool is_null() const { return ob==NULL;}
bool is_None() const { return ob==Py_None;}
pyref attr(const char * s) { return (ob ? PyObject_GetAttrString(ob,s) : NULL);} // NULL : pass the error in chain call x.attr().attr()....
pyref operator()(PyObject * a1) { return (ob ? PyObject_CallFunctionObjArgs(ob,a1,NULL) : NULL);} // NULL : pass the error in chain call x.attr().attr()....
pyref operator()(PyObject * a1,PyObject * a2) { return (ob ? PyObject_CallFunctionObjArgs(ob,a1,a2,NULL) : NULL);} // NULL : pass the error in chain call x.attr().attr()....
pyref(pyref const&p) {ob = p.ob; Py_XINCREF(ob);}
pyref(pyref && p){ ob = p.ob; p.ob=NULL;}
pyref& operator =(pyref const&) = delete;
pyref& operator =(pyref &&p) {ob = p.ob; p.ob=NULL; return *this;}
// factories. No public constructor.
// The point is that PyObject is borrowed or new, depending on the function that produced it
// Need to check in the API doc for each case.
static pyref module(std::string const &module_name) { return PyImport_ImportModule(module_name.c_str()); }
static pyref string(std::string const &s) { return PyString_FromString(s.c_str());}
};
pyref borrowed(PyObject * ob) { Py_XINCREF(ob); return {ob};}
//--------------------- py_converters -----------------------------
template<typename T> struct py_converter {
static PyObject * c2py(T const & x);
static T py2c(PyObject * ob);
static bool is_convertible(PyObject * ob, bool raise_exception);
};
// We only use these functions in the code, not converter
// TODO : Does c2py return NULL in failure ? Or is it undefined...
template <typename T> PyObject *convert_to_python(T &&x) {
return py_converter<typename std::decay<T>::type>::c2py(std::forward<T>(x));
}
// can convert_from_python raise a triqs exception ? NO
template<typename T> auto convert_from_python(PyObject * ob) DECL_AND_RETURN(py_converter<T>::py2c(ob));
template <typename T> bool convertible_from_python(PyObject *ob, bool raise_exception) {
return py_converter<T>::is_convertible(ob, raise_exception);
}
// details
template <bool B> struct _bool {};
template <typename T> struct _is_pointer : _bool<false> {};
template <typename T> struct _is_pointer<T *> : _bool<true> {};
template <> struct _is_pointer<PyObject *> : _bool<false> {}; // yes, false, it is a special case...
// adapter needed for parsing with PyArg_ParseTupleAndKeywords later in the functions
template <typename T> static int converter_for_parser_(PyObject *ob, T *p, _bool<false>) {
if (!py_converter<T>::is_convertible(ob, true)) return 0;
*p = std::move(convert_from_python<T>(ob)); // non wrapped types are converted to values, they can be moved !
return 1;
}
template <typename T> static int converter_for_parser_(PyObject *ob, T **p, _bool<true>) {
if (!convertible_from_python<T>(ob)) return 0;
*p = &(convert_from_python<T>(ob));
return 1;
}
template <typename T> static int converter_for_parser(PyObject *ob, T *p) {
return converter_for_parser_(ob, p, _is_pointer<T>());
}
// -----------------------------------
// Tools for the implementation of reduce (V2)
// -----------------------------------
// auxiliary object to reduce the object into a tuple
class reductor {
std::vector<PyObject *> elem;
PyObject *as_tuple() {
int l = elem.size();
PyObject *tup = PyTuple_New(l);
for (int pos = 0; pos < l; ++pos) PyTuple_SetItem(tup, pos, elem[pos]);
return tup;
}
public:
template <typename T> reductor & operator&(T &x) { elem.push_back(convert_to_python(x)); return *this;}
template<typename T>
PyObject * apply_to(T & x) { x.serialize(*this,0); return as_tuple();}
};
// inverse : auxiliary object to reconstruct the object from the tuple ...
class reconstructor {
PyObject * tup; // borrowed ref
int pos=0, pos_max = 0;
public:
reconstructor(PyObject *borrowed_ref) : tup(borrowed_ref) { pos_max = PyTuple_Size(tup)-1;}
template <typename T> reconstructor &operator&(T &x) {
if (pos > pos_max) TRIQS_RUNTIME_ERROR << " Tuple too short in reconstruction";
x = convert_from_python<T>(PyTuple_GetItem(tup, pos++));
return *this;
}
};
// no protection for convertion !
template <typename T> struct py_converter_from_reductor {
template<typename U> static PyObject *c2py(U && x) { return reductor{}.apply_to(x); }
static T py2c(PyObject *ob) {
T res;
auto r = reconstructor{ob};
res.serialize(r, 0);
return res;
}
static bool is_convertible(PyObject *ob, bool raise_exception) { return true;}
};
// -----------------------------------
// basic types
// -----------------------------------
// PyObject *
template <> struct py_converter<PyObject *> {
static PyObject *c2py(PyObject *ob) { return ob; }
static PyObject *py2c(PyObject *ob) { return ob; }
static bool is_convertible(PyObject *ob, bool raise_exception) { return true;}
};
// --- bool
template <> struct py_converter<bool> {
static PyObject *c2py(bool b) {
if (b)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
static bool py2c(PyObject *ob) { return ob == Py_True; }
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (PyBool_Check(ob)) return true;
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to bool");}
return false;
}
};
// --- long
template <> struct py_converter<long> {
static PyObject *c2py(long i) { return PyInt_FromLong(i); }
static long py2c(PyObject *ob) { return PyInt_AsLong(ob); }
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (PyInt_Check(ob)) return true;
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to long");}
return false;
}
};
template <> struct py_converter<int> : py_converter<long> {};
template <> struct py_converter<size_t> : py_converter<long> {};
// --- double
template <> struct py_converter<double> {
static PyObject *c2py(double x) { return PyFloat_FromDouble(x); }
static double py2c(PyObject *ob) { return PyFloat_AsDouble(ob); }
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (PyFloat_Check(ob) || PyInt_Check(ob)) return true;
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to double");}
return false;
}
};
// --- complex
template <> struct py_converter<std::complex<double>> {
static PyObject *c2py(std::complex<double> x) { return PyComplex_FromDoubles(x.real(), x.imag()); }
static std::complex<double> py2c(PyObject *ob) {
auto r = PyComplex_AsCComplex(ob);
return {r.real, r.imag};
}
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (PyComplex_Check(ob)) return true;
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to complex");}
return false;
}
};
// --- string
template <> struct py_converter<std::string> {
static PyObject *c2py(std::string const &x) { return PyString_FromString(x.c_str()); }
static std::string py2c(PyObject *ob) { return PyString_AsString(ob); }
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (PyString_Check(ob)) return true;
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to string");}
return false;
}
};
// --- h5 group of h5py into a triqs::h5 group
template <> struct py_converter<triqs::h5::group> {
static PyObject *c2py(std::string const &x) =delete;
static pyref group_type;
static triqs::h5::group py2c (PyObject * ob) {
int id = PyInt_AsLong(borrowed(ob).attr("id").attr("id"));
int cmp = PyObject_RichCompareBool((PyObject *)ob->ob_type, group_type, Py_EQ);
return triqs::h5::group (id, (cmp==1));
}
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (group_type.is_null()) {
group_type = pyref::module("h5py").attr("highlevel").attr("Group");
if (PyErr_Occurred()) TRIQS_RUNTIME_ERROR << "Can not load h5py module and find the group in it";
}
int cmp = PyObject_RichCompareBool((PyObject *)ob->ob_type, group_type, Py_EQ);
if (cmp<0) {
if (raise_exception) {
PyErr_SetString(PyExc_TypeError, "hd5 : internal : comparison to group type has failed !!");
}
return false;
}
pyref id_py = borrowed(ob).attr("id").attr("id");
if ((!id_py) ||(!PyInt_Check((PyObject*)id_py))) {
if (raise_exception) {
PyErr_SetString(PyExc_TypeError, "hd5 : INTERNAL : group id.id is not an int !!");
}
return false;
}
return true;
}
};
// --- vector ---
template <typename T> struct py_converter<std::vector<T>> {
static PyObject * c2py(std::vector<T> const &v) {
PyObject * list = PyList_New(0);
for (auto const & x : v) if (PyList_Append(list, py_converter<T>::c2py(x)) == -1) { Py_DECREF(list); return NULL;} // error
return list;
}
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (!PySequence_Check(ob)) goto _false;
{
pyref seq = PySequence_Fast(ob, "expected a sequence");
int len = PySequence_Size(ob);
for (int i = 0; i < len; i++) if (!py_converter<T>::is_convertible(PySequence_Fast_GET_ITEM((PyObject*)seq, i),raise_exception)) goto _false; //borrowed ref
return true;
}
_false:
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to std::vector");}
return false;
}
static std::vector<T> py2c(PyObject * ob) {
pyref seq = PySequence_Fast(ob, "expected a sequence");
std::vector<T> res;
int len = PySequence_Size(ob);
for (int i = 0; i < len; i++) res.push_back(py_converter<T>::py2c(PySequence_Fast_GET_ITEM((PyObject*)seq, i))); //borrowed ref
return res;
}
};
// in CPP file ?
pyref py_converter<triqs::h5::group>::group_type;
// --- mini_vector<T,N>---
// via std::vector
template <typename T, int N> struct py_converter<triqs::utility::mini_vector<T,N>> {
using conv = py_converter<std::vector<T>>;
static PyObject * c2py(triqs::utility::mini_vector<T,N> const &v) {
return conv::c2py( v.to_vector());
}
static bool is_convertible(PyObject *ob, bool raise_exception) {
return conv::is_convertible(ob,raise_exception);
}
static triqs::utility::mini_vector<T,N> py2c(PyObject * ob) {
return conv::py2c(ob);
}
};
// --- array
template <typename ArrayType> struct py_converter_array {
static PyObject *c2py(ArrayType const &x) { return x.to_python(); }
static ArrayType py2c(PyObject *ob) {
return ArrayType {ob};
}
static bool is_convertible(PyObject *ob, bool raise_exception) {
try {
py2c(ob);
return true;
}
catch (...) {
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to array/matrix/vector");}
return false;
}
}
};
template <typename T, int R> struct py_converter<triqs::arrays::array_view<T, R>> : py_converter_array<triqs::arrays::array_view<T, R>> {};
template <typename T> struct py_converter<triqs::arrays::matrix_view<T>> : py_converter_array<triqs::arrays::matrix_view<T>> {};
template <typename T> struct py_converter<triqs::arrays::vector_view<T>> : py_converter_array<triqs::arrays::vector_view<T>> {};
template <typename T, int R> struct py_converter<triqs::arrays::array<T, R>> : py_converter_array<triqs::arrays::array<T, R>> {};
template <typename T> struct py_converter<triqs::arrays::matrix<T>> : py_converter_array<triqs::arrays::matrix<T>> {};
template <typename T> struct py_converter<triqs::arrays::vector<T>> : py_converter_array<triqs::arrays::vector<T>> {};
// --- range
// convert from python slice and int (interpreted are slice(i,i+1,1))
template <> struct py_converter<triqs::arrays::range> {
static PyObject *c2py(triqs::arrays::range const &r) {
return PySlice_New(convert_to_python(r.first()), convert_to_python(r.last()), convert_to_python(r.step()));
}
static triqs::arrays::range py2c(PyObject *ob) {
if (PyInt_Check(ob)) {
int i = PyInt_AsLong(ob);
return {i,i+1,1};
}
int len = 4; // no clue what this len is ??
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject *)ob, len, &start, &stop, &step, &slicelength) < 0) return {};
return {start, stop, step};
}
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (PySlice_Check(ob) || PyInt_Check(ob)) return true;
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to python slice");}
return false;
}
};
// --- gf<U...> ----
/*template <typename ...U > struct py_converter<triqs::gfs::gf<U...>> {
using conv = py_converter<triqs::gfs::gf_view<U...>>;
static PyObject *c2py(triqs::gfs::gf<U...> &g) { return conv::c2py(g); }
static PyObject *c2py(triqs::gfs::gf<U...> &&g) { return conv::c2py(g); }
static bool is_convertible(PyObject *ob, bool raise_exception) {
return conv::is_convertible(ob,raise_exception);
}
static triqs::gfs::gf<U...> py2c(PyObject *ob) { return conv::py2c(ob); }
};
*/
// --- nothing <--> None ----
#ifdef TRIQS_GF_INCLUDED
template<> struct py_converter<triqs::gfs::nothing> {
static PyObject *c2py(triqs::gfs::nothing g) { Py_RETURN_NONE;}
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (ob ==Py_None) return true;
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to triqs::gfs::nothing : can only convert None");}
return false;
}
static triqs::gfs::nothing py2c(PyObject *ob) { return {}; }
};
template<> struct py_converter<triqs::gfs::indices_2> : py_converter_from_reductor<triqs::gfs::indices_2>{};
template<bool B> struct py_converter<triqs::gfs::matsubara_domain<B>> : py_converter_from_reductor<triqs::gfs::matsubara_domain<B>>{};
template<> struct py_converter<triqs::gfs::R_domain> : py_converter_from_reductor<triqs::gfs::R_domain>{};
#endif
// ---- function ----
// a few useful meta tricks
template <int N> struct _int {};
template <int... N> struct index_seq {};
template <typename U> struct nop {};
template <int N> struct _make_index_seq;
template <int N> using make_index_seq = typename _make_index_seq<N>::type;
template <> struct _make_index_seq<0> { using type = index_seq<>; };
template <> struct _make_index_seq<1> { using type = index_seq<0>; };
template <> struct _make_index_seq<2> { using type = index_seq<0, 1>; };
template <> struct _make_index_seq<3> { using type = index_seq<0, 1, 2>; };
template <> struct _make_index_seq<4> { using type = index_seq<0, 1, 2, 3>; };
template <> struct _make_index_seq<5> { using type = index_seq<0, 1, 2, 3, 4>; };
template <int N> struct make_format { static const char * value;};
template <> const char * make_format<0>::value = "";
template <> const char * make_format<1>::value = "O&";
template <> const char * make_format<2>::value = "O&O&";
template <> const char * make_format<3>::value = "O&O&O&";
template <> const char * make_format<4>::value = "O&O&O&O&";
template <> const char * make_format<5>::value = "O&O&O&O&O&";
template <typename R, typename... T> struct py_converter<std::function<R(T...)>> {
static_assert(sizeof...(T) < 5, "More than 5 variables not implemented");
typedef struct {
PyObject_HEAD
std::function<R(T...)> *_c;
} std_function;
static PyObject* std_function_new (PyTypeObject *type, PyObject *args, PyObject *kwds) {
std_function *self;
self = (std_function *)type->tp_alloc(type, 0);
if (self != NULL) {
self->_c = new std::function<R(T...)>{};
}
return (PyObject *)self;
}
static void std_function_dealloc(std_function* self) {
delete self->_c;
self->ob_type->tp_free((PyObject*)self);
}
// technical details to implement the __call function of the wrapping python object, cf below
// we are using the unpack trick of the apply proposal for the C++ standard : cf XXXX
//
// specialise the convertion of the return type in the void case
template <typename RR, typename TU, int... Is>
static PyObject *_call_and_treat_return(nop<RR>, std_function *pyf, TU const &tu, index_seq<Is...>) {
return py_converter<RR>::c2py(pyf->_c->operator()(std::get<Is>(tu)...));
}
template <typename TU, int... Is>
static PyObject *_call_and_treat_return(nop<void>, std_function *pyf, TU const &tu, index_seq<Is...>) {
pyf->_c->operator()(std::get<Is>(tu)...);
Py_RETURN_NONE;
}
using arg_tuple_t = std::tuple<T...>;
using _int_max = _int<sizeof...(T) - 1>;
template <typename... U> static int _parse(_int<-1>, PyObject *args, arg_tuple_t &tu, U... u) {
return PyArg_ParseTuple(args, make_format<sizeof...(T)>::value, u...);
}
template <int N, typename... U> static int _parse(_int<N>, PyObject *args, arg_tuple_t &tu, U... u) {
return _parse(_int<N - 1>(), args, tu,
converter_for_parser<typename std::tuple_element<N, typename std::decay<arg_tuple_t>::type>::type>,
&std::get<N>(tu), u...);
}
// the call function object ...
// TODO : ADD THE REF AND POINTERS in x ??
static PyObject *std_function_call(PyObject *self, PyObject *args, PyObject *kwds) {
arg_tuple_t x;
if (!_parse(_int_max(), args, x)) return NULL;
try {
return _call_and_treat_return(nop<R>(), (std_function *)self, x, make_index_seq<sizeof...(T)>());
}
CATCH_AND_RETURN("calling C++ std::function ", NULL);
}
static PyTypeObject get_type() { return {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"std_function", /*tp_name*/
sizeof(std_function), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)std_function_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
std_function_call, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT , /*tp_flags*/
"Internal wrapper of std::function", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
std_function_new, /* tp_new */
};}
static void ensure_type_ready(PyTypeObject &Type, bool &ready) {
if (!ready) {
Type = get_type();
if (PyType_Ready(&Type) < 0) std::cout << " aie ie " << std::endl;
ready = true;
}
}
// U can be anything, typically a lambda
template <typename U> static PyObject *c2py(U &&x) {
std_function *self;
static PyTypeObject Type;
static bool ready = false;
ensure_type_ready(Type, ready);
self = (std_function *)Type.tp_alloc(&Type, 0);
if (self != NULL) {
self->_c = new std::function<R(T...)>{ std::forward<U>(x) };
}
return (PyObject *)self;
}
static bool is_convertible(PyObject *ob, bool raise_exception) {
if (PyCallable_Check(ob)) return true;
if (raise_exception) { PyErr_SetString(PyExc_TypeError, "Can not convert to std::function a non callable object");}
return false;
}
static std::function<R(T...)> py2c(PyObject * ob) {
static PyTypeObject Type;
static bool ready = false;
ensure_type_ready(Type, ready);
// If we convert a wrapped std::function, just extract it.
if (PyObject_TypeCheck(ob, &Type)) { return *(((std_function *)ob)->_c);}
// otherwise, we build a new std::function around the python function
pyref py_fnt = borrowed(ob);
auto l = [py_fnt](T... x) mutable -> R { // py_fnt is a pyref, it will keep the ref and manage the ref counting...
pyref ret = PyObject_CallFunctionObjArgs(py_fnt, (PyObject*)pyref(convert_to_python(x))...,NULL);
return py_converter<R>::py2c(ret);
};
return l;
}
};
}}