mirror of
https://github.com/triqs/dft_tools
synced 2024-12-23 04:43:42 +01:00
spectral routines plotpt3d update
This commit is contained in:
parent
df7e3958af
commit
45696baf9a
@ -297,8 +297,9 @@ class ElkConverterTools:
|
|||||||
return dy
|
return dy
|
||||||
|
|
||||||
def plotpt3d(self,n_k,vkl,n_symm,symlat,grid3d,ngrid):
|
def plotpt3d(self,n_k,vkl,n_symm,symlat,grid3d,ngrid):
|
||||||
#import time
|
|
||||||
import triqs.utility.mpi as mpi
|
import triqs.utility.mpi as mpi
|
||||||
|
#import time
|
||||||
|
#st = time.time()
|
||||||
#default vector tolerance used in Elk. This should not be altered.
|
#default vector tolerance used in Elk. This should not be altered.
|
||||||
epslat=1E-6
|
epslat=1E-6
|
||||||
tol=int(numpy.log10(1/epslat))
|
tol=int(numpy.log10(1/epslat))
|
||||||
@ -307,82 +308,54 @@ class ElkConverterTools:
|
|||||||
nk = ngrid[0]*ngrid[1]*ngrid[2]
|
nk = ngrid[0]*ngrid[1]*ngrid[2]
|
||||||
BZvkl = numpy.zeros([nk,3], float)
|
BZvkl = numpy.zeros([nk,3], float)
|
||||||
BZvkl[:,:] = None
|
BZvkl[:,:] = None
|
||||||
vklir = numpy.zeros([3], float)
|
#array which maps the new vkl to the symmetrically equivalent interface vkl
|
||||||
vklir[:] = None
|
|
||||||
#array which maps the new vkl to the symmetrically equivalent interface self.vkl
|
|
||||||
iknr = numpy.zeros([nk], int)
|
iknr = numpy.zeros([nk], int)
|
||||||
v = numpy.zeros([3], float)
|
|
||||||
nk_ = 0
|
nk_ = 0
|
||||||
ik = 0
|
|
||||||
vklIBZ = [self.v3frac(vkl[ik,:],epslat) for ik in range(n_k)]
|
vklIBZ = [self.v3frac(vkl[ik,:],epslat) for ik in range(n_k)]
|
||||||
vklIBZ = numpy.array(vklIBZ)
|
vklIBZ = numpy.array(vklIBZ)
|
||||||
#print(vklIBZ)
|
|
||||||
#st = time.time()
|
|
||||||
#loop over the number of grid points for each reciprocal lattice
|
|
||||||
for i2 in range(ngrid[2]):
|
|
||||||
t2=float(i2)/float(ngrid[2])
|
|
||||||
for i1 in range(ngrid[1]):
|
|
||||||
t1=float(i1)/float(ngrid[1])
|
|
||||||
for i0 in range(ngrid[0]):
|
|
||||||
t0=float(i0)/float(ngrid[0])
|
|
||||||
#br = None
|
|
||||||
#calculate Brillouin zone lattice vector
|
|
||||||
v = t0*b[0,:]+t1*b[1,:]+t2*b[2,:]+grid3d[0,:]
|
|
||||||
BZvkl[ik,:] = v.copy()
|
|
||||||
ik += 1
|
|
||||||
|
|
||||||
#check if generated points are symmetrically equivalent to interfaced vkl
|
#generate mesh grid
|
||||||
#Note that this loop is the bottle neck for this routine hence the
|
i0, i1, i2 = numpy.meshgrid(numpy.arange(ngrid[0]), numpy.arange(ngrid[1]),
|
||||||
#parallelisation.
|
numpy.arange(ngrid[2]), indexing='ij')
|
||||||
ikarray = numpy.array(range(nk))
|
#convert to floats
|
||||||
for ik in mpi.slice_array(ikarray):
|
t0 = i0.astype(float)/ngrid[0]
|
||||||
#apply translation to reduce back to first Brillouin zone
|
t1 = i1.astype(float)/ngrid[1]
|
||||||
v = self.v3frac(BZvkl[ik,:].copy(),epslat)
|
t2 = i2.astype(float)/ngrid[2]
|
||||||
|
#Calculate Brillouin zone lattice vectors
|
||||||
|
BZvkl[:, 0] = (t0*b[0,0]+t1*b[1, 0]+t2*b[2, 0]+grid3d[0, 0]).flatten()
|
||||||
|
BZvkl[:, 1] = (t0*b[0,1]+t1*b[1, 1]+t2*b[2, 1]+grid3d[0, 1]).flatten()
|
||||||
|
BZvkl[:, 2] = (t0*b[0,2]+t1*b[1, 2]+t2*b[2, 2]+grid3d[0, 2]).flatten()
|
||||||
|
#check k-point has equivalent point dft-interfaced k-point list (this is a bottle neck for performance)
|
||||||
|
for ik in range(nk):
|
||||||
br = None
|
br = None
|
||||||
|
v1 = self.v3frac(BZvkl[ik,:], epslat)
|
||||||
if v.round(tol).tolist() in vklIBZ.copy().round(tol).tolist():
|
#see if v1 is symmetrically equivalent to a vector in IBZvkl
|
||||||
#Find index of v in self.vkl
|
|
||||||
ikk = vkl.copy().round(tol).tolist().index(v.round(tol).tolist())
|
|
||||||
iknr[ik] = ikk
|
|
||||||
#ikir = numpy.append(ikir,ikk)
|
|
||||||
#check if v is a irreducible vector and tally these vectors
|
|
||||||
if v.round(tol).tolist() not in vklir.round(tol).tolist():
|
|
||||||
nk_+=1
|
|
||||||
vklir = numpy.vstack((vklir,v))
|
|
||||||
continue
|
|
||||||
#if v is not in interface set, see if it's symmetrically equivalent to
|
|
||||||
#a vector in self.vkl
|
|
||||||
for isym in range(n_symm):
|
for isym in range(n_symm):
|
||||||
if numpy.allclose(symlat[isym][:,:],numpy.eye(3)):
|
v_symm=numpy.matmul(symlat[isym][:,:].transpose(),v1)
|
||||||
continue
|
|
||||||
v_symm=numpy.matmul(symlat[isym][:,:].transpose(),v)
|
|
||||||
v_symm=self.v3frac(v_symm,epslat)
|
v_symm=self.v3frac(v_symm,epslat)
|
||||||
if v_symm.round(tol).tolist() in vklIBZ.copy().round(tol).tolist():
|
if v_symm.round(tol).tolist() in vklIBZ.round(tol).tolist():
|
||||||
ikk = vkl.copy().round(tol).tolist().index(v_symm.round(tol).tolist())
|
iknr[ik] = vkl.round(tol).tolist().index(v_symm.round(tol).tolist())
|
||||||
#ikir = numpy.append(ikir,ikk)
|
#if identity symmetry operation was used, this v1 must be in the IBZ vector set
|
||||||
iknr[ik] = ikk
|
if numpy.allclose(symlat[isym][:,:],numpy.eye(3)):
|
||||||
|
nk_+=1
|
||||||
br = 1
|
br = 1
|
||||||
break
|
break
|
||||||
if br == 1: continue
|
if br == 1: continue
|
||||||
#if v is not symmetrically equivalent, then wrong input mesh.
|
#if v1 is not symmetrically equivalent, then wrong input mesh.
|
||||||
mpi.report('No symmetrically equavilent vector in interface vkl set')
|
mpi.report('No identity symmetry operator or symmetrically equivalent vector in interface vkl set')
|
||||||
assert 0, "input grid does not generate interfaced reciprocal vectors"
|
assert 0, "input grid does not generate interfaced reciprocal vectors"
|
||||||
#collect required variables and arrays (initialised to zero) from all threads.
|
|
||||||
nk_ = mpi.all_reduce(mpi.world, nk_, lambda x, y: x + y)
|
|
||||||
iknr = mpi.all_reduce(mpi.world, iknr, lambda x, y: x + y)
|
|
||||||
|
|
||||||
#check that all the vectors from the interface are in this list of vectors
|
#check that all the vectors from the interface are in this list of vectors
|
||||||
if(nk_!=n_k):
|
if(nk_!=n_k):
|
||||||
mpi.report('Incorrect number of irreducible vectors with respect to self.vkl ')
|
mpi.report('Incorrect number of irreducible vectors with respect to vkl ')
|
||||||
mpi.report('%s!=%s'%(nk_,n_k))
|
mpi.report('%s!=%s'%(nk_,n_k))
|
||||||
assert 0, "input grid does not generate interfaced reciprocal vectors"
|
assert 0, "input grid does not generate interfaced reciprocal vectors"
|
||||||
#et = time.time()
|
#et = time.time()
|
||||||
#mpi.report(et-st,nk,nk_)
|
#mpi.report(et-st,nk)
|
||||||
#assert 0, ""
|
|
||||||
return BZvkl, iknr, nk
|
return BZvkl, iknr, nk
|
||||||
|
|
||||||
def bzfoldout(self,n_k,vkl,n_symm,symlat):
|
def bzfoldout(self,n_k,vkl,n_symm,symlat):
|
||||||
import triqs.utility.mpi as mpi
|
#import triqs.utility.mpi as mpi
|
||||||
epslat=1E-6
|
epslat=1E-6
|
||||||
tol=int(numpy.log10(1/epslat))
|
tol=int(numpy.log10(1/epslat))
|
||||||
#new temporary arrays for expanding irreducible Brillouin zone
|
#new temporary arrays for expanding irreducible Brillouin zone
|
||||||
@ -393,20 +366,13 @@ class ElkConverterTools:
|
|||||||
vkl2[0,:,:] = vkl[:,:].copy()
|
vkl2[0,:,:] = vkl[:,:].copy()
|
||||||
iknr2[0,:] = iknr[:].copy()
|
iknr2[0,:] = iknr[:].copy()
|
||||||
#expand irreducible Brillouin zone
|
#expand irreducible Brillouin zone
|
||||||
ikarray = numpy.array(range(n_k))
|
for ik in range(n_k):
|
||||||
for ik in mpi.slice_array(ikarray):
|
|
||||||
for isym in range(n_symm):
|
for isym in range(n_symm):
|
||||||
#find point in BZ by symmetry operation
|
#find point in BZ by symmetry operation
|
||||||
v=numpy.matmul(symlat[isym][:,:].transpose(),vkl[ik,:])
|
v=numpy.matmul(symlat[isym][:,:].transpose(),vkl[ik,:])
|
||||||
#shift back in to range [0,1) - Elk specific
|
|
||||||
#v[:]=self.v3frac(v,epslat)
|
|
||||||
#alter temporary arrays
|
#alter temporary arrays
|
||||||
vkl2[isym,ik,:] = v[:]
|
vkl2[isym,ik,:] = v[:]
|
||||||
iknr2[isym,ik] = ik
|
iknr2[isym,ik] = ik
|
||||||
# Collect data from mpi (adding to elements with zeros):
|
|
||||||
vkl2 = mpi.all_reduce(mpi.world, vkl2, lambda x, y: x + y)
|
|
||||||
iknr2 = mpi.all_reduce(mpi.world, iknr2, lambda x, y: x + y)
|
|
||||||
mpi.barrier()
|
|
||||||
#flatten arrays
|
#flatten arrays
|
||||||
BZvkl = vkl2.reshape(n_k*n_symm,3)
|
BZvkl = vkl2.reshape(n_k*n_symm,3)
|
||||||
iknr = iknr2.reshape(n_k*n_symm)
|
iknr = iknr2.reshape(n_k*n_symm)
|
||||||
|
@ -13,6 +13,7 @@ testdir = cwd+'/elk_spectralcontours_convert'
|
|||||||
#change to test directory
|
#change to test directory
|
||||||
os.chdir(testdir)
|
os.chdir(testdir)
|
||||||
|
|
||||||
|
#default k-mesh
|
||||||
Converter = ElkConverter(filename='SrVO3', repacking=True)
|
Converter = ElkConverter(filename='SrVO3', repacking=True)
|
||||||
Converter.hdf_file = 'elk_spectralcontours_convert.out.h5'
|
Converter.hdf_file = 'elk_spectralcontours_convert.out.h5'
|
||||||
Converter.convert_dft_input()
|
Converter.convert_dft_input()
|
||||||
@ -27,16 +28,26 @@ fs_elk = SK.spectral_contours(broadening=0.01, mesh=mesh, with_Sigma=False, with
|
|||||||
omega_elk = SK.spectral_contours(broadening=0.01, mesh=mesh, with_Sigma=False, with_dc=False, FS=False, proj_type='wann', save_to_file=False)
|
omega_elk = SK.spectral_contours(broadening=0.01, mesh=mesh, with_Sigma=False, with_dc=False, FS=False, proj_type='wann', save_to_file=False)
|
||||||
omega_range_elk = SK.spectral_contours(broadening=0.01, mesh=mesh, plot_range=(-0.5,2), with_Sigma=False, with_dc=False, FS=False, proj_type='wann', save_to_file=False)
|
omega_range_elk = SK.spectral_contours(broadening=0.01, mesh=mesh, plot_range=(-0.5,2), with_Sigma=False, with_dc=False, FS=False, proj_type='wann', save_to_file=False)
|
||||||
|
|
||||||
|
#user specified k-mesh - has to be same as used in elk.in
|
||||||
|
Converter = ElkConverter(filename='SrVO3', repacking=True)
|
||||||
|
Converter.hdf_file = 'elk_spectralcontours_convert.out.h5'
|
||||||
|
ngrid=np.array([10,10,1],np.int_)
|
||||||
|
kgrid=np.array([[0.0,0.0,0.0],[1.0,0.0,0.0],[0.0,1.0,0.0],[0.0,0.0,1.0]],np.float_)
|
||||||
|
Converter.convert_contours_input(kgrid=kgrid,ngrid=ngrid)
|
||||||
|
SK2 = SumkDFTTools(hdf_file='elk_spectralcontours_convert.out.h5', use_dft_blocks=True)
|
||||||
|
fs_elk_user = SK2.spectral_contours(broadening=0.01, mesh=mesh, with_Sigma=False, with_dc=False, FS=True, proj_type='wann', save_to_file=False)
|
||||||
|
|
||||||
if mpi.is_master_node():
|
if mpi.is_master_node():
|
||||||
|
|
||||||
#with HDFArchive('elk_fermisurface_convert.ref.h5', 'a') as ar:
|
#with HDFArchive('elk_spectralcontours_convert.ref.h5', 'a') as ar:
|
||||||
# ar['fs_elk'] = fs_elk
|
# ar['fs_elk'] = fs_elk
|
||||||
|
# ar['fs_elk_user'] = fs_elk_user
|
||||||
# ar['omega_elk'] = omega_elk
|
# ar['omega_elk'] = omega_elk
|
||||||
# ar['omega_range_elk'] = omega_range_elk
|
# ar['omega_range_elk'] = omega_range_elk
|
||||||
# ar['mesh'] = [omin,omax,oN]
|
# ar['mesh'] = [omin,omax,oN]
|
||||||
with HDFArchive('elk_spectralcontours_convert.out.h5', 'a') as ar:
|
with HDFArchive('elk_spectralcontours_convert.out.h5', 'a') as ar:
|
||||||
ar['fs_elk'] = fs_elk
|
ar['fs_elk'] = fs_elk
|
||||||
|
ar['fs_elk_user'] = fs_elk_user
|
||||||
ar['omega_elk'] = omega_elk
|
ar['omega_elk'] = omega_elk
|
||||||
ar['omega_range_elk'] = omega_range_elk
|
ar['omega_range_elk'] = omega_range_elk
|
||||||
ar['mesh'] = [omin,omax,oN]
|
ar['mesh'] = [omin,omax,oN]
|
||||||
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user