3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-26 04:21:58 +01:00

gf product and curry. First draft

- works on simple case, to be reread.
- curry in general. To be reread ..
- added some tests.
This commit is contained in:
Olivier Parcollet 2013-07-27 22:59:51 +02:00
parent f6fa63c9b3
commit 44bf1e322a
8 changed files with 415 additions and 14 deletions

View File

@ -3,6 +3,8 @@
#include <triqs/gfs/re_im_freq.hpp>
#include <triqs/gfs/re_im_time.hpp>
#include <triqs/gfs/refreq_imtime.hpp>
#include <triqs/gfs/product.hpp>
#include <triqs/gfs/curry.hpp>
#include <triqs/gfs/local/fourier_real.hpp>
#include <triqs/arrays.hpp>
@ -12,6 +14,8 @@ using namespace triqs::gfs;
int main() {
try {
double precision=10e-9;
double beta =1.;
@ -25,16 +29,35 @@ int main() {
int n_re_freq=100;
int n_im_freq=100;
auto G_t_tau= make_gf<re_im_time, scalar_valued>( tmin, tmax, n_re_time, beta, Fermion, n_im_time);
//auto G_t_tau= make_gf<re_im_time, scalar_valued>( tmin, tmax, n_re_time, beta, Fermion, n_im_time);
auto G_w_wn = make_gf<re_im_freq, scalar_valued>( wmin, wmax, n_re_freq, beta, Fermion, n_im_freq);
auto G_w_tau= make_gf<refreq_imtime, scalar_valued>(wmin, wmax, n_re_freq, beta, Fermion, n_im_time);
auto G_w= make_gf<refreq, scalar_valued>(wmin, wmax, n_re_freq);
auto G_t_tau= make_gf<cartesian_product<retime,imtime>, scalar_valued>( make_gf_mesh<retime>(tmin, tmax, n_re_time), make_gf_mesh<imtime>(beta, Fermion, n_im_time));
//auto G_t_tau_N= make_gf<cartesian_product<retime,imtime>, scalar_valued>( {tmin, tmax, n_re_time}, {beta, Fermion, n_im_time});
auto G_w_wn2 = make_gf<cartesian_product<refreq,imfreq>, scalar_valued>( make_gf_mesh<refreq>(wmin, wmax, n_re_freq), make_gf_mesh<imfreq>(beta, Fermion, n_im_freq));
auto G_w_tau2 = make_gf<cartesian_product<refreq,imtime>, scalar_valued>( make_gf_mesh<refreq>(wmin, wmax, n_re_freq), make_gf_mesh<imtime>(beta, Fermion, n_im_time,full_bins));
//auto g_tau = slice_mesh1(G_w_tau(),1);
//auto g_wn = G_w_wn_curry0[1];
//std::cout << G_t_tau_N (0.1,0.2) << std::endl;
auto G_w_wn2_view = G_w_wn2();
auto G_w_wn_sl0_a = partial_eval<0>(G_w_wn2(), std::make_tuple(8));
//auto G_w_wn_curry0_a = curry0(G_w_wn2);
//auto G_w_wn_sl0_a = slice_mesh0(G_w_wn2(), 8);
triqs::clef::placeholder<0> w_;
triqs::clef::placeholder<1> wn_;
triqs::clef::placeholder<2> tau_;
G_w_wn(w_,wn_)<<1/(wn_-1)/( pow(w_,3) );
G_w_wn2(w_,wn_)<<1/(wn_-1)/( pow(w_,3) );
G_w_tau(w_,tau_)<< exp( -2*tau_ ) / (w_*w_ + 1 );
G_w_tau2(w_,tau_)<< exp( -2*tau_ ) / (w_*w_ + 1 );
int index = n_re_freq/3;
double tau = std::get<1>(G_w_tau.mesh().components())[index];
@ -45,21 +68,38 @@ int main() {
G_w.singularity()(0)=triqs::arrays::matrix<double>{{0}};
G_w.singularity()(1)=triqs::arrays::matrix<double>{{0}};
G_w.singularity()(2)=triqs::arrays::matrix<double>{{0}};
//auto G_w2 = slice_mesh1(G_w_tau(), index);
auto G_w2 = slice_mesh_imtime(G_w_tau, index);
for(auto& w:G_w.mesh())
if ( std::abs(G_w[w]-G_w2[w]) > precision) TRIQS_RUNTIME_ERROR<<" fourier_slice error : w="<< w <<" ,G_w="<< G_w[w]<<" ,G_w2="<< G_w2[w] <<"\n";
//test of the interpolation
std::cout << G_t_tau(0.789,0.123) << std::endl;
std::cout << G_w_wn( 0.789,0.123) << std::endl;
std::cout << G_w_tau(0.789,0.123) << std::endl;
std::cout << "G_w_wn( 0.789,0.123) "<< G_w_wn( 0.789,0.123) << std::endl;
std::cout << "G_w_wn( 0.789,0.123) "<<G_w_wn2( 0.789,0.123) << std::endl;
std::cout << "G_w_tau(0.789,0.123)" << G_w_tau(0.789,0.123) << std::endl;
std::cout << "G_w_tau(0.789,0.123)" << G_w_tau2(0.789,0.123) << std::endl;
// test curry
std::cout << "curry no"<< G_w_wn.on_mesh(8,3) << std::endl ;
auto G_w_wn_curry0 = curry<0>(G_w_wn2);
auto G_w_wn_curry1 = curry<1>(G_w_wn2);
auto G_w_wn2_view2 = G_w_wn2();
std::cout << " curry "<<G_w_wn_curry0[8] << G_w_wn_curry0[8][3] << G_w_wn2_view2.on_mesh(8,3) << G_w_wn2_view2.on_mesh(8,3) <<std::endl ;
std::cout << " curry "<<G_w_wn_curry1[3][8] << std::endl;
std::cout << "G_w_wn_sl0_a [3]"<<G_w_wn_sl0_a[3] << std::endl ;
// test hdf5
H5::H5File file("gf_re_im_freq_time.h5", H5F_ACC_TRUNC );
h5_write(file, "g_t_tau", G_t_tau);
h5_write(file, "g_w_wn", G_w_wn);
h5_write(file, "g_w_wn2", G_w_wn2);
h5_write(file, "g_w_tau", G_w_tau);
/*
// try to slice it
auto gt = slice_mesh_imtime(G_t_tau, 1);
h5_write(file, "gt0", gt);
@ -71,5 +111,7 @@ int main() {
auto G_t2 = inverse_fourier(slice_mesh_imtime(G_w_tau, index) );
for(auto& t:G_t.mesh())
if ( std::abs(G_t[t]-G_t2[t]) > precision) TRIQS_RUNTIME_ERROR<<" fourier_slice_re_time error : t="<< t <<" ,G_t="<< G_t[t] <<" ,G_t2="<< G_t2[t] <<"\n";
*/
}
catch(std::exception const & e ) { std::cout << "error "<< e.what()<< std::endl;}
}

160
triqs/gfs/curry.hpp Normal file
View File

@ -0,0 +1,160 @@
/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_CURRY_H
#define TRIQS_GF_CURRY_H
#include "./product.hpp"
namespace triqs { namespace gfs {
template<typename F> struct lambda_valued {};
namespace gfs_implementation {
/// --------------------------- data access ---------------------------------
template<typename Opt, typename F, typename M> struct data_proxy<M,lambda_valued<F>,Opt> : data_proxy_lambda<F> {};
/// --------------------------- Factories ---------------------------------
template<typename F, typename Opt, typename ... Ms>
struct factories<cartesian_product<Ms...>, lambda_valued<F>, Opt> {};
// detail
template<typename M0, typename CP> struct cartesian_product_add_front;
template<typename M0, typename ... Ms> struct cartesian_product_add_front<M0,cartesian_product<Ms...>>{ typedef cartesian_product<M0,Ms...> type; };
// -------------------------------------------------
// Partial evaluation of the gf
// -------------------------------------------------
//
// Given a cartesian_product of meshes (CP), and a compile time list of int (I)
// - metacompute the list of Ms without position those at position 0,2 (type)
// - provide 2 runtimes functions :
// - sl : given empty tuple () and a tuple (it) of indices
// return the tuple of indices and range, where range are at the position defined by I,
// and the indices in other places, in order.
// - m : returns from a CP object the corresponding tuple of meshes of the remaining meshes
// after partial eval (of the type computed by "type").
// - auxiliary data :
// pos : position in the CP tuple ( CP::size-1 ->0)
// ip : position in the tuple of indices (for sl)
// MP : accumulation of the final type metacomputed.
//
template<int pos, int ip, typename CP, typename MP, int ... I> struct pv_impl;
template<typename CP, int ... I> struct pv_ : pv_impl<CP::size-1,0,CP,cartesian_product<>,I...>{};
template<typename CP, int ip, typename MP, int ... I> struct pv_impl<-1, ip, CP, MP, I... > {
// the final type is a cartesian_product<...> if there is more than one mess
// and otherwise the only mesh remaining... (avoiding cartesian_product<imfreq> e.g. which makes little sense).
typedef typename std::conditional<MP::size==1, typename std::tuple_element<0,typename MP::type>::type, MP>::type type;
template<typename T, typename IT> static T sl(T t, IT const & it) {return t;}
template<typename T, typename MT> static T m (T t, MT const & mt) {return t;}
};
template<int pos, int ip, typename CP, typename MP, int ... I> struct pv_impl {
typedef pv_impl<pos-1, ip, CP,MP, I...> B;
typedef typename B::type type;
template<typename T, typename IT> static auto sl (T t, IT const & it) DECL_AND_RETURN( B::sl(triqs::tuple::push_front(t,arrays::range()),it));
template<typename T, typename MT> static auto m (T t, MT const & mt) DECL_AND_RETURN( B::m(t,mt));
};
template<int pos, int ip, typename CP, typename MP, int ... I> struct pv_impl<pos, ip, CP, MP, pos ,I...> {
typedef typename cartesian_product_add_front<typename std::tuple_element<pos,typename CP::type>::type, MP>::type MP2;
typedef pv_impl<pos-1,ip+1, CP,MP2,I...> B;
typedef typename B::type type;
template<typename T, typename IT> static auto sl (T t, IT const & it) DECL_AND_RETURN( B::sl(triqs::tuple::push_front(t,std::get<ip >(it)),it));
template<typename T, typename MT> static auto m (T t, MT const & mt) DECL_AND_RETURN( B::m (triqs::tuple::push_front(t,std::get<pos>(mt)),mt));
};
// partial_eval<0> (g, 1) : returns : x -> g(1,x)
// partial_eval<1> (g, 3) : returns : x -> g(x,3)
//
template<int ... pos, typename Opt, typename Target, bool B, typename IT, typename ... Ms>
gf_view<typename pv_<cartesian_product<Ms...>,pos...>::type ,Target, Opt>
partial_eval(gf_impl< cartesian_product<Ms...>, Target,Opt,B> const & g, IT index) {
auto arr = reinterpret_linear_array(g.mesh(),g.data());
typedef pv_<cartesian_product<Ms...>,pos...> pv_t;
typedef gf_view< typename pv_t::type,Target, Opt> r_t;
auto comp = pv_t::m(std::make_tuple(),g.mesh().components());
auto arr_args = pv_t::sl(std::make_tuple(),index);
// generalize this get<0> ---> flatten the tuple (construct from a tuple of args...)
return r_t{ std::get<0>(comp), triqs::tuple::apply(arr, arr_args), typename r_t::singularity_non_view_t{}, typename r_t::symmetry_t{} };
}
// to adapt the partial_eval as a polymorphic lambda (replace by a lambda in c++14)
template<typename Gview, int ... pos> struct curry_polymorphic_lambda {
Gview g;
template<typename ...I>
auto operator()(I ... i) const DECL_AND_RETURN( partial_eval<pos...>(g,std::make_tuple(i...)));
};
// curry<0>(g) returns : x-> y... -> g(x,y...)
// curry<1>(g) returns : x-> y,z... -> g(y,x,z...)
// and so on
template<int ... pos, typename Target, typename Opt, bool B, typename ... Ms>
gf_view< typename pv_<cartesian_product<Ms...>,pos...>::type,
lambda_valued<curry_polymorphic_lambda<gf_view<cartesian_product<Ms...>, Target,Opt>,pos...>>,
Opt>
curry (gf_impl<cartesian_product<Ms...>, Target,Opt,B> const & g) {
auto comp = pv_<cartesian_product<Ms...>,pos...>::m(std::make_tuple(),g.mesh().components());
typedef typename mesh< typename pv_<cartesian_product<Ms...>,pos...>::type,Opt>::type m_t;
return {triqs::tuple::apply_construct<m_t>(comp),curry_polymorphic_lambda<gf_view<cartesian_product<Ms...>, Target,Opt>, pos ...>{g}, nothing(), nothing()};
};
} // gf_implementation
using gfs_implementation::partial_eval;
using gfs_implementation::curry;
/// ----- first implementation
/*
// slicing on first arg
template<typename Opt, typename M0, typename M1>
gf_view<M1,scalar_valued, Opt> slice_mesh0 (gf_view< cartesian_product<M0,M1>, scalar_valued,Opt> g, size_t index) {
auto arr = reinterpret_linear_array(g.mesh(),g.data());
typedef gf_view<M1,scalar_valued, Opt> r_t;
return { std::get<1>(g.mesh().components()), arr(index,arrays::range()), typename r_t::singularity_non_view_t{}, typename r_t::symmetry_t{} };
}
// slicing on first arg
template<typename Opt, typename M0, typename M1>
gf_view<M0,scalar_valued, Opt> slice_mesh1 (gf_view< cartesian_product<M0,M1>, scalar_valued,Opt> g, size_t index) {
auto arr = reinterpret_linear_array(g.mesh(),g.data());
typedef gf_view<M0,scalar_valued, Opt> r_t;
return { std::get<0>(g.mesh().components()), arr(arrays::range(), index), typename r_t::singularity_non_view_t{}, typename r_t::symmetry_t{} };
}
template<typename Gview> struct curry_lambda0 {
Gview g;
auto operator()(size_t i) const DECL_AND_RETURN( slice_mesh0(g,i));
};
template<typename Opt, bool B, typename M0, typename M1>
gf_view<M0,lambda_valued<curry_lambda0<gf_view<cartesian_product<M0,M1>, scalar_valued,Opt>>>, Opt>
curry0 (gf_impl<cartesian_product<M0,M1>, scalar_valued,Opt,B> const & g) {
return {std::get<0>(g.mesh().components()),curry_lambda0<gf_view<cartesian_product<M0,M1>, scalar_valued,Opt>>{g}, nothing(), nothing()};
};
*/
}}
#endif

View File

@ -42,9 +42,9 @@ namespace triqs { namespace gfs {
arrays::matrix_view_proxy<storage_view_t,0> operator()(storage_view_t & data, size_t i) const { return arrays::matrix_view_proxy<storage_view_t,0>(data,i); }
arrays::const_matrix_view_proxy<storage_view_t,0> operator()(storage_view_t const & data, size_t i) const { return arrays::const_matrix_view_proxy<storage_view_t,0>(data,i); }
template<typename S, typename RHS> static void assign_no_resize (S & data, RHS && rhs) { data() = rhs;}
template<typename S, typename RHS> static void assign_to_scalar (S & data, RHS && rhs) { data() = rhs;}
template<typename RHS> static void assign_with_resize (storage_t & data, RHS && rhs) { data = rhs;}
template<typename S, typename RHS> static void assign_no_resize (S & data, RHS && rhs) { data() = std::forward<RHS>(rhs);}
template<typename S, typename RHS> static void assign_to_scalar (S & data, RHS && rhs) { data() = std::forward<RHS>(rhs);}
template<typename RHS> static void assign_with_resize (storage_t & data, RHS && rhs) { data = std::forward<RHS>(rhs);}
template<typename RHS> static void rebind (storage_view_t & data, RHS && rhs) { data.rebind(rhs.data()); }
};
@ -61,9 +61,9 @@ namespace triqs { namespace gfs {
auto operator()(storage_view_t & data,size_t i) const -> decltype(data(i)) { return data(i);}
auto operator()(storage_view_t const & data,size_t i) const -> decltype(data(i)) { return data(i);}
template<typename S, typename RHS> static void assign_no_resize (S & data, RHS && rhs) { data() = rhs;}
template<typename S, typename RHS> static void assign_to_scalar (S & data, RHS && rhs) { data() = rhs;}
template<typename RHS> static void assign_with_resize (storage_t & data, RHS && rhs) { data = rhs;}
template<typename S, typename RHS> static void assign_no_resize (S & data, RHS && rhs) { data() = std::forward<RHS>(rhs);}
template<typename S, typename RHS> static void assign_to_scalar (S & data, RHS && rhs) { data() = std::forward<RHS>(rhs);}
template<typename RHS> static void assign_with_resize (storage_t & data, RHS && rhs) { data = std::forward<RHS>(rhs);}
template<typename RHS> static void rebind (storage_view_t & data, RHS && rhs) { data.rebind(rhs.data()); }
};
@ -92,6 +92,25 @@ namespace triqs { namespace gfs {
template<typename RHS> static void rebind (storage_view_t & data, RHS && rhs) { data.clear(); for (auto & x : rhs.data()) data.push_back(x);}
};
//---------------------------- vector ----------------------------------
template<typename F> struct data_proxy_lambda {
/// The storage
typedef F storage_t;
typedef F storage_view_t;
/// The data access
auto operator()(storage_t & data, size_t i) DECL_AND_RETURN( data(i));
auto operator()(storage_t const & data, size_t i) const DECL_AND_RETURN( data(i));
template<typename S, typename RHS> static void assign_no_resize (S & data, RHS && rhs) { data() = std::forward<RHS>(rhs);}
template<typename S, typename RHS> static void assign_with_resize (S & data, RHS && rhs) = delete;
template<typename S, typename RHS> static void assign_to_scalar (S & data, RHS && rhs) = delete;
template<typename RHS> static void rebind (storage_view_t & data, RHS && rhs) = delete;// { data = std::forward<RHS>(rhs);}
};
}}
#endif

View File

@ -102,6 +102,9 @@ namespace triqs { namespace gfs {
typedef gf_desc<Variable,Target,Opt> descriptor_t;
typedef Variable variable_t;
typedef Opt option_t;
typedef typename gfs_implementation::mesh<Variable,Opt>::type mesh_t;
typedef typename mesh_t::domain_t domain_t;
typedef typename mesh_t::mesh_point_t mesh_point_t;

View File

@ -48,7 +48,7 @@ namespace triqs { namespace gfs {
/// Conversions point <-> index <-> linear_index
struct _aux1 { template<typename P, typename M, typename I> void operator()(P & p, M const & m, I const& i) {p = m.index_to_point(i);}};
typename domain_t::point_t index_to_point(index_t const & ind) const { domain_pt_t res; triqs::tuple::apply_on_zip3(_aux1(), res,m_tuple,ind); return res;}
typename domain_t::point_t index_to_point(index_t const & ind) const { domain_pt_t res; triqs::tuple::apply_on_zip(_aux1(), res,m_tuple,ind); return res;}
// index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....))
struct _aux2 { template<typename I, typename M> size_t operator()(M const & m, I const & i,size_t R) {return m.index_to_linear(i) + R * m.size();}};

173
triqs/gfs/product.hpp Normal file
View File

@ -0,0 +1,173 @@
/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_PRODUCT_H
#define TRIQS_GF_PRODUCT_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./meshes/product.hpp"
namespace triqs { namespace gfs {
template<typename ... Ms> struct cartesian_product{
typedef std::tuple<Ms...> type;
static constexpr size_t size = sizeof...(Ms);
};
namespace gfs_implementation {
// the mesh is simply a cartesian product
template<typename Opt, typename ... Ms> struct mesh<cartesian_product<Ms...>,Opt> {
typedef mesh_product< typename mesh<Ms,Opt>::type ... > type;
typedef std::tuple<Ms...> mesh_name_t;
static type make (typename mesh<Ms,Opt>::type ... ms) { return type{std::move(ms)...};}
};
// h5 name : name1_x_name2_.....
template<typename Opt, typename ... Ms> struct h5_name<cartesian_product<Ms...>,matrix_valued,Opt> {
static std::string invoke(){
return triqs::tuple::fold(
[](std::string a, std::string b) { return a + std::string(b.empty()?"" : "_x_") + b;},
std::make_tuple(h5_name<Ms,matrix_valued,Opt>::invoke()...),
std::string());
}
};
/// --------------------------- data access ---------------------------------
template<typename Opt, typename ... Ms> struct data_proxy<cartesian_product<Ms...>,matrix_valued,Opt> : data_proxy_array<std::complex<double>,3> {};
template<typename Opt, typename ... Ms> struct data_proxy<cartesian_product<Ms...>,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
/// --------------------------- evaluator ---------------------------------
struct evaluator_grid_simple {
size_t n;
evaluator_grid_simple() = default;
template<typename MeshType, typename PointType>
evaluator_grid_simple (MeshType const & m, PointType const & p) { n=p; }
template<typename F> auto operator()(F const & f) const DECL_AND_RETURN(f (n));
};
struct evaluator_grid_linear_interpolation {
double w1, w2; size_t n1, n2;
evaluator_grid_linear_interpolation() = default;
template<typename MeshType, typename PointType>
evaluator_grid_linear_interpolation (MeshType const & m, PointType const & p, double prefactor=1) { // delegate !
bool in; double w;
std::tie(in, n1, w) = windowing(m,p);
//std::cout << in << " "<< n1 << " "<< w << " " << p << std::endl;
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
w1 = prefactor * w; w2 = prefactor *(1-w); n2 = n1 +1;
}
template<typename F> auto operator()(F const & f) const DECL_AND_RETURN(w1 * f(n1) + w2 * f (n2));
};
template<typename MeshType> struct evaluator_fnt_on_mesh;
// can not use inherited constructors, too recent...
#define TRIQS_INHERIT_AND_FORWARD_CONSTRUCTOR(NEWCLASS,CLASS) : CLASS { template<typename ...T> NEWCLASS(T &&... t) : CLASS(std::forward<T>(t)...){};};
template<> struct evaluator_fnt_on_mesh<imfreq> TRIQS_INHERIT_AND_FORWARD_CONSTRUCTOR(evaluator_fnt_on_mesh, evaluator_grid_simple);
template<> struct evaluator_fnt_on_mesh<imtime> TRIQS_INHERIT_AND_FORWARD_CONSTRUCTOR(evaluator_fnt_on_mesh, evaluator_grid_linear_interpolation);
template<> struct evaluator_fnt_on_mesh<retime> TRIQS_INHERIT_AND_FORWARD_CONSTRUCTOR(evaluator_fnt_on_mesh, evaluator_grid_linear_interpolation);
template<> struct evaluator_fnt_on_mesh<refreq> TRIQS_INHERIT_AND_FORWARD_CONSTRUCTOR(evaluator_fnt_on_mesh, evaluator_grid_linear_interpolation);
/**
* This the multi-dimensional evaluator.
* It combine the evaluator of each components, as long as they are a linear form
* eval(g, x) = \sum_i w_i g( n_i(x)) , with w some weight and n_i some points on the grid.
* Mathematically, it is written as (example of evaluating g(x1,x2,x3,x4)).
* Notation : eval(X) : g -> g(X)
* eval(x1,x2,x3,x4) (g) = eval (x1) ( binder ( g, (), (x2,x3,x4)) )
* binder( g, (), (x2,x3,x4)) (p1) = eval(x2)(binder (g,(p1),(x3,x4)))
* binder( g, (p1), (x3,x4)) (p2) = eval(x3)(binder (g,(p1,p2),(x4)))
* binder( g, (p1,p2), (x4)) (p3) = eval(x4)(binder (g,(p1,p2,p3),()))
* binder( g, (p1,p2,p3),()) (p4) = g[p1,p2,p3,p4]
*
* p_i are points on the grids, x_i points in the domain.
*
* Unrolling the formula gives (for 2 variables, with 2 points interpolation)
* eval(xa,xb) (g) = eval (xa) ( binder ( g, (), (xb)) ) = w_1(xa) binder ( g, (), (xb))( n_1(xa)) + w_2(xa) binder ( g, (), (xb))( n_2(xa))
* = w_1(xa) ( eval(xb)( binder ( g, (n_1(xa) ), ()))) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * binder ( g, (n_1(xa) ), ())(N_1(xb)) + 1<->2 ) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * g[n_1(xa), N_1(xb)] + 1<->2 ) + 1 <-> 2
* = w_1(xa) ( W_1(xb) * g[n_1(xa), N_1(xb)] + W_2(xb) * g[n_1(xa), N_2(xb)] ) + 1 <-> 2
* which is the expected formula
*/
// implementation : G = gf, Tn : tuple of n points, Ev : tuple of evaluators (the evals functions), pos = counter from #args-1 =>0
// NB : the tuple is build in reverse with respect to the previous comment.
template<typename G, typename Tn, typename Ev, int pos> struct binder;
template<int pos, typename G, typename Tn, typename Ev>
binder<G,Tn,Ev,pos> make_binder(G const * g, Tn tn, Ev const & ev) { return binder<G,Tn,Ev,pos>{g, std::move(tn), ev}; }
template<typename G, typename Tn, typename Ev, int pos> struct binder {
G const * g; Tn tn; Ev const & evals;
auto operator()(size_t p) const DECL_AND_RETURN( std::get<pos>(evals) ( make_binder<pos-1>(g, triqs::tuple::push_front(tn,p), evals) ));
};
template<typename G, typename Tn, typename Ev> struct binder<G,Tn,Ev,-1> {
G const * g; Tn tn; Ev const & evals;
auto operator()(size_t p) const DECL_AND_RETURN( triqs::tuple::apply(on_mesh(*g), triqs::tuple::push_front(tn,p)));
};
// now the multi d evaluator itself.
template<typename Target, typename Opt, typename ... Ms>
struct evaluator<cartesian_product<Ms...>,Target,Opt> {
static constexpr int arity = sizeof...(Ms);
mutable std::tuple< evaluator_fnt_on_mesh<Ms> ... > evals;
struct _poly_lambda {// replace by a polymorphic lambda in C++14
template<typename A, typename B, typename C> void operator()(A & a, B const & b, C const & c) const { a = A{b,c};}
};
template<typename G, typename ... Args>
std::complex<double> operator() (G const * g, Args && ... args) const {
static constexpr int R = sizeof...(Args);
// build the evaluators, as a tuple of ( evaluator<Ms> ( mesh_component, args))
triqs::tuple::call_on_zip(_poly_lambda(), evals, g->mesh().components(), std::make_tuple(args...));
return std::get<R-1>(evals) (make_binder<R-2> (g, std::make_tuple(), evals) );
}
};
// ------------------------------- Factories --------------------------------------------------
template<typename Opt, typename ... Ms>
struct factories<cartesian_product<Ms...>, scalar_valued,Opt> {
typedef gf<cartesian_product<Ms...>, scalar_valued,Opt> gf_t;
template<typename ... Meshes>
static gf_t make_gf(Meshes && ... meshes) {
auto m = make_gf_mesh<cartesian_product<Ms...>,Opt>(meshes...);
typename gf_t::data_non_view_t A(m.size());
A() =0;
return gf_t (m, std::move(A), nothing(), nothing());
}
};
} // gf_implementation
}}
#endif

View File

@ -54,6 +54,7 @@ namespace triqs { namespace gfs {
typedef typename std::conditional < std::is_same<Target, matrix_valued>::value, arrays::matrix<std::complex<double> >, std::complex<double>>::type rtype;
template<typename G>
rtype operator() (G const * g,double w0) const {
//auto operator() (G const * g,double w0) const -> typename decltype ((*g)[0])::non_view_type {
size_t n; double w; bool in;
std::tie(in, n, w) = windowing(g->mesh(),w0);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";

View File

@ -69,6 +69,9 @@ namespace triqs { namespace gfs {
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
auto gg = on_mesh(*g); //[g]( size_t n1, size_t n2) {return g->on_mesh(n1,n2);};
auto res = w1 *( w2*gg(n1,n2) + (1-w2)*gg(n1,n2+1)) + (1-w1) * ( w2*gg(n1+1,n2) + (1-w2)*gg(n1+1,n2+1));
//std::cout << "eval reref imtim"<< n1 << " "<< n2 << " "<< w1 << " " << w2 << " "<< omega << " "<< tau<< std::endl;
return ((std::get<1>(g->mesh().components()).domain().statistic == Fermion) && (p%2==1) ? -res : res);
}
};