mirror of
https://github.com/triqs/dft_tools
synced 2024-11-03 04:33:51 +01:00
Minor clean up, pep-ified to allow doc compilation to run smoothly
This commit is contained in:
parent
841f840df5
commit
390e8564b7
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,11 +18,12 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
from sumk_dft import SumkDFT
|
||||
from symmetry import Symmetry
|
||||
from sumk_dft_tools import SumkDFTTools
|
||||
from converters import *
|
||||
|
||||
__all__=['SumkDFT','Symmetry','SumkDFTTools','Wien2kConverter','HkConverter']
|
||||
__all__ = ['SumkDFT', 'Symmetry', 'SumkDFTTools',
|
||||
'Wien2kConverter', 'HkConverter']
|
||||
|
@ -3,8 +3,8 @@ import sys
|
||||
import subprocess
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print "Usage: python clear_h5_output.py archive"
|
||||
sys.exit()
|
||||
print "Usage: python clear_h5_output.py archive"
|
||||
sys.exit()
|
||||
|
||||
print """
|
||||
This script is to remove any SumkDFT generated output from the h5 archive
|
||||
@ -13,13 +13,14 @@ and to restore it to the original post-converter state.
|
||||
|
||||
filename = sys.argv[1]
|
||||
A = h5py.File(filename)
|
||||
for group in ['dmft_output','user_data']:
|
||||
if group in A: del(A[group])
|
||||
for group in ['dmft_output', 'user_data']:
|
||||
if group in A:
|
||||
del(A[group])
|
||||
A.close()
|
||||
|
||||
# Repack to reclaim disk space
|
||||
retcode = subprocess.call(["h5repack","-i%s"%filename, "-otemphgfrt.h5"])
|
||||
retcode = subprocess.call(["h5repack", "-i%s" % filename, "-otemphgfrt.h5"])
|
||||
if retcode != 0:
|
||||
print "h5repack failed!"
|
||||
else:
|
||||
subprocess.call(["mv","-f","temphgfrt.h5","%s"%filename])
|
||||
subprocess.call(["mv", "-f", "temphgfrt.h5", "%s" % filename])
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,12 +18,10 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
from wien2k_converter import Wien2kConverter
|
||||
from hk_converter import HkConverter
|
||||
from wannier90_converter import Wannier90Converter
|
||||
|
||||
__all__ =['Wien2kConverter','HkConverter','Wannier90Converter']
|
||||
|
||||
|
||||
__all__ = ['Wien2kConverter', 'HkConverter', 'Wannier90Converter']
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,16 +18,17 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
from pytriqs.cmake_info import hdf5_command_path
|
||||
import pytriqs.utility.mpi as mpi
|
||||
|
||||
|
||||
class ConverterTools:
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def read_fortran_file(self,filename,to_replace):
|
||||
def read_fortran_file(self, filename, to_replace):
|
||||
"""
|
||||
Returns a generator that yields all numbers in the Fortran file as float, with possible replacements.
|
||||
|
||||
@ -37,7 +38,7 @@ class ConverterTools:
|
||||
Name of Fortran-produced file.
|
||||
to_replace : dict of str:str
|
||||
Dictionary defining old_char:new_char.
|
||||
|
||||
|
||||
Yields
|
||||
------
|
||||
string
|
||||
@ -46,11 +47,13 @@ class ConverterTools:
|
||||
"""
|
||||
import os.path
|
||||
import string
|
||||
if not(os.path.exists(filename)) : raise IOError, "File %s does not exist."%filename
|
||||
for line in open(filename,'r') :
|
||||
for old,new in to_replace.iteritems(): line = line.replace(old,new)
|
||||
for x in line.split(): yield string.atof(x)
|
||||
|
||||
if not(os.path.exists(filename)):
|
||||
raise IOError, "File %s does not exist." % filename
|
||||
for line in open(filename, 'r'):
|
||||
for old, new in to_replace.iteritems():
|
||||
line = line.replace(old, new)
|
||||
for x in line.split():
|
||||
yield string.atof(x)
|
||||
|
||||
def repack(self):
|
||||
"""
|
||||
@ -65,17 +68,18 @@ class ConverterTools:
|
||||
|
||||
import subprocess
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Repacking the file %s"%self.hdf_file)
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
mpi.report("Repacking the file %s" % self.hdf_file)
|
||||
|
||||
retcode = subprocess.call([hdf5_command_path+"/h5repack","-i%s"%self.hdf_file,"-otemphgfrt.h5"])
|
||||
retcode = subprocess.call(
|
||||
[hdf5_command_path + "/h5repack", "-i%s" % self.hdf_file, "-otemphgfrt.h5"])
|
||||
if retcode != 0:
|
||||
mpi.report("h5repack failed!")
|
||||
else:
|
||||
subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
|
||||
|
||||
subprocess.call(["mv", "-f", "temphgfrt.h5", "%s" % self.hdf_file])
|
||||
|
||||
def det_shell_equivalence(self,corr_shells):
|
||||
def det_shell_equivalence(self, corr_shells):
|
||||
"""
|
||||
Determine the equivalence of correlated shells.
|
||||
|
||||
@ -83,7 +87,7 @@ class ConverterTools:
|
||||
----------
|
||||
corr_shells : list of dicts
|
||||
See documentation of necessary hdf5 elements.
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
n_inequiv_shells : integer
|
||||
@ -105,19 +109,19 @@ class ConverterTools:
|
||||
n_inequiv_shells = 1
|
||||
|
||||
if len(corr_shells) > 1:
|
||||
inequiv_sort = [ corr_shells[0]['sort'] ]
|
||||
inequiv_l = [ corr_shells[0]['l'] ]
|
||||
for i in range(len(corr_shells)-1):
|
||||
inequiv_sort = [corr_shells[0]['sort']]
|
||||
inequiv_l = [corr_shells[0]['l']]
|
||||
for i in range(len(corr_shells) - 1):
|
||||
is_equiv = False
|
||||
for j in range(n_inequiv_shells):
|
||||
if (inequiv_sort[j]==corr_shells[i+1]['sort']) and (inequiv_l[j]==corr_shells[i+1]['l']):
|
||||
if (inequiv_sort[j] == corr_shells[i + 1]['sort']) and (inequiv_l[j] == corr_shells[i + 1]['l']):
|
||||
is_equiv = True
|
||||
corr_to_inequiv[i+1] = j
|
||||
if is_equiv==False:
|
||||
corr_to_inequiv[i+1] = n_inequiv_shells
|
||||
corr_to_inequiv[i + 1] = j
|
||||
if is_equiv == False:
|
||||
corr_to_inequiv[i + 1] = n_inequiv_shells
|
||||
n_inequiv_shells += 1
|
||||
inequiv_sort.append( corr_shells[i+1]['sort'] )
|
||||
inequiv_l.append( corr_shells[i+1]['l'] )
|
||||
inequiv_to_corr.append( i+1 )
|
||||
inequiv_sort.append(corr_shells[i + 1]['sort'])
|
||||
inequiv_l.append(corr_shells[i + 1]['l'])
|
||||
inequiv_to_corr.append(i + 1)
|
||||
|
||||
return n_inequiv_shells, corr_to_inequiv, inequiv_to_corr
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,7 +18,7 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
from types import *
|
||||
import numpy
|
||||
@ -27,12 +27,13 @@ import pytriqs.utility.mpi as mpi
|
||||
from math import sqrt
|
||||
from converter_tools import *
|
||||
|
||||
|
||||
class HkConverter(ConverterTools):
|
||||
"""
|
||||
Conversion from general H(k) file to an hdf5 file that can be used as input for the SumKDFT class.
|
||||
"""
|
||||
|
||||
def __init__(self, filename, hdf_filename = None, dft_subgrp = 'dft_input', symmcorr_subgrp = 'dft_symmcorr_input', repacking = False):
|
||||
def __init__(self, filename, hdf_filename=None, dft_subgrp='dft_input', symmcorr_subgrp='dft_symmcorr_input', repacking=False):
|
||||
"""
|
||||
Initialise the class.
|
||||
|
||||
@ -49,24 +50,25 @@ class HkConverter(ConverterTools):
|
||||
The group is actually empty; it is just included for compatibility.
|
||||
repacking : boolean, optional
|
||||
Does the hdf5 archive need to be repacked to save space?
|
||||
|
||||
|
||||
"""
|
||||
|
||||
assert type(filename)==StringType,"HkConverter: filename must be a filename."
|
||||
if hdf_filename is None: hdf_filename = filename+'.h5'
|
||||
assert type(
|
||||
filename) == StringType, "HkConverter: filename must be a filename."
|
||||
if hdf_filename is None:
|
||||
hdf_filename = filename + '.h5'
|
||||
self.hdf_file = hdf_filename
|
||||
self.dft_file = filename
|
||||
self.dft_subgrp = dft_subgrp
|
||||
self.symmcorr_subgrp = symmcorr_subgrp
|
||||
self.fortran_to_replace = {'D':'E', '(':' ', ')':' ', ',':' '}
|
||||
self.fortran_to_replace = {'D': 'E', '(': ' ', ')': ' ', ',': ' '}
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
import os.path
|
||||
if (os.path.exists(self.hdf_file) and repacking):
|
||||
ConverterTools.repack(self)
|
||||
|
||||
|
||||
def convert_dft_input(self, first_real_part_matrix = True, only_upper_triangle = False, weights_in_file = False):
|
||||
def convert_dft_input(self, first_real_part_matrix=True, only_upper_triangle=False, weights_in_file=False):
|
||||
"""
|
||||
Reads the appropriate files and stores the data for the dft_subgrp in the hdf5 archive.
|
||||
|
||||
@ -80,71 +82,97 @@ class HkConverter(ConverterTools):
|
||||
Are the k-point weights to be read in?
|
||||
|
||||
"""
|
||||
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading input from %s..."%self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
R = ConverterTools.read_fortran_file(self,self.dft_file,self.fortran_to_replace)
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
mpi.report("Reading input from %s..." % self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the
|
||||
# file
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.dft_file, self.fortran_to_replace)
|
||||
try:
|
||||
energy_unit = 1.0 # the energy conversion factor is 1.0, we assume eV in files
|
||||
n_k = int(R.next()) # read the number of k points
|
||||
k_dep_projection = 0
|
||||
# the energy conversion factor is 1.0, we assume eV in files
|
||||
energy_unit = 1.0
|
||||
# read the number of k points
|
||||
n_k = int(R.next())
|
||||
k_dep_projection = 0
|
||||
SP = 0 # no spin-polarision
|
||||
SO = 0 # no spin-orbit
|
||||
charge_below = 0.0 # total charge below energy window is set to 0
|
||||
density_required = R.next() # density required, for setting the chemical potential
|
||||
SO = 0 # no spin-orbit
|
||||
# total charge below energy window is set to 0
|
||||
charge_below = 0.0
|
||||
# density required, for setting the chemical potential
|
||||
density_required = R.next()
|
||||
symm_op = 0 # No symmetry groups for the k-sum
|
||||
|
||||
# the information on the non-correlated shells is needed for defining dimension of matrices:
|
||||
n_shells = int(R.next()) # number of shells considered in the Wanniers
|
||||
# corresponds to index R in formulas
|
||||
# the information on the non-correlated shells is needed for
|
||||
# defining dimension of matrices:
|
||||
# number of shells considered in the Wanniers
|
||||
n_shells = int(R.next())
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim):
|
||||
shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
shells = [ {name: int(val) for name, val in zip(shell_entries, R)} for ish in range(n_shells) ]
|
||||
shells = [{name: int(val) for name, val in zip(
|
||||
shell_entries, R)} for ish in range(n_shells)]
|
||||
|
||||
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO flag, irep):
|
||||
# number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
n_corr_shells = int(R.next())
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO
|
||||
# flag, irep):
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ]
|
||||
corr_shells = [{name: int(val) for name, val in zip(
|
||||
corr_shell_entries, R)} for icrsh in range(n_corr_shells)]
|
||||
|
||||
# determine the number of inequivalent correlated shells and maps, needed for further reading
|
||||
[n_inequiv_shells, corr_to_inequiv, inequiv_to_corr] = ConverterTools.det_shell_equivalence(self,corr_shells)
|
||||
# determine the number of inequivalent correlated shells and maps,
|
||||
# needed for further reading
|
||||
[n_inequiv_shells, corr_to_inequiv,
|
||||
inequiv_to_corr] = ConverterTools.det_shell_equivalence(self, corr_shells)
|
||||
|
||||
use_rotations = 0
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
rot_mat = [numpy.identity(
|
||||
corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
|
||||
# Representative representations are read from file
|
||||
n_reps = [1 for i in range(n_inequiv_shells)]
|
||||
dim_reps = [0 for i in range(n_inequiv_shells)]
|
||||
T = []
|
||||
for ish in range(n_inequiv_shells):
|
||||
n_reps[ish] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
||||
dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# number of representatives ("subsets"), e.g. t2g and eg
|
||||
n_reps[ish] = int(R.next())
|
||||
dim_reps[ish] = [int(R.next()) for i in range(
|
||||
n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# The transformation matrix:
|
||||
# is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
|
||||
ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1
|
||||
# is of dimension 2l+1, it is taken to be standard d (as in
|
||||
# Wien2k)
|
||||
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
|
||||
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
||||
|
||||
T.append(numpy.zeros([lmax, lmax], numpy.complex_))
|
||||
|
||||
T[ish] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
|
||||
[1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
|
||||
[-1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
|
||||
[0.0, 1.0/sqrt(2.0), 0.0, -1.0/sqrt(2.0), 0.0],
|
||||
[0.0, 1.0/sqrt(2.0), 0.0, 1.0/sqrt(2.0), 0.0]])
|
||||
[1.0 / sqrt(2.0), 0.0, 0.0,
|
||||
0.0, 1.0 / sqrt(2.0)],
|
||||
[-1.0 / sqrt(2.0), 0.0, 0.0,
|
||||
0.0, 1.0 / sqrt(2.0)],
|
||||
[0.0, 1.0 /
|
||||
sqrt(2.0), 0.0, -1.0 / sqrt(2.0), 0.0],
|
||||
[0.0, 1.0 / sqrt(2.0), 0.0, 1.0 / sqrt(2.0), 0.0]])
|
||||
|
||||
# Spin blocks to be read:
|
||||
n_spin_blocs = SP + 1 - SO # number of spins to read for Norbs and Ham, NOT Projectors
|
||||
|
||||
# define the number of n_orbitals for all k points: it is the number of total bands and independent of k!
|
||||
n_orbitals = numpy.ones([n_k,n_spin_blocs],numpy.int) * sum([ sh['dim'] for sh in shells ])
|
||||
# number of spins to read for Norbs and Ham, NOT Projectors
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
# define the number of n_orbitals for all k points: it is the
|
||||
# number of total bands and independent of k!
|
||||
n_orbitals = numpy.ones(
|
||||
[n_k, n_spin_blocs], numpy.int) * sum([sh['dim'] for sh in shells])
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),max(n_orbitals)],numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
|
||||
[crsh['dim'] for crsh in corr_shells]), max(n_orbitals)], numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
@ -155,76 +183,90 @@ class HkConverter(ConverterTools):
|
||||
offset = 0
|
||||
n_orb = 0
|
||||
for ish in range(n_shells):
|
||||
if (n_orb==0):
|
||||
if (shells[ish]['atom']==corr_shells[icrsh]['atom']) and (shells[ish]['sort']==corr_shells[icrsh]['sort']):
|
||||
if (n_orb == 0):
|
||||
if (shells[ish]['atom'] == corr_shells[icrsh]['atom']) and (shells[ish]['sort'] == corr_shells[icrsh]['sort']):
|
||||
n_orb = corr_shells[icrsh]['dim']
|
||||
else:
|
||||
offset += shells[ish]['dim']
|
||||
|
||||
proj_mat[ik,isp,icrsh,0:n_orb,offset:offset+n_orb] = numpy.identity(n_orb)
|
||||
|
||||
proj_mat[ik, isp, icrsh, 0:n_orb,
|
||||
offset:offset + n_orb] = numpy.identity(n_orb)
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
||||
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
# w(k_index), default normalisation
|
||||
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, max(
|
||||
n_orbitals), max(n_orbitals)], numpy.complex_)
|
||||
|
||||
if (weights_in_file):
|
||||
# weights in the file
|
||||
for ik in range(n_k) : bz_weights[ik] = R.next()
|
||||
|
||||
for ik in range(n_k):
|
||||
bz_weights[ik] = R.next()
|
||||
|
||||
# if the sum over spins is in the weights, take it out again!!
|
||||
sm = sum(bz_weights)
|
||||
bz_weights[:] /= sm
|
||||
bz_weights[:] /= sm
|
||||
|
||||
# Grab the H
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for ik in range(n_k):
|
||||
n_orb = n_orbitals[ik, isp]
|
||||
|
||||
# first read all real components for given k, then read
|
||||
# imaginary parts
|
||||
if (first_real_part_matrix):
|
||||
|
||||
if (first_real_part_matrix): # first read all real components for given k, then read imaginary parts
|
||||
|
||||
for i in range(n_orb):
|
||||
if (only_upper_triangle):
|
||||
istart = i
|
||||
else:
|
||||
istart = 0
|
||||
for j in range(istart,n_orb):
|
||||
hopping[ik,isp,i,j] = R.next()
|
||||
|
||||
for j in range(istart, n_orb):
|
||||
hopping[ik, isp, i, j] = R.next()
|
||||
|
||||
for i in range(n_orb):
|
||||
if (only_upper_triangle):
|
||||
istart = i
|
||||
else:
|
||||
istart = 0
|
||||
for j in range(istart,n_orb):
|
||||
hopping[ik,isp,i,j] += R.next() * 1j
|
||||
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
|
||||
|
||||
else: # read (real,im) tuple
|
||||
|
||||
for j in range(istart, n_orb):
|
||||
hopping[ik, isp, i, j] += R.next() * 1j
|
||||
if ((only_upper_triangle)and(i != j)):
|
||||
hopping[ik, isp, j, i] = hopping[
|
||||
ik, isp, i, j].conjugate()
|
||||
|
||||
else: # read (real,im) tuple
|
||||
|
||||
for i in range(n_orb):
|
||||
if (only_upper_triangle):
|
||||
istart = i
|
||||
else:
|
||||
istart = 0
|
||||
for j in range(istart,n_orb):
|
||||
hopping[ik,isp,i,j] = R.next()
|
||||
hopping[ik,isp,i,j] += R.next() * 1j
|
||||
|
||||
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
|
||||
for j in range(istart, n_orb):
|
||||
hopping[ik, isp, i, j] = R.next()
|
||||
hopping[ik, isp, i, j] += R.next() * 1j
|
||||
|
||||
if ((only_upper_triangle)and(i != j)):
|
||||
hopping[ik, isp, j, i] = hopping[
|
||||
ik, isp, i, j].conjugate()
|
||||
# keep some things that we need for reading parproj:
|
||||
things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
|
||||
for it in things_to_set: setattr(self,it,locals()[it])
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
things_to_set = ['n_shells', 'shells', 'n_corr_shells', 'corr_shells',
|
||||
'n_spin_blocs', 'n_orbitals', 'n_k', 'SO', 'SP', 'energy_unit']
|
||||
for it in things_to_set:
|
||||
setattr(self, it, locals()[it])
|
||||
except StopIteration: # a more explicit error if the file is corrupted.
|
||||
raise "HK Converter : reading file dft_file failed!"
|
||||
|
||||
R.close()
|
||||
|
||||
# Save to the HDF5:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.dft_subgrp in ar): ar.create_group(self.dft_subgrp)
|
||||
things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required',
|
||||
'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat',
|
||||
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping',
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.dft_subgrp in ar):
|
||||
ar.create_group(self.dft_subgrp)
|
||||
things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
|
||||
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
|
||||
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
|
||||
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
|
||||
for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it]
|
||||
for it in things_to_save:
|
||||
ar[self.dft_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
@ -91,7 +91,8 @@ class Wannier90Converter(ConverterTools):
|
||||
self.dft_subgrp = dft_subgrp
|
||||
self.symmcorr_subgrp = symmcorr_subgrp
|
||||
self.fortran_to_replace = {'D': 'E'}
|
||||
# threshold below which matrix elements from wannier90 should be considered equal
|
||||
# threshold below which matrix elements from wannier90 should be
|
||||
# considered equal
|
||||
self._w90zero = 2.e-6
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
@ -114,12 +115,14 @@ class Wannier90Converter(ConverterTools):
|
||||
return
|
||||
mpi.report("Reading input from %s..." % self.inp_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
# R is a generator : each R.Next() will return the next number in the
|
||||
# file
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.inp_file, self.fortran_to_replace)
|
||||
shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
# First, let's read the input file with the parameters needed for the conversion
|
||||
# First, let's read the input file with the parameters needed for the
|
||||
# conversion
|
||||
try:
|
||||
# read k - point mesh generation option
|
||||
kmesh_mode = int(R.next())
|
||||
@ -135,7 +138,8 @@ class Wannier90Converter(ConverterTools):
|
||||
# and the data will be copied from corr_shells into shells (see below)
|
||||
# number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
n_corr_shells = int(R.next())
|
||||
# now read the information about the correlated shells (atom, sort, l, dim, SO flag, irep):
|
||||
# now read the information about the correlated shells (atom, sort,
|
||||
# l, dim, SO flag, irep):
|
||||
corr_shells = [{name: int(val) for name, val in zip(
|
||||
corr_shell_entries, R)} for icrsh in range(n_corr_shells)]
|
||||
except StopIteration: # a more explicit error if the file is corrupted.
|
||||
@ -147,7 +151,7 @@ class Wannier90Converter(ConverterTools):
|
||||
# Set or derive some quantities
|
||||
# Wannier90 does not use symmetries to reduce the k-points
|
||||
# the following might change in future versions
|
||||
symm_op = 0
|
||||
symm_op = 0
|
||||
# copy corr_shells into shells (see above)
|
||||
n_shells = n_corr_shells
|
||||
shells = []
|
||||
@ -166,7 +170,8 @@ class Wannier90Converter(ConverterTools):
|
||||
mpi.report(
|
||||
"Total number of WFs expected in the correlated shells: %d" % dim_corr_shells)
|
||||
|
||||
# determine the number of inequivalent correlated shells and maps, needed for further processing
|
||||
# determine the number of inequivalent correlated shells and maps,
|
||||
# needed for further processing
|
||||
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(
|
||||
self, corr_shells)
|
||||
mpi.report("Number of inequivalent shells: %d" % n_inequiv_shells)
|
||||
@ -176,7 +181,8 @@ class Wannier90Converter(ConverterTools):
|
||||
mpi.report("Mapping: " + format(shells_map))
|
||||
|
||||
# build the k-point mesh, if its size was given on input (kmesh_mode >= 0),
|
||||
# otherwise it is built according to the data in the hr file (see below)
|
||||
# otherwise it is built according to the data in the hr file (see
|
||||
# below)
|
||||
if kmesh_mode >= 0:
|
||||
n_k, k_mesh, bz_weights = self.kmesh_build(nki, kmesh_mode)
|
||||
self.n_k = n_k
|
||||
@ -197,7 +203,8 @@ class Wannier90Converter(ConverterTools):
|
||||
# TODO: generalise to SP=1 (only partially done)
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
# Second, let's read the file containing the Hamiltonian in WF basis produced by Wannier90
|
||||
# Second, let's read the file containing the Hamiltonian in WF basis
|
||||
# produced by Wannier90
|
||||
for isp in range(n_spin):
|
||||
# begin loop on isp
|
||||
|
||||
@ -212,20 +219,24 @@ class Wannier90Converter(ConverterTools):
|
||||
mpi.report(
|
||||
"The Hamiltonian in MLWF basis is extracted from %s ..." % hr_file)
|
||||
nr, rvec, rdeg, nw, hamr = self.read_wannier90hr(hr_file)
|
||||
# number of R vectors, their indices, their degeneracy, number of WFs, H(R)
|
||||
# number of R vectors, their indices, their degeneracy, number of
|
||||
# WFs, H(R)
|
||||
mpi.report("... done: %d R vectors, %d WFs found" % (nr, nw))
|
||||
|
||||
if isp == 0:
|
||||
# set or check some quantities that must be the same for both spins
|
||||
# set or check some quantities that must be the same for both
|
||||
# spins
|
||||
self.nrpt = nr
|
||||
|
||||
# k-point grid: (if not defined before)
|
||||
if kmesh_mode == -1:
|
||||
# the size of the k-point mesh is determined from the largest R vector
|
||||
# the size of the k-point mesh is determined from the
|
||||
# largest R vector
|
||||
nki = [2 * rvec[:, idir].max() + 1 for idir in range(3)]
|
||||
# it will be the same as in the win only when nki is odd, because of the
|
||||
# wannier90 convention: if we have nki k-points along the i-th direction,
|
||||
# then we should get 2*(nki/2)+nki%2 R points along that direction
|
||||
# then we should get 2*(nki/2)+nki%2 R points along that
|
||||
# direction
|
||||
n_k, k_mesh, bz_weights = self.kmesh_build(nki)
|
||||
self.n_k = n_k
|
||||
self.k_mesh = k_mesh
|
||||
@ -237,33 +248,41 @@ class Wannier90Converter(ConverterTools):
|
||||
self.nwfs = nw
|
||||
# check that the total number of WFs makes sense
|
||||
if self.nwfs < dim_corr_shells:
|
||||
mpi.report("ERROR: number of WFs in the file smaller than number of correlated orbitals!")
|
||||
mpi.report(
|
||||
"ERROR: number of WFs in the file smaller than number of correlated orbitals!")
|
||||
elif self.nwfs > dim_corr_shells:
|
||||
# NOTE: correlated shells must appear before uncorrelated ones inside the file
|
||||
# NOTE: correlated shells must appear before uncorrelated
|
||||
# ones inside the file
|
||||
mpi.report("Number of WFs larger than correlated orbitals:\n" +
|
||||
"WFs from %d to %d treated as uncorrelated" % (dim_corr_shells + 1, self.nwfs))
|
||||
else:
|
||||
mpi.report("Number of WFs equal to number of correlated orbitals")
|
||||
mpi.report(
|
||||
"Number of WFs equal to number of correlated orbitals")
|
||||
|
||||
# we assume spin up and spin down always have same total number of WFs
|
||||
# we assume spin up and spin down always have same total number
|
||||
# of WFs
|
||||
n_orbitals = numpy.ones(
|
||||
[self.n_k, n_spin], numpy.int) * self.nwfs
|
||||
|
||||
else:
|
||||
# consistency check between the _up and _down file contents
|
||||
if nr != self.nrpt:
|
||||
mpi.report("Different number of R vectors for spin-up/spin-down!")
|
||||
mpi.report(
|
||||
"Different number of R vectors for spin-up/spin-down!")
|
||||
if nw != self.nwfs:
|
||||
mpi.report("Different number of WFs for spin-up/spin-down!")
|
||||
mpi.report(
|
||||
"Different number of WFs for spin-up/spin-down!")
|
||||
|
||||
hamr_full.append(hamr)
|
||||
# FIXME: when do we actually need deepcopy()?
|
||||
# hamr_full.append(deepcopy(hamr))
|
||||
|
||||
for ir in range(nr):
|
||||
# checks if the Hamiltonian is real (it should, if wannierisation worked fine)
|
||||
# checks if the Hamiltonian is real (it should, if
|
||||
# wannierisation worked fine)
|
||||
if numpy.abs((hamr[ir].imag.max()).max()) > self._w90zero:
|
||||
mpi.report("H(R) has large complex components at R %d" % ir)
|
||||
mpi.report(
|
||||
"H(R) has large complex components at R %d" % ir)
|
||||
# copy the R=0 block corresponding to the correlated shells
|
||||
# into another variable (needed later for finding rot_mat)
|
||||
if rvec[ir, 0] == 0 and rvec[ir, 1] == 0 and rvec[ir, 2] == 0:
|
||||
@ -273,17 +292,22 @@ class Wannier90Converter(ConverterTools):
|
||||
if not numpy.allclose(ham_corr0.transpose().conjugate(), ham_corr0, atol=self._w90zero, rtol=1.e-9):
|
||||
raise ValueError("H(R=0) matrix is not Hermitian!")
|
||||
|
||||
# find rot_mat symmetries by diagonalising the on-site Hamiltonian of the first spin
|
||||
# find rot_mat symmetries by diagonalising the on-site Hamiltonian
|
||||
# of the first spin
|
||||
if isp == 0:
|
||||
use_rotations, rot_mat = self.find_rot_mat(n_corr_shells, corr_shells, shells_map, ham_corr0)
|
||||
use_rotations, rot_mat = self.find_rot_mat(
|
||||
n_corr_shells, corr_shells, shells_map, ham_corr0)
|
||||
else:
|
||||
# consistency check
|
||||
use_rotations_, rot_mat_ = self.find_rot_mat(n_corr_shells, corr_shells, shells_map, ham_corr0)
|
||||
use_rotations_, rot_mat_ = self.find_rot_mat(
|
||||
n_corr_shells, corr_shells, shells_map, ham_corr0)
|
||||
if (use_rotations and not use_rotations_):
|
||||
mpi.report("Rotations cannot be used for spin component n. %d" % isp)
|
||||
mpi.report(
|
||||
"Rotations cannot be used for spin component n. %d" % isp)
|
||||
for icrsh in range(n_corr_shells):
|
||||
if not numpy.allclose(rot_mat_[icrsh], rot_mat[icrsh], atol=self._w90zero, rtol=1.e-15):
|
||||
mpi.report("Rotations for spin component n. %d do not match!" % isp)
|
||||
mpi.report(
|
||||
"Rotations for spin component n. %d do not match!" % isp)
|
||||
# end loop on isp
|
||||
|
||||
mpi.report("The k-point grid has dimensions: %d, %d, %d" % tuple(nki))
|
||||
@ -292,11 +316,14 @@ class Wannier90Converter(ConverterTools):
|
||||
bz_weights = 0.5 * bz_weights
|
||||
|
||||
# Third, compute the hoppings in reciprocal space
|
||||
hopping = numpy.zeros([self.n_k, n_spin, numpy.max(n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
hopping = numpy.zeros([self.n_k, n_spin, numpy.max(
|
||||
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
for isp in range(n_spin):
|
||||
# make Fourier transform H(R) -> H(k) : it can be done one spin at a time
|
||||
# make Fourier transform H(R) -> H(k) : it can be done one spin at
|
||||
# a time
|
||||
hamk = self.fourier_ham(self.nwfs, hamr_full[isp])
|
||||
# copy the H(k) in the right place of hoppings... is there a better way to do this??
|
||||
# copy the H(k) in the right place of hoppings... is there a better
|
||||
# way to do this??
|
||||
for ik in range(self.n_k):
|
||||
#hopping[ik,isp,:,:] = deepcopy(hamk[ik][:,:])*energy_unit
|
||||
hopping[ik, isp, :, :] = hamk[ik][:, :] * energy_unit
|
||||
@ -309,7 +336,8 @@ class Wannier90Converter(ConverterTools):
|
||||
# Projectors simply consist in identity matrix blocks selecting those MLWFs that
|
||||
# correspond to the specific correlated shell indexed by icrsh.
|
||||
# NOTE: we assume that the correlated orbitals appear at the beginning of the H(R)
|
||||
# file and that the ordering of MLWFs matches the corr_shell info from the input.
|
||||
# file and that the ordering of MLWFs matches the corr_shell info from
|
||||
# the input.
|
||||
for icrsh in range(n_corr_shells):
|
||||
norb = corr_shells[icrsh]['dim']
|
||||
proj_mat[:, :, icrsh, 0:norb, iorb:iorb +
|
||||
@ -320,7 +348,8 @@ class Wannier90Converter(ConverterTools):
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.dft_subgrp in ar):
|
||||
ar.create_group(self.dft_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
# The subgroup containing the data. If it does not exist, it is
|
||||
# created. If it exists, the data is overwritten!
|
||||
things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
|
||||
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
|
||||
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
|
||||
@ -373,7 +402,8 @@ class Wannier90Converter(ConverterTools):
|
||||
except ValueError:
|
||||
mpi.report("Could not read number of WFs or R vectors")
|
||||
|
||||
# allocate arrays to save the R vector indexes and degeneracies and the Hamiltonian
|
||||
# allocate arrays to save the R vector indexes and degeneracies and the
|
||||
# Hamiltonian
|
||||
rvec_idx = numpy.zeros((nrpt, 3), dtype=int)
|
||||
rvec_deg = numpy.zeros(nrpt, dtype=int)
|
||||
h_of_r = [numpy.zeros((num_wf, num_wf), dtype=numpy.complex_)
|
||||
@ -383,7 +413,8 @@ class Wannier90Converter(ConverterTools):
|
||||
currpos = 2
|
||||
try:
|
||||
ir = 0
|
||||
# read the degeneracy of the R vectors (needed for the Fourier transform)
|
||||
# read the degeneracy of the R vectors (needed for the Fourier
|
||||
# transform)
|
||||
while ir < nrpt:
|
||||
currpos += 1
|
||||
for x in hr_data[currpos].split():
|
||||
@ -540,7 +571,8 @@ class Wannier90Converter(ConverterTools):
|
||||
kmesh = numpy.zeros((nkpt, 3), dtype=float)
|
||||
ii = 0
|
||||
for ix, iy, iz in product(range(msize[0]), range(msize[1]), range(msize[2])):
|
||||
kmesh[ii, :] = [float(ix) / msize[0], float(iy) / msize[1], float(iz) / msize[2]]
|
||||
kmesh[ii, :] = [float(ix) / msize[0], float(iy) /
|
||||
msize[1], float(iz) / msize[2]]
|
||||
ii += 1
|
||||
# weight is equal for all k-points because wannier90 uses uniform grid on whole BZ
|
||||
# (normalization is always 1 and takes into account spin degeneracy)
|
||||
@ -568,11 +600,13 @@ class Wannier90Converter(ConverterTools):
|
||||
"""
|
||||
|
||||
twopi = 2 * numpy.pi
|
||||
h_of_k = [numpy.zeros((norb, norb), dtype=numpy.complex_) for ik in range(self.n_k)]
|
||||
h_of_k = [numpy.zeros((norb, norb), dtype=numpy.complex_)
|
||||
for ik in range(self.n_k)]
|
||||
ridx = numpy.array(range(self.nrpt))
|
||||
for ik, ir in product(range(self.n_k), ridx):
|
||||
rdotk = twopi * numpy.dot(self.k_mesh[ik], self.rvec[ir])
|
||||
factor = (math.cos(rdotk) + 1j * math.sin(rdotk)) / float(self.rdeg[ir])
|
||||
factor = (math.cos(rdotk) + 1j * math.sin(rdotk)) / \
|
||||
float(self.rdeg[ir])
|
||||
h_of_k[ik][:, :] += factor * h_of_r[ir][:, :]
|
||||
|
||||
return h_of_k
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,7 +18,7 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
from types import *
|
||||
import numpy
|
||||
@ -26,16 +26,17 @@ from pytriqs.archive import *
|
||||
from converter_tools import *
|
||||
import os.path
|
||||
|
||||
|
||||
class Wien2kConverter(ConverterTools):
|
||||
"""
|
||||
Conversion from Wien2k output to an hdf5 file that can be used as input for the SumkDFT class.
|
||||
"""
|
||||
|
||||
def __init__(self, filename, hdf_filename = None,
|
||||
dft_subgrp = 'dft_input', symmcorr_subgrp = 'dft_symmcorr_input',
|
||||
parproj_subgrp='dft_parproj_input', symmpar_subgrp='dft_symmpar_input',
|
||||
bands_subgrp = 'dft_bands_input', misc_subgrp = 'dft_misc_input',
|
||||
transp_subgrp = 'dft_transp_input', repacking = False):
|
||||
def __init__(self, filename, hdf_filename=None,
|
||||
dft_subgrp='dft_input', symmcorr_subgrp='dft_symmcorr_input',
|
||||
parproj_subgrp='dft_parproj_input', symmpar_subgrp='dft_symmpar_input',
|
||||
bands_subgrp='dft_bands_input', misc_subgrp='dft_misc_input',
|
||||
transp_subgrp='dft_transp_input', repacking=False):
|
||||
"""
|
||||
Initialise the class.
|
||||
|
||||
@ -61,21 +62,23 @@ class Wien2kConverter(ConverterTools):
|
||||
Name of subgroup storing transport data.
|
||||
repacking : boolean, optional
|
||||
Does the hdf5 archive need to be repacked to save space?
|
||||
|
||||
|
||||
"""
|
||||
|
||||
assert type(filename)==StringType, "Wien2kConverter: Please provide the DFT files' base name as a string."
|
||||
if hdf_filename is None: hdf_filename = filename+'.h5'
|
||||
assert type(
|
||||
filename) == StringType, "Wien2kConverter: Please provide the DFT files' base name as a string."
|
||||
if hdf_filename is None:
|
||||
hdf_filename = filename + '.h5'
|
||||
self.hdf_file = hdf_filename
|
||||
self.dft_file = filename+'.ctqmcout'
|
||||
self.symmcorr_file = filename+'.symqmc'
|
||||
self.parproj_file = filename+'.parproj'
|
||||
self.symmpar_file = filename+'.sympar'
|
||||
self.band_file = filename+'.outband'
|
||||
self.bandwin_file = filename+'.oubwin'
|
||||
self.struct_file = filename+'.struct'
|
||||
self.outputs_file = filename+'.outputs'
|
||||
self.pmat_file = filename+'.pmat'
|
||||
self.dft_file = filename + '.ctqmcout'
|
||||
self.symmcorr_file = filename + '.symqmc'
|
||||
self.parproj_file = filename + '.parproj'
|
||||
self.symmpar_file = filename + '.sympar'
|
||||
self.band_file = filename + '.outband'
|
||||
self.bandwin_file = filename + '.oubwin'
|
||||
self.struct_file = filename + '.struct'
|
||||
self.outputs_file = filename + '.outputs'
|
||||
self.pmat_file = filename + '.pmat'
|
||||
self.dft_subgrp = dft_subgrp
|
||||
self.symmcorr_subgrp = symmcorr_subgrp
|
||||
self.parproj_subgrp = parproj_subgrp
|
||||
@ -83,13 +86,12 @@ class Wien2kConverter(ConverterTools):
|
||||
self.bands_subgrp = bands_subgrp
|
||||
self.misc_subgrp = misc_subgrp
|
||||
self.transp_subgrp = transp_subgrp
|
||||
self.fortran_to_replace = {'D':'E'}
|
||||
self.fortran_to_replace = {'D': 'E'}
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
if (os.path.exists(self.hdf_file) and repacking):
|
||||
ConverterTools.repack(self)
|
||||
|
||||
|
||||
def convert_dft_input(self):
|
||||
"""
|
||||
Reads the appropriate files and stores the data for the
|
||||
@ -101,149 +103,180 @@ class Wien2kConverter(ConverterTools):
|
||||
in the hdf5 archive.
|
||||
|
||||
"""
|
||||
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading input from %s..."%self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
R = ConverterTools.read_fortran_file(self,self.dft_file,self.fortran_to_replace)
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
mpi.report("Reading input from %s..." % self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the
|
||||
# file
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.dft_file, self.fortran_to_replace)
|
||||
try:
|
||||
energy_unit = R.next() # read the energy convertion factor
|
||||
n_k = int(R.next()) # read the number of k points
|
||||
k_dep_projection = 1
|
||||
SP = int(R.next()) # flag for spin-polarised calculation
|
||||
SO = int(R.next()) # flag for spin-orbit calculation
|
||||
# read the number of k points
|
||||
n_k = int(R.next())
|
||||
k_dep_projection = 1
|
||||
# flag for spin-polarised calculation
|
||||
SP = int(R.next())
|
||||
# flag for spin-orbit calculation
|
||||
SO = int(R.next())
|
||||
charge_below = R.next() # total charge below energy window
|
||||
density_required = R.next() # total density required, for setting the chemical potential
|
||||
# total density required, for setting the chemical potential
|
||||
density_required = R.next()
|
||||
symm_op = 1 # Use symmetry groups for the k-sum
|
||||
|
||||
# the information on the non-correlated shells is not important here, maybe skip:
|
||||
n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# the information on the non-correlated shells is not important
|
||||
# here, maybe skip:
|
||||
# number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
||||
n_shells = int(R.next())
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim):
|
||||
shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
shells = [ {name: int(val) for name, val in zip(shell_entries, R)} for ish in range(n_shells) ]
|
||||
shells = [{name: int(val) for name, val in zip(
|
||||
shell_entries, R)} for ish in range(n_shells)]
|
||||
|
||||
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO flag, irep):
|
||||
# number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
n_corr_shells = int(R.next())
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO
|
||||
# flag, irep):
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ]
|
||||
corr_shells = [{name: int(val) for name, val in zip(
|
||||
corr_shell_entries, R)} for icrsh in range(n_corr_shells)]
|
||||
|
||||
# determine the number of inequivalent correlated shells and maps, needed for further reading
|
||||
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(self,corr_shells)
|
||||
# determine the number of inequivalent correlated shells and maps,
|
||||
# needed for further reading
|
||||
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(
|
||||
self, corr_shells)
|
||||
|
||||
use_rotations = 1
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
|
||||
rot_mat = [numpy.identity(
|
||||
corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
|
||||
# read the matrices
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
for icrsh in range(n_corr_shells):
|
||||
for i in range(corr_shells[icrsh]['dim']): # read real part:
|
||||
for j in range(corr_shells[icrsh]['dim']):
|
||||
rot_mat[icrsh][i,j] = R.next()
|
||||
for i in range(corr_shells[icrsh]['dim']): # read imaginary part:
|
||||
rot_mat[icrsh][i, j] = R.next()
|
||||
# read imaginary part:
|
||||
for i in range(corr_shells[icrsh]['dim']):
|
||||
for j in range(corr_shells[icrsh]['dim']):
|
||||
rot_mat[icrsh][i,j] += 1j * R.next()
|
||||
rot_mat[icrsh][i, j] += 1j * R.next()
|
||||
|
||||
if (SP==1): # read time inversion flag:
|
||||
if (SP == 1): # read time inversion flag:
|
||||
rot_mat_time_inv[icrsh] = int(R.next())
|
||||
|
||||
|
||||
# Read here the info for the transformation of the basis:
|
||||
n_reps = [1 for i in range(n_inequiv_shells)]
|
||||
dim_reps = [0 for i in range(n_inequiv_shells)]
|
||||
T = []
|
||||
for ish in range(n_inequiv_shells):
|
||||
n_reps[ish] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
||||
dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# number of representatives ("subsets"), e.g. t2g and eg
|
||||
n_reps[ish] = int(R.next())
|
||||
dim_reps[ish] = [int(R.next()) for i in range(
|
||||
n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# The transformation matrix:
|
||||
# is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
|
||||
ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1
|
||||
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
|
||||
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
||||
|
||||
T.append(numpy.zeros([lmax, lmax], numpy.complex_))
|
||||
|
||||
# now read it from file:
|
||||
for i in range(lmax):
|
||||
for j in range(lmax):
|
||||
T[ish][i,j] = R.next()
|
||||
T[ish][i, j] = R.next()
|
||||
for i in range(lmax):
|
||||
for j in range(lmax):
|
||||
T[ish][i,j] += 1j * R.next()
|
||||
|
||||
T[ish][i, j] += 1j * R.next()
|
||||
|
||||
# Spin blocks to be read:
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
|
||||
n_orbitals[ik, isp] = int(R.next())
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),numpy.max(n_orbitals)],numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
|
||||
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
for icrsh in range(n_corr_shells):
|
||||
n_orb = corr_shells[icrsh]['dim']
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
# first Real part for BOTH spins, due to conventions in
|
||||
# dmftproj:
|
||||
for isp in range(n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik][isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
proj_mat[ik, isp, icrsh, i, j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik][isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
|
||||
proj_mat[ik, isp, icrsh, i, j] += 1j * R.next()
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
||||
hopping = numpy.zeros([n_k,n_spin_blocs,numpy.max(n_orbitals),numpy.max(n_orbitals)],numpy.complex_)
|
||||
# w(k_index), default normalisation
|
||||
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(
|
||||
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
|
||||
# weights in the file
|
||||
for ik in range(n_k) : bz_weights[ik] = R.next()
|
||||
|
||||
for ik in range(n_k):
|
||||
bz_weights[ik] = R.next()
|
||||
|
||||
# if the sum over spins is in the weights, take it out again!!
|
||||
sm = sum(bz_weights)
|
||||
bz_weights[:] /= sm
|
||||
bz_weights[:] /= sm
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian -- convention for Wien2K.
|
||||
# we use now the convention of a DIAGONAL Hamiltonian -- convention
|
||||
# for Wien2K.
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for ik in range(n_k):
|
||||
n_orb = n_orbitals[ik, isp]
|
||||
for i in range(n_orb):
|
||||
hopping[ik,isp,i,i] = R.next() * energy_unit
|
||||
|
||||
hopping[ik, isp, i, i] = R.next() * energy_unit
|
||||
|
||||
# keep some things that we need for reading parproj:
|
||||
things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
|
||||
for it in things_to_set: setattr(self,it,locals()[it])
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Wien2k_converter : reading file %s failed!"%self.dft_file
|
||||
things_to_set = ['n_shells', 'shells', 'n_corr_shells', 'corr_shells',
|
||||
'n_spin_blocs', 'n_orbitals', 'n_k', 'SO', 'SP', 'energy_unit']
|
||||
for it in things_to_set:
|
||||
setattr(self, it, locals()[it])
|
||||
except StopIteration: # a more explicit error if the file is corrupted.
|
||||
raise "Wien2k_converter : reading file %s failed!" % self.dft_file
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.dft_subgrp in ar): ar.create_group(self.dft_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required',
|
||||
'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat',
|
||||
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping',
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.dft_subgrp in ar):
|
||||
ar.create_group(self.dft_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is
|
||||
# created. If it exists, the data is overwritten!
|
||||
things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
|
||||
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
|
||||
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
|
||||
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
|
||||
for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it]
|
||||
for it in things_to_save:
|
||||
ar[self.dft_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *correlated* orbitals:
|
||||
self.convert_symmetry_input(orbits=self.corr_shells,symm_file=self.symmcorr_file,symm_subgrp=self.symmcorr_subgrp,SO=self.SO,SP=self.SP)
|
||||
# Symmetries are used, so now convert symmetry information for
|
||||
# *correlated* orbitals:
|
||||
self.convert_symmetry_input(orbits=self.corr_shells, symm_file=self.symmcorr_file,
|
||||
symm_subgrp=self.symmcorr_subgrp, SO=self.SO, SP=self.SP)
|
||||
self.convert_misc_input()
|
||||
|
||||
|
||||
def convert_parproj_input(self):
|
||||
"""
|
||||
Reads the appropriate files and stores the data for the
|
||||
@ -255,31 +288,37 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
|
||||
# get needed data from hdf file
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
things_to_read = ['SP','SO','n_shells','n_k','n_orbitals','shells']
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
things_to_read = ['SP', 'SO', 'n_shells',
|
||||
'n_k', 'n_orbitals', 'shells']
|
||||
|
||||
for it in things_to_read:
|
||||
if not hasattr(self,it): setattr(self,it,ar[self.dft_subgrp][it])
|
||||
if not hasattr(self, it):
|
||||
setattr(self, it, ar[self.dft_subgrp][it])
|
||||
self.n_spin_blocs = self.SP + 1 - self.SO
|
||||
del ar
|
||||
|
||||
mpi.report("Reading input from %s..."%self.parproj_file)
|
||||
mpi.report("Reading input from %s..." % self.parproj_file)
|
||||
|
||||
dens_mat_below = [ [numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_) for ish in range(self.n_shells)]
|
||||
for isp in range(self.n_spin_blocs) ]
|
||||
dens_mat_below = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], numpy.complex_) for ish in range(self.n_shells)]
|
||||
for isp in range(self.n_spin_blocs)]
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,self.parproj_file,self.fortran_to_replace)
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.parproj_file, self.fortran_to_replace)
|
||||
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_all = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(self.n_orbitals)],numpy.complex_)
|
||||
|
||||
rot_mat_all = [numpy.identity(self.shells[ish]['dim'],numpy.complex_) for ish in range(self.n_shells)]
|
||||
proj_mat_all = numpy.zeros([self.n_k, self.n_spin_blocs, self.n_shells, max(
|
||||
n_parproj), max([sh['dim'] for sh in self.shells]), max(self.n_orbitals)], numpy.complex_)
|
||||
|
||||
rot_mat_all = [numpy.identity(
|
||||
self.shells[ish]['dim'], numpy.complex_) for ish in range(self.n_shells)]
|
||||
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
@ -288,35 +327,40 @@ class Wien2kConverter(ConverterTools):
|
||||
for ir in range(n_parproj[ish]):
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
# read real part:
|
||||
for i in range(self.shells[ish]['dim']):
|
||||
for j in range(self.n_orbitals[ik][isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
proj_mat_all[ik, isp, ish, ir, i, j] = R.next()
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
# read imaginary part:
|
||||
for i in range(self.shells[ish]['dim']):
|
||||
for j in range(self.n_orbitals[ik][isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
|
||||
# now read the Density Matrix for this orbital below the energy window:
|
||||
proj_mat_all[ik, isp, ish,
|
||||
ir, i, j] += 1j * R.next()
|
||||
|
||||
# now read the Density Matrix for this orbital below the energy
|
||||
# window:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
dens_mat_below[isp][ish][i,j] = R.next()
|
||||
dens_mat_below[isp][ish][i, j] = R.next()
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
# read imaginary part:
|
||||
for i in range(self.shells[ish]['dim']):
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
dens_mat_below[isp][ish][i,j] += 1j * R.next()
|
||||
if (self.SP==0): dens_mat_below[isp][ish] /= 2.0
|
||||
dens_mat_below[isp][ish][i, j] += 1j * R.next()
|
||||
if (self.SP == 0):
|
||||
dens_mat_below[isp][ish] /= 2.0
|
||||
|
||||
# Global -> local rotation matrix for this shell:
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
rot_mat_all[ish][i,j] = R.next()
|
||||
rot_mat_all[ish][i, j] = R.next()
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
rot_mat_all[ish][i,j] += 1j * R.next()
|
||||