3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-08 20:33:16 +01:00

Add convert_operator method to block_structure + Tests

This commit is contained in:
hschnait 2020-04-29 16:13:06 +02:00
parent 85d4664d96
commit 37ccb46a8c
2 changed files with 73 additions and 0 deletions

View File

@ -769,6 +769,50 @@ class BlockStructure(object):
"block " + block + \
" has wrong indices (shell {})".format(ish)
def convert_operator(self, O, ish=0):
""" Converts a second-quantization operator from sumk structure
to solver structure.
Parameters
----------
O : pytriqs.operators.Operator
Operator in sumk structure
ish : int
shell index on which the operator acts
"""
from pytriqs.operators import Operator, c, c_dag
T = self.transformation[ish]
sk2s = self.sumk_to_solver[ish]
O_out = Operator(0)
for monomial in O:
coefficient = monomial[-1]
new_monomial = Operator(1)
#if coefficient > 1e-10:
for single_operator in monomial[0]:
new_single_operator = Operator(0)
daggered = single_operator[0]
blockname = single_operator[1][0]
i = single_operator[1][1]
for j in range(len(T[blockname])):
if sk2s[(blockname, j)] != (None, None):
if daggered:
new_single_operator += (T[blockname][j,i] * c_dag(*sk2s[(blockname, j)]))
else:
new_single_operator += (T[blockname][j,i].conjugate() * c(*sk2s[(blockname, j)]))
new_monomial *= new_single_operator
O_out += new_monomial * coefficient
return O_out
def convert_gf(self, G, G_struct=None, ish_from=0, ish_to=None, show_warnings=True,
G_out=None, space_from='solver', space_to='solver', ish=None, **kwargs):
""" Convert BlockGf from its structure to this structure.

View File

@ -68,3 +68,32 @@ dm = SK.density_matrix(method='using_point_integration')
for dmi in dm:
for e in dmi:
assert is_diagonal_matrix(np.dot(np.dot(t_solver_dm[0][e], dmi[e].conj().T),t_solver_dm[0][e].conj().T))
# Test convert_operator
SK = SumkDFT(hdf_file = 'SrVO3.h5', use_dft_blocks=True)
BS = SK.block_structure
from pytriqs.operators.util import h_int_slater, U_matrix, t2g_submatrix, transform_U_matrix
U3x3 = t2g_submatrix(U_matrix(2, U_int=2, J_hund=0.2, basis='spheric'))
BS.transformation = [{'up':np.eye(3), 'down': np.eye(3)}]
H0 = h_int_slater(spin_names=['up','down'], orb_names=range(3), U_matrix=U3x3, off_diag=False)
H1 = h_int_slater(spin_names=['up','down'], orb_names=range(3), U_matrix=U3x3, off_diag=True)
assert( H0 == BS.convert_operator(H1) )
# Trafo Matrix switching index 1 & 2
BS.transformation = [{'up':np.array([[1,0,0],[0,0,1],[0,1,0]]), 'down': np.array([[1,0,0],[0,0,1],[0,1,0]])}]
H2 = BS.convert_operator(h_int_slater(spin_names=['up','down'], orb_names=[0,2,1], U_matrix=U3x3, off_diag=True))
assert( H0 == H2 )
BS.transformation = [{'up':np.array([[1,0,0],[0,1/np.sqrt(2),1/np.sqrt(2)],[0,1/np.sqrt(2),-1/np.sqrt(2)]]), 'down': np.array([[1,0,0],[0,1/np.sqrt(2),1/np.sqrt(2)],[0,1/np.sqrt(2),-1/np.sqrt(2)]])}]
H3 = BS.convert_operator(h_int_slater(spin_names=['up','down'], orb_names=[0,1,2], U_matrix=U3x3, off_diag=True))
for op in H3:
for c_op in op[0]:
assert(BS.gf_struct_solver_dict[0][c_op[1][0]][c_op[1][1]] is not None) # This crashes with a key error if the operator structure is not the solver structure
U_trafod = transform_U_matrix(U3x3, BS.transformation[0]['up'].conjugate()) # The notorious .conjugate()
H4 = h_int_slater(spin_names=['up','down'], orb_names=range(3), U_matrix=U_trafod, map_operator_structure=BS.sumk_to_solver[0])
assert( H4 == H3 ) # check that convert_operator does the same as transform_U_matrix