mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 22:18:23 +01:00
work on gf documentation
This commit is contained in:
parent
aa2c52cb01
commit
344a8f6b32
@ -3,7 +3,7 @@
|
||||
The Green function class
|
||||
========================
|
||||
|
||||
The TRIQS library has a class called ``gf`` which allows you to manipulate easily a whole set of Green functions.
|
||||
The TRIQS library has a class called ``gf`` which allows you to use easily a whole set of Green functions.
|
||||
|
||||
You can use as variable(s)
|
||||
|
||||
@ -19,7 +19,7 @@ You can use as variable(s)
|
||||
|
||||
More generally, the variable is a point of a ``domain``
|
||||
|
||||
The value of the Green function can be a scalar, a matrix or whatever you want (this type is called type ``target_t``).
|
||||
The value of the Green function on a point of the domain can be a scalar, a matrix or whatever you want (this type is called type ``target_t``).
|
||||
|
||||
You can group several green functions into *blocks* (for example, one block per orbital, or per wave vector...).
|
||||
|
||||
@ -34,5 +34,7 @@ Fourier transforms are implemented for these Green functions:
|
||||
:maxdepth: 2
|
||||
|
||||
concepts
|
||||
meshes
|
||||
the_four_basic_GFs
|
||||
fourier
|
||||
cookbook/contents
|
||||
|
@ -3,13 +3,95 @@
|
||||
Fourier transforms
|
||||
###################
|
||||
|
||||
|
||||
|
||||
Convention
|
||||
==============
|
||||
==========
|
||||
|
||||
.. math:: \tilde f(\omega)=\int_{-\infty}^\infty dt f(t)e^{i\omega t}
|
||||
For real time/frequency:
|
||||
|
||||
.. math:: f(t)=\int_{-\infty}^\infty \frac{d\omega}{2\pi} \tilde f(\omega)e^{-i\omega t}
|
||||
:label: _TF_R
|
||||
.. math:: \tilde G(\omega)=\int_{-\infty}^\infty dt G(t)e^{i\omega t}
|
||||
|
||||
:label: _inv_TF_R
|
||||
.. math:: G(t)=\int_{-\infty}^\infty \frac{d\omega}{2\pi} \tilde G(\omega)e^{-i\omega t}
|
||||
|
||||
For Matsubara (imaginary) time/frequency:
|
||||
|
||||
:label: _TF_I
|
||||
.. math:: \tilde G(i\omega_n)=\int_{0}^\beta d\tau G(t)e^{i\omega_n \tau}
|
||||
|
||||
:label: _inv_TF_I
|
||||
.. math:: G(\tau)=\sum_{n=-\infty}^\infty \frac{1}{\beta} \tilde G(i\omega_n)e^{-i\omega_n \tau}
|
||||
|
||||
The :math:`\omega_n`'s are :math:`\frac{(2n+1)\pi}{\beta}` for fermions, :math:`\frac{2n\pi}{\beta}` for bosons (as :math:`G(\tau+\beta)=-G(\tau)` for fermions, :math:`G(\tau)` for bosons).
|
||||
|
||||
|
||||
|
||||
The FFTW library
|
||||
================
|
||||
|
||||
Documentation on FFTW is on https://www.fftw.org.
|
||||
FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data.
|
||||
It will be used to calculate the (inverse) Fourier transform, in real/imaginary time/frequency, using the fact that the GF values are stored for a finite amount of regularly spaced values.
|
||||
|
||||
The DFT transforms of a sequence of :math:`N` complex numbers :math:`f_0...,f_{N-1}` into a sequence of :math:`N` complex numbers :math:`\tilde f_0...,\tilde f_{N-1}` according to the formula:
|
||||
:label: _DFT
|
||||
.. math:: \tilde f_m = \sum_{k=0}^{N-1} f_k e^{-i 2 \pi m k / N}.
|
||||
The inverse DFT formula is
|
||||
:label: _inv_DFT
|
||||
.. math:: f_k = \frac{1}{N} \sum_{m=0}^{N-1} \tilde f_m e^{i 2 \pi m k / N}.
|
||||
|
||||
|
||||
|
||||
Implementation in real time/frequency using FFTW
|
||||
================================================
|
||||
|
||||
The real time mesh parameters are :math:`t_{min}`, :math:`\delta t` and :math:`N_t`.
|
||||
For the real frequency mesh, they are :math:`\omega_{min}`, :math:`\delta \omega` and :math:`N_\omega`.
|
||||
The Fourier transform requires :math:`N_\omega=N_t` and :math:`\delta t \delta \omega= \frac{2\pi}{N_t}`.
|
||||
The times are :math:`t_k=t_{min}+k\delta t` and the frequencies :math:`\omega_m=\omega_{min}+m\delta \omega`.
|
||||
|
||||
By approximating Eq. :ref:`TF_R` by
|
||||
.. math:: \tilde G(\omega_m) = \delta t \sum_{k=0}^{N_t} G(t_k) e^{i\omega_m t_k},
|
||||
we recognize a DFT (Eq. :ref:`DFT`). To calculate it using FFTW, we first need to prepare the input:
|
||||
.. math:: f_k = G(t_k) e^{i \omega_{min}t_k},
|
||||
then to do the DFT and finally to modify the output to obtain :math:`\tilde G(\omega_m)` as
|
||||
.. math:: \tilde G(\omega_m) = \delta t \tilde f_m e^{i t_{min}(\omega_m-\omega_{min})}.
|
||||
|
||||
Similarly, the inverse transformation is obtained by approximating Eq. :ref:`eq_inv_TF_R` by
|
||||
.. math:: G(t_k)=\frac{\delta\omega}{2\pi}\sum_{m=0}^{N_\omega} \tilde G(\omega_m)e^{-i\omega_m t_k},
|
||||
we recognize an inverse DFT (Eq. :ref:`inv_DFT`). To calculate it using FFTW, we first need to prepare the input:
|
||||
.. math:: \tilde f_m = \tilde G(\omega_m) e^{-i t_{min}\omega_m},
|
||||
then to do the inverse DFT and finally to modify the output to obtain :math:`G(t_k)` as
|
||||
.. math:: G(t_k) = \frac{1}{N_t \delta t}f_k e^{-i \omega_{min}(t_k-t_{min})},
|
||||
|
||||
|
||||
|
||||
Implementation in imaginary time/frequency using FFTW
|
||||
=====================================================
|
||||
|
||||
|
||||
The imaginary time mesh parameters are :math:`\beta` and :math:`N_\tau`, plus a tag ``half_bins``, ``full_bins`` or ``without_last``.
|
||||
In the ``full_bins`` case, one point of the time GF has to be removed for the fourier transform.
|
||||
From these parameters, we deduce :math:`\delta\tau=\beta/N_\tau`
|
||||
|
||||
CHAPTER NOT FINISHED !!!! It seems that only real GF's in time are considered (w_n is always >0)...
|
||||
|
||||
For the imaginary frequency mesh, they are :math:`n_{min}`, :math:`\beta` and :math:`N_\omega`.
|
||||
From them, we deduce :math:`\delta\omega=\frac{2\pi}{\beta}`.
|
||||
The Fourier transform requires :math:`N_\omega=N_\tau`.
|
||||
The times are :math:`\tau_k=\tau_{min}+k\delta\tau` and the frequencies :math:`\omega_n=\omega_{min}+n\delta \omega`.
|
||||
:math:`\tau_{min}` is either 0 or :math:`\delta\tau/2` depending on the mesh kind.
|
||||
:math:`\omega_{min}` is either :math:`\frac{2\pi(n_{min}+1)}{\beta}` or :math:`\frac{2\pi n_{min}}{\beta}` depending on the statistic.
|
||||
|
||||
We approximate the TF and its inverse by
|
||||
.. math:: \tilde G(i\omega_n) = \delta\tau \sum_{k=0}^{N_\tau} G(\tau_k)e^{i\omega_n \tau_k}
|
||||
.. math:: G(\tau_k) = \sum_{n=0}^{N_\tau} \frac{1}{\beta} \tilde G(i\omega_n)e^{-i\omega_n \tau_k}
|
||||
|
||||
We use for the TF:
|
||||
.. math:: f_k = G(\tau_k) e^{i \omega_{min}\tau_k},
|
||||
.. math:: \tilde G(i\omega_m) = \frac{\beta}{N_\tau} \tilde f_m e^{i \tau_{min}(\omega_m-\omega_{min})}.
|
||||
|
||||
Effect of a TF on the tail
|
||||
===========================
|
||||
@ -33,6 +115,9 @@ We use the following Fourier tranforms:
|
||||
|
||||
For the inverse Fourier transform, the inverse procedure is used.
|
||||
|
||||
In the library, :math:`a` is optimized according to the mesh properties (its size :math:`L=G.mesh().size()` and its precision :math:`\delta = G.mesh().delta()`).
|
||||
The requirements are :math:`a \gg \delta\omega` and :math:`a \ll L\delta\omega`, or equivalently :math:`a \gg \delta t` and :math:`a \ll L\delta t`.
|
||||
Thus, we chose :math:`a=\sqrt{L}\delta\omega`
|
||||
|
||||
|
||||
|
||||
|
72
doc/reference/c++/gf/meshes.rst
Normal file
72
doc/reference/c++/gf/meshes.rst
Normal file
@ -0,0 +1,72 @@
|
||||
.. highlight:: c
|
||||
|
||||
|
||||
|
||||
Meshes
|
||||
#######
|
||||
|
||||
|
||||
The linear meshes
|
||||
==================
|
||||
|
||||
|
||||
The mesh kind
|
||||
--------------
|
||||
|
||||
This option is particularly important for the Matsubara Green functions in imaginary time.
|
||||
|
||||
Briefly, if we want to describe a function on an interval:
|
||||
|
||||
* ``full_bins`` includes both endpoints,
|
||||
|
||||
* ``half_bins`` includes none of the endpoints
|
||||
|
||||
* ``without_last`` includes only the first endpoint.
|
||||
|
||||
We then have to be careful for example when we fourier transform the function (to not take twice the same point).
|
||||
|
||||
|
||||
The four basic meshes
|
||||
=====================
|
||||
|
||||
|
||||
Real time
|
||||
----------
|
||||
|
||||
The domain is the set of real numbers.
|
||||
By default, the mesh kind is ``full_bins``.
|
||||
|
||||
Be careful to the value of a function at a point in case of discontinuities: is its value equal to the limit from below ? To the limit from above ? By none of these limits ?
|
||||
|
||||
|
||||
Real frequency
|
||||
---------------
|
||||
|
||||
The domain is the set of real numbers.
|
||||
By default, the mesh kind is ``full_bins``.
|
||||
|
||||
|
||||
Matsubara time
|
||||
---------------
|
||||
|
||||
The domain is (approximatively) the set of real numbers between 0 and :math:`\beta`.
|
||||
In fact, other points are also in the domain, but the values at these points are given by the values on this restricted domain.
|
||||
:math:`G(\tau+\beta)=-G(\tau)` for fermions, :math:`G(\tau+\beta)=G(\tau)` for bosons.
|
||||
|
||||
The limits from above or below at these both points can be different.
|
||||
Depending on what one needs, we can choose ``full_bins``, ``half_bins`` or ``without_last``.
|
||||
|
||||
|
||||
Matsubara frequency
|
||||
--------------------
|
||||
|
||||
The domain is discrete. The Matsubara frequencies are :math:`\omega_n=\frac{(2n+1)\pi}{beta}` for fermions and :math:`\omega_n=\frac{2n\pi}{beta}` for bosons.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
46
doc/reference/c++/gf/the_four_basic_GFs.rst
Normal file
46
doc/reference/c++/gf/the_four_basic_GFs.rst
Normal file
@ -0,0 +1,46 @@
|
||||
.. highlight:: c
|
||||
|
||||
|
||||
The four reference Green functions
|
||||
##################################
|
||||
|
||||
Real time
|
||||
----------
|
||||
|
||||
``make_gf(double tmin, double tmax, size_t n_points, tqa::mini_vector<size_t,2> shape)``
|
||||
|
||||
``make_gf(double tmin, double tmax, size_t n_points, tqa::mini_vector<size_t,2> shape, mesh_kind mk)``
|
||||
|
||||
|
||||
Real frequency
|
||||
---------------
|
||||
|
||||
``make_gf(MeshType && m, tqa::mini_vector<size_t,2> shape, local::tail_view const & t)``
|
||||
|
||||
``make_gf(double wmin, double wmax, size_t n_freq, tqa::mini_vector<size_t,2> shape)``
|
||||
|
||||
``make_gf(double wmin, double wmax, size_t n_freq, tqa::mini_vector<size_t,2> shape, mesh_kind mk)``
|
||||
|
||||
|
||||
Matsubara time
|
||||
---------------
|
||||
|
||||
``make_gf(MeshType && m, tqa::mini_vector<size_t,2> shape, local::tail_view const & t)``
|
||||
|
||||
``make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax=1025, mesh_kind mk= half_bins)``
|
||||
|
||||
``make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax, mesh_kind mk, local::tail_view const & t)``
|
||||
|
||||
|
||||
Matsubara frequency
|
||||
--------------------
|
||||
|
||||
``make_gf(MeshType && m, tqa::mini_vector<size_t,2> shape, local::tail_view const & t)``
|
||||
|
||||
``make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape)``
|
||||
|
||||
``make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax)``
|
||||
|
||||
``make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax, local::tail_view const & t)``
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user