3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-22 04:13:47 +01:00

Added an example of Ce HF calculation

This commit is contained in:
Oleg E. Peil 2015-12-18 17:51:26 +01:00
parent e8dff08fcf
commit 2e1633c037
14 changed files with 4333 additions and 0 deletions

View File

@ -0,0 +1,9 @@
*
!.gitignore
!INCAR
!POSCAR
!POTCAR
!KPOINTS
!plo.cfg
!*.sh
!*.py

View File

@ -0,0 +1,49 @@
ADDGRID = TRUE
AMIX = 0.1
AMIN = 0.01
BMIX = 0.0001
#IMIX = 1
#MIXFIRST = True
ALGO = NORMAL
EDIFF = 0.00001
EDIFFG = -0.002
EMAX = 13.0
EMIN = -2.0
ENCUT = 600
ENAUG = 1100
IBRION = -1
ICHARG = 5
ISIF = 4
ISMEAR = 2
ISPIN = 2
ISYM = -1
LASPH = TRUE
LCHARG = TRUE
LDAU = True
LDAUJ = 0
LDAUL = 3
LDAUTYPE = 2
LDAUU = 0.0
LDAUPRINT = 2
LMAXMIX = 6
LORBIT = 13
LREAL = False
ROPT = 1e-3 1e-3 1e-3
LWAVE = TRUE
MAGMOM = 1.1
#NBANDS = 16
NEDOS = 501
NELM = 100
NELMDL = -7
NELMIN = 1
NPAR = 4
NSIM = 1
NSW = 0
POTIM = 0.4
PREC = Accurate
SIGMA = 0.1
SMASS = 0.5
SYMPREC = 1.0e-6
# Projectors
LOCPROJ = 1 : f : Pr 1

View File

@ -0,0 +1,4 @@
Automatic kpoint scheme
0
Gamma
4 4 4

View File

@ -0,0 +1,9 @@
gamma-Ce
1.0
2.5790000000000000 2.5790000000000000 0.0000000000000000
0.0000000000000000 2.5790000000000000 2.5790000000000000
2.5790000000000000 0.0000000000000000 2.5790000000000000
Ce
1
Direct
0.0 0.0 0.0

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,252 @@
from math import sqrt
from scipy.misc import factorial as fact
from itertools import product
import numpy as np
# The interaction matrix in desired basis
# U^{spherical}_{m1 m2 m3 m4} = \sum_{k=0}^{2l} F_k angular_matrix_element(l, k, m1, m2, m3, m4)
def U_matrix(l, radial_integrals=None, U_int=None, J_hund=None, basis="spherical", T=None):
"""Calculate U matrix being given either radial_integrals or U_int and J_hund.
l = angular momentum of shell being treated (l=2 for d shell, l=3 for f shell)
radial_integrals = [F0,F2,F4,..] (default None)
U_int, J_hund = values to use to compute radial_integrals (default None),
basis = "spherical", "cubic", or "other",
T = transformation matrix from spherical to desired basis, if basis='other' (default None)"""
# Check all necessary information is present and consistent
if radial_integrals is None and (U_int is None and J_hund is None):
raise ValueError("U_matrix: provide either the radial_integrals or U_int and J_hund.")
if radial_integrals is None and (U_int is not None and J_hund is not None):
radial_integrals = U_J_to_radial_integrals(l, U_int, J_hund)
if radial_integrals is not None and (U_int is not None and J_hund is not None):
if len(radial_integrals)-1 != l:
raise ValueError("U_matrix: inconsistency in l and number of radial_integrals provided.")
if (radial_integrals - U_J_to_radial_integrals(l, U_int, J_hund)).any() != 0.0:
print "Warning: U_matrix: radial_integrals provided do not match U_int and J_hund. Using radial_integrals to calculate spherical U_matrix."
# Full interaction matrix
# Basis of spherical harmonics Y_{-2}, Y_{-1}, Y_{0}, Y_{1}, Y_{2}
# U^{spherical}_{m1 m2 m3 m4} = \sum_{k=0}^{2l} F_k angular_matrix_element(l, k, m1, m2, m3, m4)
U_matrix = np.zeros((2*l+1,2*l+1,2*l+1,2*l+1),dtype=float)
m_range = range(-l,l+1)
for n, F in enumerate(radial_integrals):
k = 2*n
for m1, m2, m3, m4 in product(m_range,m_range,m_range,m_range):
U_matrix[m1+l,m2+l,m3+l,m4+l] += F * angular_matrix_element(l,k,m1,m2,m3,m4)
# Transform from spherical basis if needed
if basis == "cubic": T = spherical_to_cubic(l)
if basis == "other" and T is None:
raise ValueError("U_matrix: provide T for other bases.")
if T is not None: U_matrix = transform_U_matrix(U_matrix, T)
return U_matrix
# Convert full 4-index U matrix to 2-index density-density form
def reduce_4index_to_2index(U_4index):
"""Reduces the four-index matrix to two-index matrices."""
size = len(U_4index) # 2l+1
U = np.zeros((size,size),dtype=float) # matrix for same spin
Uprime = np.zeros((size,size),dtype=float) # matrix for opposite spin
m_range = range(size)
for m,mp in product(m_range,m_range):
U[m,mp] = U_4index[m,mp,m,mp].real - U_4index[m,mp,mp,m].real
Uprime[m,mp] = U_4index[m,mp,m,mp].real
return U, Uprime
# Construct the 2-index matrices for the density-density form
def U_matrix_kanamori(n_orb, U_int, J_hund):
"""Calculate the Kanamori U and Uprime matrices."""
U = np.zeros((n_orb,n_orb),dtype=float) # matrix for same spin
Uprime = np.zeros((n_orb,n_orb),dtype=float) # matrix for opposite spin
m_range = range(n_orb)
for m,mp in product(m_range,m_range):
if m == mp:
Uprime[m,mp] = U_int
else:
U[m,mp] = U_int - 3.0*J_hund
Uprime[m,mp] = U_int - 2.0*J_hund
return U, Uprime
# Get t2g or eg components
def t2g_submatrix(U, convention=''):
"""Return only the t2g part of the full d-manifold two- or four-index U matrix."""
if convention == 'wien2k':
return subarray(U, len(U.shape)*[(2,3,4)])
else:
return subarray(U, len(U.shape)*[(0,1,3)])
def eg_submatrix(U, convention=''):
"""Return only the eg part of the full d-manifold two- or four-index U matrix."""
if convention == 'wien2k':
return subarray(U, len(U.shape)*[(0,1)])
else:
return subarray(U, len(U.shape)*[(2,4)])
# Transform the interaction matrix into another basis
def transform_U_matrix(U_matrix, T):
"""Transform the interaction matrix into another basis by applying matrix T."""
return np.einsum("ij,kl,jlmo,mn,op",np.conj(T),np.conj(T),U_matrix,np.transpose(T),np.transpose(T))
# Rotation matrices: complex harmonics to cubic harmonics
# Complex harmonics basis: ..., Y_{-2}, Y_{-1}, Y_{0}, Y_{1}, Y_{2}, ...
def spherical_to_cubic(l, convention=''):
"""Returns the spherical harmonics to cubic harmonics rotation matrix."""
size = 2*l+1
T = np.zeros((size,size),dtype=complex)
if convention != 'wien2k' and l == 2:
raise ValueError("spherical_to_cubic: standard convention not implemented for l=1")
if l == 0:
cubic_names = ("s")
elif l == 1:
cubic_names = ("x","y","z")
T[0,0] = 1.0/sqrt(2); T[0,2] = -1.0/sqrt(2)
T[1,0] = 1j/sqrt(2); T[1,2] = 1j/sqrt(2)
T[2,1] = 1.0
elif l == 2:
if convention == 'wien2k':
cubic_names = ("z^2","x^2-y^2","xy","yz","xz")
T[0,2] = 1.0
T[1,0] = 1.0/sqrt(2); T[1,4] = 1.0/sqrt(2)
T[2,0] = -1j/sqrt(2); T[2,4] = 1j/sqrt(2)
T[3,1] = 1j/sqrt(2); T[3,3] = -1j/sqrt(2)
T[4,1] = 1.0/sqrt(2); T[4,3] = 1.0/sqrt(2)
else:
cubic_names = ("xy","yz","z^2","xz","x^2-y^2")
T[0,0] = 1j/sqrt(2); T[0,4] = -1j/sqrt(2)
T[1,1] = 1j/sqrt(2); T[1,3] = 1j/sqrt(2)
T[2,2] = 1.0
T[3,1] = 1.0/sqrt(2); T[3,3] = -1.0/sqrt(2)
T[4,0] = 1.0/sqrt(2); T[4,4] = 1.0/sqrt(2)
elif l == 3:
if convention == 'wien2k':
cubic_names = ("x(x^2-3y^2)","z(x^2-y^2)","xz^2","z^3","yz^2","xyz","y(3x^2-y^2)")
T[0,0] = 1.0/sqrt(2); T[0,6] = -1.0/sqrt(2)
T[1,1] = 1.0/sqrt(2); T[1,5] = 1.0/sqrt(2)
T[2,2] = 1.0/sqrt(2); T[2,4] = -1.0/sqrt(2)
T[3,5] = 1.0
T[4,2] = 1j/sqrt(2); T[4,4] = 1j/sqrt(2)
T[5,1] = 1j/sqrt(2); T[5,5] = -1j/sqrt(2)
T[6,0] = 1j/sqrt(2); T[6,6] = 1j/sqrt(2)
else:
cubic_names = ("y(3x^2-y^2)","xyz","yz^2","z^3","xz^2","z(x^2-y^2)","x(x^2-3y^2)")
# Verified with the matrix generated in VASP
T[0,0] = 1j/sqrt(2); T[0,6] = 1j/sqrt(2)
T[1,1] = 1j/sqrt(2); T[1,5] = -1j/sqrt(2)
T[2,2] = 1j/sqrt(2); T[2,4] = 1j/sqrt(2)
T[3,3] = 1.0
T[4,2] = 1.0/sqrt(2); T[4,4] = -1.0/sqrt(2)
T[5,1] = 1.0/sqrt(2); T[5,5] = 1.0/sqrt(2)
T[6,0] = 1.0/sqrt(2); T[6,6] = -1.0/sqrt(2)
else: raise ValueError("spherical_to_cubic: implemented only for l=0,1,2,3")
return T
# Names of cubic harmonics
def cubic_names(l):
if l == 0 or l == 's':
return ("s")
elif l == 1 or l == 'p':
return ("x","y","z")
elif l == 2 or l == 'd':
return ("xy","yz","z^2","xz","x^2-y^2")
elif l == 't2g':
return ("xy","yz","xz")
elif l == 'eg':
return ("z^2","x^2-y^2")
elif l == 3 or l == 'f':
return ("x(x^2-3y^2)","z(x^2-y^2)","xz^2","z^3","yz^2","xyz","y(3x^2-y^2)")
else: raise ValueError("cubic_names: implemented only for l=0,1,2,3")
# Convert U,J -> radial integrals F_k
def U_J_to_radial_integrals(l, U_int, J_hund):
"""Determines the radial integrals F_k from U_int and J_hund."""
F = np.zeros((l+1),dtype=float)
if l == 2:
F[0] = U_int
F[1] = J_hund * 14.0 / (1.0 + 0.63)
F[2] = 0.630 * F[1]
elif l == 3:
F[0] = U_int
F[1] = 6435.0 * J_hund / (286.0 + 195.0 * 451.0 / 675.0 + 250.0 * 1001.0 / 2025.0)
F[2] = 451.0 * F[1] / 675.0
F[3] = 1001.0 * F[1] / 2025.0
else: raise ValueError("U_J_to_radial_integrals: implemented only for l=2,3")
return F
# Convert radial integrals F_k -> U,J
def radial_integrals_to_U_J(l, F):
"""Determines U_int and J_hund from the radial integrals."""
if l == 2:
U_int = F[0]
J_hund = F[1] * (1.0 + 0.63) / 14.0
elif l == 3:
U_int = F[0]
J_hund = F[1] * (286.0 + 195.0 * 451.0 / 675.0 + 250.0 * 1001.0 / 2025.0) / 6435.0
else: raise ValueError("radial_integrals_to_U_J: implemented only for l=2,3")
return U_int,J_hund
# Angular matrix elements of particle-particle interaction
# (2l+1)^2 ((l 0) (k 0) (l 0))^2 \sum_{q=-k}^{k} (-1)^{m1+m2+q} ((l -m1) (k q) (l m3)) ((l -m2) (k -q) (l m4))
def angular_matrix_element(l, k, m1, m2, m3, m4):
result = 0
for q in range(-k,k+1):
result += three_j_symbol((l,-m1),(k,q),(l,m3))*three_j_symbol((l,-m2),(k,-q),(l,m4))*(-1.0 if (m1+q+m2) % 2 else 1.0)
result *= (2*l+1)**2 * (three_j_symbol((l,0),(k,0),(l,0))**2)
return result
# Wigner 3-j symbols
# ((j1 m1) (j2 m2) (j3 m3))
def three_j_symbol(jm1, jm2, jm3):
j1, m1 = jm1
j2, m2 = jm2
j3, m3 = jm3
if (m1+m2+m3 != 0 or
m1 < -j1 or m1 > j1 or
m2 < -j2 or m2 > j2 or
m3 < -j3 or m3 > j3 or
j3 > j1 + j2 or
j3 < abs(j1-j2)):
return .0
result = -1.0 if (j1-j2-m3) % 2 else 1.0
result *= sqrt(fact(j1+j2-j3)*fact(j1-j2+j3)*fact(-j1+j2+j3)/fact(j1+j2+j3+1))
result *= sqrt(fact(j1-m1)*fact(j1+m1)*fact(j2-m2)*fact(j2+m2)*fact(j3-m3)*fact(j3+m3))
t_min = max(j2-j3-m1,j1-j3+m2,0)
t_max = min(j1-m1,j2+m2,j1+j2-j3)
t_sum = 0
for t in range(t_min,t_max+1):
t_sum += (-1.0 if t % 2 else 1.0)/(fact(t)*fact(j3-j2+m1+t)*fact(j3-j1-m2+t)*fact(j1+j2-j3-t)*fact(j1-m1-t)*fact(j2+m2-t))
result *= t_sum
return result
# Clebsch-Gordan coefficients
# < j1 m1 j2 m2 | j3 m3 > = (-1)^{j1-j2+m3} \sqrt{2j3+1} ((j1 m1) (j2 m2) (j3 -m3))
def clebsch_gordan(jm1, jm2, jm3):
norm = sqrt(2*jm3[0]+1)*(-1 if jm1[0]-jm2[0]+jm3[1] % 2 else 1)
return norm*three_j_symbol(jm1,jm2,(jm3[0],-jm3[1]))
# Create subarray containing columns in idxlist
# e.g. idxlist = [(0),(2,3),(0,1,2,3)] gives
# column 0 for 1st dim,
# columns 2 and 3 for 2nd dim,
# columns 0,1,2 and 3 for 3rd dim.
def subarray(a,idxlist,n=None) :
if n is None: n = len(a.shape)-1
sa = a[tuple(slice(x) for x in a.shape[:n]) + (idxlist[n],)]
return subarray(sa,idxlist, n-1) if n > 0 else sa

View File

@ -0,0 +1,335 @@
################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
from types import *
#from pytriqs.applications.dft.U_matrix import *
from U_matrix import *
from pytriqs.gf.local import *
#from hubbard_I import gf_hi_fullu, sigma_atomic_fullu
import pytriqs.utility.mpi as mpi
from itertools import izip
import numpy
import copy
class Solver:
"""
Hartree-Fock Solver
"""
# initialisation:
def __init__(self, beta, l, n_msb=1025, use_spin_orbit=False, Nmoments=5, dudarev=False):
self.name = "Hartree-Fock"
self.beta = beta
self.l = l
self.Nmsb = n_msb
self.UseSpinOrbit = use_spin_orbit
self.Converged = False
self.Nspin = 2
self.Nmoments=Nmoments
self.dudarev = dudarev
assert use_spin_orbit == False, "Spin-orbit is not implemented"
self.Nlm = 2*l+1
if (use_spin_orbit):
# no blocks!
self.gf_struct = [ ('ud', range(2*self.Nlm)) ]
else:
# up/down blocks:
self.gf_struct = [ ('up', range(self.Nlm)), ('down', range(self.Nlm)) ]
# construct Greens functions:
self.a_list = [a for a,al in self.gf_struct]
glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
self.G_Old = self.G.copy()
self.G0 = self.G.copy()
self.Sigma = self.G.copy()
self.Sigma_Old = self.G.copy()
def solve(self, U_int, J_hund, T=None, verbosity=0, Iteration_Number=1, Test_Convergence=0.0001):
"""Calculation of the impurity Greens function using Hubbard-I"""
if self.Converged :
mpi.report("Solver %(name)s has already converged: SKIPPING"%self.__dict__)
return
if mpi.is_master_node():
self.verbosity = verbosity
else:
self.verbosity = 0
#self.Nmoments = 5
ur,ujmn,umn=self.__set_umatrix(U=U_int,J=J_hund,T=T)
M = [x for x in self.G.mesh]
self.zmsb = numpy.array([x for x in M],numpy.complex_)
# # for the tails:
# tailtempl={}
# for sig,g in self.G:
# tailtempl[sig] = copy.deepcopy(g.tail)
# for i in range(9): tailtempl[sig][i] *= 0.0
# self.__save_eal('eal.dat',Iteration_Number)
# mpi.report( "Starting Fortran solver %(name)s"%self.__dict__)
self.Sigma_Old <<= self.Sigma
self.G_Old <<= self.G
# # call the fortran solver:
# temp = 1.0/self.beta
# gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
# zmsb=self.zmsb, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = self.verbosity)
#self.sig = sigma_atomic_fullu(gf=self.gf,e0f=self.eal,zmsb=self.zmsb,ns=self.Nspin,nlm=self.Nlm)
def print_matrix(m):
for row in m:
print ''.join(map("{0:12.7f}".format, row))
# Hartree-Fock solver
self.Sigma.zero()
dm = self.G.density()
if mpi.is_master_node():
# print
# print " Reduced U-matrix:"
# print " U:"
# print_matrix(ujmn)
# print " Up:"
# print_matrix(umn)
#
## sig_test = {bl: numpy.zeros((self.Nlm, self.Nlm)) for bl in dm}
# sig_test = {}
# sig_test['up'] = numpy.dot(umn, dm['up'].real) + numpy.dot(ujmn, dm['down'].real)
# sig_test['down'] = numpy.dot(umn, dm['down'].real) + numpy.dot(ujmn, dm['up'].real)
# print " Sigma test:"
# print_matrix(sig_test['up'])
print
print " Density matrix (up):"
print_matrix(dm['up'])
print
print " Density matrix (down):"
print_matrix(dm['down'])
if self.dudarev:
Ueff = U_int - J_hund
corr_energy = 0.0
dft_dc = 0.0
for bl1 in dm:
# (U - J) * (1/2 - n)
self.Sigma[bl1] << Ueff * (0.5 * numpy.identity(self.Nlm) - dm[bl1])
# 1/2 (U - J) * \sum_{\sig} [\sum_{m} n_{m,m \sig} - \sum_{m1,m2} n_{m1,m2 \sig} n_{m2,m1 \sig}]
corr_energy += 0.5 * Ueff * (dm[bl1].trace() - (dm[bl1]*dm[bl1].conj()).sum()).real
# V[n] * n^{\dagger}
dft_dc += (self.Sigma[bl1](0) * dm[bl1].conj()).sum().real
else:
# !!!!!
# !!!!! Mind the order of indices in the 4-index matrix!
# !!!!!
for il1 in xrange(self.Nlm):
for il2 in xrange(self.Nlm):
for il3 in xrange(self.Nlm):
for il4 in xrange(self.Nlm):
for bl1 in dm:
for bl2 in dm:
self.Sigma[bl1][il1, il2] += ur[il1, il3, il2, il4] * dm[bl2][il3, il4]
if bl1 == bl2:
self.Sigma[bl1][il1, il2] -= ur[il1, il3, il4, il2] * dm[bl1][il3, il4]
if mpi.is_master_node() and self.verbosity > 0:
print
print " Sigma (up):"
print_matrix(self.Sigma['up'](0).real)
print
print " Sigma (down):"
print_matrix(self.Sigma['down'](0).real)
# if (self.verbosity==0):
# # No fortran output, so give basic results here
# mpi.report("Atomic occupancy in Hubbard I Solver : %s"%self.atocc)
# mpi.report("Atomic magn. mom. in Hubbard I Solver : %s"%self.atmag)
# transfer the data to the GF class:
if (self.UseSpinOrbit):
nlmtot = self.Nlm*2 # only one block in this case!
else:
nlmtot = self.Nlm
# M={}
# isp=-1
# for a,al in self.gf_struct:
# isp+=1
# M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
# for i in range(min(self.Nmoments,8)):
# tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
#
# #glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb, data =M[a], tail =self.tailtempl[a])
# # for a,al in self.gf_struct]
# glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
# self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
#
# self.__copy_Gf(self.G,M,tailtempl)
#
# # Self energy:
# self.G0 <<= iOmega_n
#
# M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
# self.G0 -= M
# self.Sigma <<= self.G0 - inverse(self.G)
#
# # invert G0
# self.G0.invert()
def test_distance(G1,G2, dist) :
def f(G1,G2) :
#print abs(G1.data - G2.data)
dS = max(abs(G1.data - G2.data).flatten())
aS = max(abs(G1.data).flatten())
if mpi.is_master_node():
print " Distances:", dS, " vs ", aS * dist
return dS <= aS*dist
return reduce(lambda x,y : x and y, [f(g1,g2) for (i1,g1),(i2,g2) in izip(G1,G2)])
mpi.report("\nChecking Sigma for convergence...\nUsing tolerance %s"%Test_Convergence)
self.Converged = test_distance(self.Sigma,self.Sigma_Old,Test_Convergence)
if self.Converged :
mpi.report("Solver HAS CONVERGED")
else :
mpi.report("Solver has not yet converged")
return corr_energy, dft_dc
def GF_realomega(self, ommin, ommax, N_om, U_int, J_hund, T=None, verbosity=0, broadening=0.01):
"""Calculates the GF and spectral function on the real axis."""
delta_om = (ommax-ommin)/(1.0*(N_om-1))
omega = numpy.zeros([N_om],numpy.complex_)
ur,umn,ujmn=self.__set_umatrix(U=U_int,J=J_hund,T=T)
for i in range(N_om):
omega[i] = ommin + delta_om * i + 1j * broadening
tailtempl={}
for sig,g in self.G:
tailtempl[sig] = copy.deepcopy(g.tail)
for i in range(9): tailtempl[sig][i] *= 0.0
temp = 1.0/self.beta
gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
zmsb=omega, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = verbosity)
# transfer the data to the GF class:
if (self.UseSpinOrbit):
nlmtot = self.Nlm*2 # only one block in this case!
else:
nlmtot = self.Nlm
M={}
isp=-1
for a,al in self.gf_struct:
isp+=1
M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
for i in range(min(self.Nmoments,8)):
tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
#glist = lambda : [ GfReFreq(indices = al, window = (ommin, ommax), n_points = N_om, data = M[a], tail = self.tailtempl[a])
# for a,al in self.gf_struct] # Indices for the upfolded G
glist = lambda : [ GfReFreq(indices = al, window = (ommin, ommax), n_points = N_om) for a,al in self.gf_struct]
self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
self.__copy_Gf(self.G,M,tailtempl)
# Self energy:
self.G0 = self.G.copy()
self.Sigma = self.G.copy()
self.G0 <<= Omega + 1j*broadening
M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
self.G0 -= M
self.Sigma <<= self.G0 - inverse(self.G)
self.Sigma.note='ReFreq' # This is important for the put_Sigma routine!!!
#sigmamat = sigma_atomic_fullu(gf=gf,e0f=self.ealmat,zmsb=omega,nlm=self.Nlm,ns=self.Nspin)
#return omega,gf,sigmamat
def __save_eal(self,Filename,it):
f=open(Filename,'a')
f.write('\neff. atomic levels, Iteration %s\n'%it)
for i in range(self.Nlm*self.Nspin):
for j in range(self.Nlm*self.Nspin):
f.write("%10.6f %10.6f "%(self.ealmat[i,j].real,self.ealmat[i,j].imag))
f.write("\n")
f.close()
def __copy_Gf(self,G,data,tail):
""" Copies data and tail to Gf object GF """
for s,g in G:
g.data[:,:,:]=data[s][:,:,:]
for imom in range(1,min(self.Nmoments,8)):
g.tail.data[1+imom,:,:]=tail[s][imom]
def set_atomic_levels(self,eal):
""" Helps to set correctly the variables for the atomic levels from a dictionary."""
assert (type(eal)==DictType), "Give a dictionary to set_atomic_levels!"
cnt = 0
self.ealmat[:,:] *= 0.0
for ind in eal:
self.Eff_Atomic_Levels[ind] = copy.deepcopy(eal[ind])
if self.UseSpinOrbit:
for ii in range(self.Nlm*2):
for jj in range(self.Nlm*2):
self.ealmat[ii,jj] = self.Eff_Atomic_Levels[ind][ii,jj]
else:
for ii in range(self.Nlm):
for jj in range(self.Nlm):
self.ealmat[cnt*self.Nlm + ii,cnt*self.Nlm + jj] = self.Eff_Atomic_Levels[ind][ii,jj]
cnt += 1
def __set_umatrix(self,U,J,T=None):
# U matrix:
# l = (Nlm-1)/2
# If T is specified, it is used to transform the Basis set
Umat = U_matrix(l=self.l, U_int=U, J_hund=J, basis='cubic', T=T)
U, Up = reduce_4index_to_2index(Umat)
return Umat, U, Up

View File

@ -0,0 +1,15 @@
[General]
#EFERMI =
#BASENAME = plo_vasp
#DOSMESH = -5.0 10.0 4001
[Group 1]
SHELLS = 1
NORMALIZE = False
EWINDOW = -41.45 41.8
[Shell 1]
LSHELL = 3
IONS = 1

View File

@ -0,0 +1,2 @@
#!/bin/bash
PYTHONPATH=$HOME/Codes/triqs/triqs1.2/applications/dft_tools/dev_src/python:$HOME/Codes/triqs/triqs1.2/applications/dft_tools/dev_src/c:$PYTHONPATH pytriqs $@

View File

@ -0,0 +1,2 @@
PLOVASP_PATH=$HOME/Codes/triqs/triqs1.2/applications/dft_tools/dev_src
PYTHONPATH=$PLOVASP_PATH/python:$PLOVASP_PATH/c:$PYTHONPATH pytriqs $PLOVASP_PATH/python/converters/plovasp/main.py $@

View File

@ -0,0 +1,164 @@
import os
import errno
import signal
import sys
import time
import pytriqs.utility.mpi as mpi
import converters.plovasp.main as plovasp
from test_ham_hf import dmft_cycle
debug = True
#
# Helper functions
#
def sigint_handler(signal, frame):
raise SystemExit(1)
def is_vasp_lock_present():
return os.path.isfile('./vasp.lock')
def is_vasp_running(vasp_pid):
"""
Tests if VASP initial process is still alive.
"""
pid_exists = False
if mpi.is_master_node():
try:
os.kill(vasp_pid, 0)
except OSError, e:
pid_exists = e.errno == errno.EPERM
else:
pid_exists = True
pid_exists = mpi.bcast(pid_exists)
return pid_exists
def get_dft_energy():
"""
Reads energy from the last line of OSZICAR.
"""
with open('OSZICAR', 'r') as f:
nextline = f.readline()
while nextline.strip():
line = nextline
nextline = f.readline()
# print "OSZICAR: ", line[:-1]
try:
dft_energy = float(line.split()[2])
except ValueError:
print "Cannot read energy from OSZICAR, setting it to zero"
dft_energy = 0.0
return dft_energy
class bcolors:
MAGENTA = '\033[95m'
BLUE = '\033[94m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
ENDC = '\033[0m'
#
# Main self-consistent cycle
#
def run_all(vasp_pid):
"""
"""
mpi.report(" Waiting for VASP lock to appear...")
while not is_vasp_lock_present():
time.sleep(1)
vasp_running = True
while vasp_running:
if debug: print bcolors.RED + "rank %s"%(mpi.rank) + bcolors.ENDC
mpi.report(" Waiting for VASP lock to disappear...")
mpi.barrier()
while is_vasp_lock_present():
time.sleep(1)
# if debug: print bcolors.YELLOW + " waiting: rank %s"%(mpi.rank) + bcolors.ENDC
if not is_vasp_running(vasp_pid):
mpi.report(" VASP stopped")
vasp_running = False
break
if debug: print bcolors.MAGENTA + "rank %s"%(mpi.rank) + bcolors.ENDC
err = 0
exc = None
try:
if debug: print bcolors.BLUE + "plovasp: rank %s"%(mpi.rank) + bcolors.ENDC
if mpi.is_master_node():
plovasp.generate_and_output_as_text('plo.cfg', vasp_dir='./')
# Read energy from OSZICAR
dft_energy = get_dft_energy()
except Exception, exc:
err = 1
err = mpi.bcast(err)
if err:
if mpi.is_master_node():
raise exc
else:
raise SystemExit(1)
mpi.barrier()
try:
if debug: print bcolors.GREEN + "rank %s"%(mpi.rank) + bcolors.ENDC
corr_energy, dft_dc = dmft_cycle()
except:
if mpi.is_master_node():
print " master forwarding the exception..."
raise
else:
print " rank %i exiting..."%(mpi.rank)
raise SystemExit(1)
mpi.barrier()
if mpi.is_master_node():
total_energy = dft_energy + corr_energy - dft_dc
print
print "="*80
print " Total energy: ", total_energy
print " DFT energy: ", dft_energy
print " Corr. energy: ", corr_energy
print " DFT DC: ", dft_dc
print "="*80
print
if mpi.is_master_node() and vasp_running:
open('./vasp.lock', 'a').close()
if mpi.is_master_node():
total_energy = dft_energy + corr_energy - dft_dc
with open('TOTENERGY', 'w') as f:
f.write(" Total energy: %s\n"%(total_energy))
f.write(" DFT energy: %s\n"%(dft_energy))
f.write(" Corr. energy: %s\n"%(corr_energy))
f.write(" DFT DC: %s\n"%(dft_dc))
f.write(" Energy correction: %s\n"%(corr_energy - dft_dc))
mpi.report("***Done")
if __name__ == '__main__':
try:
vasp_pid = int(sys.argv[1])
except (ValueError, KeyError):
if mpi.is_master_node():
print "VASP process pid must be provided as the first argument"
raise
# if len(sys.argv) > 1:
# vasp_path = sys.argv[1]
# else:
# try:
# vasp_path = os.environ['VASP_DIR']
# except KeyError:
# if mpi.is_master_node():
# print "Path to VASP must be specified either as an argument of in VASP_DIR"
# raise
signal.signal(signal.SIGINT, sigint_handler)
run_all(vasp_pid)

View File

@ -0,0 +1,9 @@
#/bin/bash
NPROC=8
rm -f vasp.lock
stdbuf -o 0 mpirun -np $NPROC ~/Codes/vasp/build_20151202/vasp.5.4.2/build/std/vasp &
mpirun -np $NPROC ./run_build.sh sc_dmft.py $(jobs -p) || kill %1

View File

@ -0,0 +1,28 @@
#!/bin/bash -l
#
#SBATCH --job-name="JOBNAME"
#SBATCH --time=36:00:00
##SBATCH --nodes=8
#SBATCH --ntasks=8
#SBATCH --partition=qmac
##SBATCH --mem-per-cpu=1024
#SBATCH --output=job.%j.o
#SBATCH --error=job.%j.e
#======START=====
# source $HOME/.profile
# export KMP_AFFINITY=none
# module load slurm
source /cm/shared/apps/intel/composer_xe/composer_xe_2015.0.090/mkl/bin/mklvars.sh intel64
# module switch PrgEnv-gnu PrgEnv-intel
# module load intel/14.0.2.144
#module load intel/mkl/64/11.2/2015.0.090
export OMP_NUM_THREADS=1
VASP_DIR=$HOME/Codes/vasp/build_20151202/vasp.5.4.2/build/std
#mpirun -np $SLURM_NTASKS $VASP_DIR/vasp
./sc_dmft.sh

View File

@ -0,0 +1,444 @@
#from pytriqs.applications.dft.sumk_dft import *
from sumk_dft import *
#from pytriqs.applications.dft.converters.wien2k_converter import *
from converters.vasp_converter import *
#from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
from hf_solver import Solver
import shutil
class TestSumkDFT(SumkDFT):
# calculate and save occupancy matrix in the Bloch basis for VASP charge denity recalculation
def calc_density_correction(self, filename='GAMMA', dm_type='wien2k'):
r"""
Calculates the charge density correction and stores it into a file.
The charge density correction is needed for charge-self-consistent DFT+DMFT calculations.
It represents a density matrix of the interacting system defined in Bloch basis
and it is calculated from the sum over Matsubara frequecies of the full GF,
..math:: N_{\nu\nu'}(k) = \sum_{i\omega_{n}} G_{\nu\nu'}(k, i\omega_{n})
The density matrix for every `k`-point is stored into a file.
Parameters
----------
filename : string
Name of the file to store the charge density correction.
Returns
-------
(deltaN, dens) : tuple
Returns a tuple containing the density matrix `deltaN` and
the corresponing total charge `dens`.
"""
assert type(filename) == StringType, "calc_density_correction: filename has to be a string!"
assert dm_type in ('vasp', 'wien2k'), "'type' must be either 'vasp' or 'wienk'"
ntoi = self.spin_names_to_ind[self.SO]
spn = self.spin_block_names[self.SO]
dens = {sp: 0.0 for sp in spn}
# Fetch Fermi weights and energy window band indices
if dm_type == 'vasp':
fermi_weights = 0
band_window = 0
if mpi.is_master_node():
ar = HDFArchive(self.hdf_file,'r')
fermi_weights = ar['dft_misc_input']['dft_fermi_weights']
band_window = ar['dft_misc_input']['band_window']
del ar
fermi_weights = mpi.bcast(fermi_weights)
band_window = mpi.bcast(band_window)
# Convert Fermi weights to a density matrix
dens_mat_dft = {}
for sp in spn:
dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(numpy.complex_) for ik in xrange(self.n_k)]
# Set up deltaN:
deltaN = {}
for sp in spn:
deltaN[sp] = [numpy.zeros([self.n_orbitals[ik,ntoi[sp]],self.n_orbitals[ik,ntoi[sp]]], numpy.complex_) for ik in range(self.n_k)]
ikarray = numpy.array(range(self.n_k))
for ik in mpi.slice_array(ikarray):
G_latt_iw = self.lattice_gf(ik = ik, mu = self.chemical_potential, iw_or_w = "iw")
for bname,gf in G_latt_iw:
deltaN[bname][ik][:, :] = G_latt_iw[bname].density()
dens[bname] += self.bz_weights[ik] * G_latt_iw[bname].total_density()
if dm_type == 'vasp':
# In 'vasp'-mode subtract the DFT density matrix
diag_inds = numpy.diag_indices(self.n_orbitals[ik, ntoi[bname]])
deltaN[bname][ik][diag_inds] -= dens_mat_dft[bname][ik]
dens[bname] -= self.bz_weights[ik] * dens_mat_dft[bname][ik].sum().real
# mpi reduce:
for bname in deltaN:
for ik in range(self.n_k):
deltaN[bname][ik] = mpi.all_reduce(mpi.world, deltaN[bname][ik], lambda x,y : x+y)
dens[bname] = mpi.all_reduce(mpi.world, dens[bname], lambda x,y : x+y)
mpi.barrier()
# now save to file:
if dm_type == 'wien2k':
if mpi.is_master_node():
if self.SP == 0:
f = open(filename,'w')
else:
f = open(filename+'up','w')
f1 = open(filename+'dn','w')
# write chemical potential (in Rydberg):
f.write("%.14f\n"%(self.chemical_potential/self.energy_unit))
if self.SP != 0: f1.write("%.14f\n"%(self.chemical_potential/self.energy_unit))
# write beta in rydberg-1
f.write("%.14f\n"%(G_latt_iw.mesh.beta*self.energy_unit))
if self.SP != 0: f1.write("%.14f\n"%(G_latt_iw.mesh.beta*self.energy_unit))
if self.SP == 0: # no spin-polarization
for ik in range(self.n_k):
f.write("%s\n"%self.n_orbitals[ik,0])
for inu in range(self.n_orbitals[ik,0]):
for imu in range(self.n_orbitals[ik,0]):
valre = (deltaN['up'][ik][inu,imu].real + deltaN['down'][ik][inu,imu].real) / 2.0
valim = (deltaN['up'][ik][inu,imu].imag + deltaN['down'][ik][inu,imu].imag) / 2.0
f.write("%.14f %.14f "%(valre,valim))
f.write("\n")
f.write("\n")
f.close()
elif self.SP == 1: # with spin-polarization
# dict of filename: (spin index, block_name)
if self.SO == 0: to_write = {f: (0, 'up'), f1: (1, 'down')}
if self.SO == 1: to_write = {f: (0, 'ud'), f1: (0, 'ud')}
for fout in to_write.iterkeys():
isp, sp = to_write[fout]
for ik in range(self.n_k):
fout.write("%s\n"%self.n_orbitals[ik,isp])
for inu in range(self.n_orbitals[ik,isp]):
for imu in range(self.n_orbitals[ik,isp]):
fout.write("%.14f %.14f "%(deltaN[sp][ik][inu,imu].real,deltaN[sp][ik][inu,imu].imag))
fout.write("\n")
fout.write("\n")
fout.close()
elif dm_type == 'vasp':
# assert self.SP == 0, "Spin-polarized density matrix is not implemented"
if mpi.is_master_node():
with open(filename, 'w') as f:
f.write(" %i -1 ! Number of k-points, default number of bands\n"%(self.n_k))
for sp in spn:
for ik in xrange(self.n_k):
ib1 = band_window[0][ik, 0]
ib2 = band_window[0][ik, 1]
f.write(" %i %i %i\n"%(ik + 1, ib1, ib2))
for inu in xrange(self.n_orbitals[ik, 0]):
for imu in xrange(self.n_orbitals[ik, 0]):
if self.SP == 0:
valre = (deltaN['up'][ik][inu, imu].real + deltaN['down'][ik][inu, imu].real) / 2.0
valim = (deltaN['up'][ik][inu, imu].imag + deltaN['down'][ik][inu, imu].imag) / 2.0
else:
valre = deltaN[sp][ik][inu, imu].real
valim = deltaN[sp][ik][inu, imu].imag
f.write(" %.14f %.14f"%(valre, valim))
f.write("\n")
else:
raise NotImplementedError("Unknown density matrix type: '%s'"%(dm_type))
return deltaN, dens
def calc_hamiltonian_correction(self, filename='GAMMA'):
r"""
Calculates the charge density correction and stores it into a file.
The charge density correction is needed for charge-self-consistent DFT+DMFT calculations.
It represents a density matrix of the interacting system defined in Bloch basis
and it is calculated from the sum over Matsubara frequecies of the full GF,
..math:: N_{\nu\nu'}(k) = \sum_{i\omega_{n}} G_{\nu\nu'}(k, i\omega_{n})
The density matrix for every `k`-point is stored into a file.
Parameters
----------
filename : string
Name of the file to store the charge density correction.
Returns
-------
(deltaN, dens) : tuple
Returns a tuple containing the density matrix `deltaN` and
the corresponing total charge `dens`.
"""
assert type(filename) == StringType, "calc_density_correction: filename has to be a string!"
ntoi = self.spin_names_to_ind[self.SO]
spn = self.spin_block_names[self.SO]
dens = {sp: 0.0 for sp in spn}
# Fetch Fermi weights and energy window band indices
fermi_weights = 0
band_window = 0
if mpi.is_master_node():
ar = HDFArchive(self.hdf_file,'r')
fermi_weights = ar['dft_misc_input']['dft_fermi_weights']
band_window = ar['dft_misc_input']['band_window']
del ar
fermi_weights = mpi.bcast(fermi_weights)
band_window = mpi.bcast(band_window)
# Set up deltaH:
deltaH = {}
for sp in spn:
deltaH[sp] = [numpy.zeros([self.n_orbitals[ik,ntoi[sp]],self.n_orbitals[ik,ntoi[sp]]], numpy.complex_) for ik in range(self.n_k)]
ikarray = numpy.array(range(self.n_k))
for ik in mpi.slice_array(ikarray):
sigma_minus_dc = [s.copy() for s in self.Sigma_imp_iw]
sigma_minus_dc = self.add_dc('iw')
beta = self.Sigma_imp_iw[0].mesh.beta # override beta if Sigma_iw is present
n_iw = len(self.Sigma_imp_iw[0].mesh)
block_structure = [ range(self.n_orbitals[ik,ntoi[sp]]) for sp in spn ]
gf_struct = [ (spn[isp], block_structure[isp]) for isp in range(self.n_spin_blocks[self.SO]) ]
block_ind_list = [block for block,inner in gf_struct]
glist = lambda : [ GfImFreq(indices=inner,beta=beta,n_points=n_iw) for block,inner in gf_struct]
G_latt = BlockGf(name_list = block_ind_list, block_list = glist(), make_copies = False)
G_latt.zero()
for icrsh in range(self.n_corr_shells):
for bname, gf in G_latt:
gf += self.upfold(ik,icrsh,bname,sigma_minus_dc[icrsh][bname],gf)
for sp in spn:
deltaH[sp][ik][:, :] = G_latt[sp](0) # Any Matsubara frequency will do
# G_latt_iw = self.lattice_gf(ik = ik, mu = self.chemical_potential, iw_or_w = "iw")
# for bname,gf in G_latt_iw:
# deltaN[bname][ik][:, :] = G_latt_iw[bname].density()
# dens[bname] += self.bz_weights[ik] * G_latt_iw[bname].total_density()
# if dm_type == 'vasp':
## In 'vasp'-mode subtract the DFT density matrix
# diag_inds = numpy.diag_indices(self.n_orbitals[ik, ntoi[bname]])
# deltaN[bname][ik][diag_inds] -= dens_mat_dft[bname][ik]
# dens[bname] -= self.bz_weights[ik] * dens_mat_dft[bname][ik].sum().real
# mpi reduce:
for bname in deltaH:
for ik in range(self.n_k):
deltaH[bname][ik] = mpi.all_reduce(mpi.world, deltaH[bname][ik], lambda x,y : x+y)
mpi.barrier()
# now save to file:
if mpi.is_master_node():
with open(filename, 'w') as f:
f.write("H %i -1 ! Number of k-points, default number of bands\n"%(self.n_k))
for sp in spn:
for ik in xrange(self.n_k):
ib1 = band_window[0][ik, 0]
ib2 = band_window[0][ik, 1]
f.write(" %i %i %i\n"%(ik + 1, ib1, ib2))
for inu in xrange(self.n_orbitals[ik, 0]):
for imu in xrange(self.n_orbitals[ik, 0]):
if self.SP == 0:
valre = (deltaH['up'][ik][inu, imu].real + deltaH['down'][ik][inu, imu].real) / 2.0
valim = (deltaH['up'][ik][inu, imu].imag + deltaH['down'][ik][inu, imu].imag) / 2.0
else:
valre = deltaH[sp][ik][inu, imu].real
valim = deltaH[sp][ik][inu, imu].imag
f.write(" %.14f %.14f"%(valre, valim))
f.write("\n")
return deltaH
def dmft_cycle():
lda_filename = 'vasp'
beta = 400
U_int = 4.00
J_hund = 0.70
Loops = 1 # Number of DMFT sc-loops
Mix = 1.0 # Mixing factor in QMC
DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein
DC_Mix = 1.0 # 1.0 ... all from imp; 0.0 ... all from Gloc
useBlocs = False # use bloc structure from LDA input
useMatrix = True # use the U matrix calculated from Slater coefficients instead of (U+2J, U, U-J)
chemical_potential_init=-0.0 # initial chemical potential
use_dudarev = True
HDFfilename = lda_filename+'.h5'
# Convert DMFT input:
# Can be commented after the first run
Converter = VaspConverter(filename=lda_filename)
Converter.convert_dft_input()
#check if there are previous runs:
previous_runs = 0
previous_present = False
if mpi.is_master_node():
ar = HDFArchive(HDFfilename,'a')
if 'iterations' in ar:
previous_present = True
previous_runs = ar['iterations']
else:
previous_runs = 0
previous_present = False
del ar
mpi.barrier()
previous_runs = mpi.bcast(previous_runs)
previous_present = mpi.bcast(previous_present)
# Init the SumK class
#SK=SumkDFT(hdf_file=lda_filename+'.h5',use_dft_blocks=False)
SK=TestSumkDFT(hdf_file=lda_filename+'.h5',use_dft_blocks=False)
Norb = SK.corr_shells[0]['dim']
l = SK.corr_shells[0]['l']
# Init the Hubbard-I solver:
S = Solver(beta = beta, l = l, dudarev=use_dudarev)
# DEBUG
#SK.put_Sigma(Sigma_imp=[S.Sigma])
#dH = SK.calc_hamiltonian_correction(filename='GAMMA')
# END DEBUG
chemical_potential=chemical_potential_init
# load previous data: old self-energy, chemical potential, DC correction
if (previous_present):
mpi.report("Using stored data for initialisation")
if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename,'a')
S.Sigma <<= ar['SigmaF']
del ar
things_to_load=['chemical_potential','dc_imp']
old_data=SK.load(things_to_load)
chemical_potential=old_data[0]
SK.dc_imp=old_data[1]
S.Sigma = mpi.bcast(S.Sigma)
chemical_potential=mpi.bcast(chemical_potential)
SK.dc_imp=mpi.bcast(SK.dc_imp)
# DMFT loop:
for Iteration_Number in range(1,Loops+1):
itn = Iteration_Number + previous_runs
# put Sigma into the SumK class:
S.Sigma.zero() # !!!!
SK.put_Sigma(Sigma_imp = [ S.Sigma ])
# Compute the SumK, possibly fixing mu by dichotomy
if SK.density_required and (Iteration_Number > 1):
chemical_potential = SK.calc_mu( precision = 0.001 )
else:
mpi.report("No adjustment of chemical potential\nTotal density = %.3f"%SK.total_density(mu=chemical_potential))
# Density:
S.G <<= SK.extract_G_loc()[0]
mpi.report("Total charge of Gloc : %.6f"%S.G.total_density())
# calculated DC at the first run to have reasonable initial non-interacting atomic level positions
if ((Iteration_Number==1)and(previous_present==False)):
if use_dudarev:
dc_value_init = 0.0
else:
dc_value_init=U_int/2.0
dm=S.G.density()
SK.calc_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type, use_dc_value=dc_value_init)
# calculate non-interacting atomic level positions:
# eal = SK.eff_atomic_levels()[0]
# S.set_atomic_levels( eal = eal )
# solve it:
corr_energy, dft_dc = S.solve(U_int = U_int, J_hund = J_hund, verbosity = 1)
# Now mix Sigma and G:
if ((itn>1)or(previous_present)):
if (mpi.is_master_node()and (Mix<1.0)):
ar = HDFArchive(HDFfilename,'r')
mpi.report("Mixing Sigma and G with factor %s"%Mix)
if ('SigmaF' in ar):
S.Sigma <<= Mix * S.Sigma + (1.0-Mix) * ar['SigmaF']
if ('GF' in ar):
S.G <<= Mix * S.G + (1.0-Mix) * ar['GF']
del ar
S.G = mpi.bcast(S.G)
S.Sigma = mpi.bcast(S.Sigma)
# after the Solver has finished, set new double counting:
# dm = S.G.density()
# if not use_dudarev:
# SK.calc_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type )
# correlation energy calculations:
correnerg = 0.5 * (S.G * S.Sigma).total_density()
mpi.report("Corr. energy = %s"%correnerg)
# store the impurity self-energy, GF as well as correlation energy in h5
if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename,'a')
ar['iterations'] = itn
ar['chemical_cotential%s'%itn] = chemical_potential
ar['SigmaF'] = S.Sigma
ar['GF'] = S.G
ar['correnerg%s'%itn] = correnerg
ar['DCenerg%s'%itn] = SK.dc_energ
del ar
#Save essential SumkDFT data:
things_to_save=['chemical_potential','dc_energ','dc_imp']
SK.save(things_to_save)
# print out occupancy matrix of Ce 4f
# mpi.report("Orbital densities of impurity Green function:")
# for s in dm:
# mpi.report("Block %s: "%s)
# for ii in range(len(dm[s])):
# str = ''
# for jj in range(len(dm[s])):
# if (dm[s][ii,jj].real>0):
# str += " %.4f"%(dm[s][ii,jj].real)
# else:
# str += " %.4f"%(dm[s][ii,jj].real)
# mpi.report(str)
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
# find exact chemical potential
#if (SK.density_required):
# SK.chemical_potential = SK.calc_mu( precision = 0.000001 )
# SK.chemical_potential = SK.calc_mu( precision = 0.01 )
#dN, d = SK.calc_density_correction(filename='GAMMA', dm_type='vasp')
#mpi.report("Trace of Density Matrix: %s"%d)
mpi.report("Storing Hamiltonian correction GAMMA...")
SK.put_Sigma(Sigma_imp=[S.Sigma])
dH = SK.calc_hamiltonian_correction(filename='GAMMA')
# shutil.copyfile('GAMMA', 'it%i.GAMMA'%(itn))
# store correlation energy contribution to be read by Wien2ki and then included to DFT+DMFT total energy
if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename)
itn = ar['iterations']
correnerg = ar['correnerg%s'%itn]
DCenerg = ar['DCenerg%s'%itn]
del ar
correnerg -= DCenerg[0]
f=open(lda_filename+'.qdmft','a')
f.write("%.16f\n"%correnerg)
f.close()
return corr_energy, dft_dc
if __name__ == '__main__':
dmft_cycle()