3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-21 11:53:41 +01:00

_get_hermitian_quantity_from_gf to avoid code duplication

This commit is contained in:
Gernot J. Kraberger 2018-03-28 16:28:52 +02:00
parent 8d6d8b53c5
commit 2c6149228a

View File

@ -851,38 +851,22 @@ class SumkDFT(object):
elif (ind1 < 0) and (ind2 < 0):
self.deg_shells[ish].append([block1, block2])
def analyse_block_structure_from_gf(self, G, threshold=1.e-5, include_shells=None, analyse_deg_shells = True):
r"""
Determines the block structure of local Green's functions by analysing
the structure of the corresponding non-interacting Green's function.
The resulting block structures for correlated shells are
stored in the :class:`SumkDFT.block_structure <dft.block_structure.BlockStructure>`
attribute.
def _get_hermitian_quantity_from_gf(self, G):
""" Convert G to a Hermitian quantity
This is a safer alternative to analyse_block_structure, because
the full non-interacting Green's function is taken into account
and not just the density matrix and Hloc.
For G(tau) and G(iw), G(tau) is returned.
For G(t) and G(w), the spectral function is returned.
Parameters
----------
G : list of BlockGf of GfImFreq or GfImTime
the non-interacting Green's function for each inequivalent correlated shell
threshold : real, optional
If the difference between matrix elements is below threshold,
they are considered to be equal.
include_shells : list of integers, optional
List of correlated shells to be analysed.
If include_shells is not provided all correlated shells will be analysed.
analyse_deg_shells : bool
Whether to call the analyse_deg_shells function
after having finished the block structure analysis
G : list of BlockGf of GfImFreq, GfImTime, GfReFreq or GfReTime
the input Green's function
Returns
-------
G : list of BlockGf of GfImFreq or GfImTime
the Green's function transformed into the new block structure
gf : list of BlockGf of GfImTime or GfReFreq
the output G(tau) or A(w)
"""
# make a GfImTime from the supplied GfImFreq
if all(isinstance(g_sh._first(), GfImFreq) for g_sh in G):
gf = [BlockGf(name_block_generator = [(name, GfImTime(beta=block.mesh.beta,
@ -922,6 +906,43 @@ class SumkDFT(object):
g << 1.0j*(g-g.conjugate().transpose())/2.0/numpy.pi
else:
raise Exception("G must be a list of BlockGf of either GfImFreq, GfImTime, GfReFreq or GfReTime")
return gf
def analyse_block_structure_from_gf(self, G, threshold=1.e-5, include_shells=None, analyse_deg_shells = True):
r"""
Determines the block structure of local Green's functions by analysing
the structure of the corresponding non-interacting Green's function.
The resulting block structures for correlated shells are
stored in the :class:`SumkDFT.block_structure <dft.block_structure.BlockStructure>`
attribute.
This is a safer alternative to analyse_block_structure, because
the full non-interacting Green's function is taken into account
and not just the density matrix and Hloc.
Parameters
----------
G : list of BlockGf of GfImFreq, GfImTime, GfReFreq or GfReTime
the non-interacting Green's function for each inequivalent correlated shell
threshold : real, optional
If the difference between matrix elements is below threshold,
they are considered to be equal.
include_shells : list of integers, optional
List of correlated shells to be analysed.
If include_shells is not provided all correlated shells will be analysed.
analyse_deg_shells : bool
Whether to call the analyse_deg_shells function
after having finished the block structure analysis
Returns
-------
G : list of BlockGf of GfImFreq or GfImTime
the Green's function transformed into the new block structure
"""
gf = self._get_hermitian_quantity_from_gf(G)
# initialize the variables
self.gf_struct_solver = [{} for ish in range(self.n_inequiv_shells)]
@ -1031,45 +1052,7 @@ class SumkDFT(object):
null_space = compress(null_mask, vh, axis=0)
return null_space.conjugate().transpose()
# make a GfImTime from the supplied GfImFreq
if all(isinstance(g_sh._first(), GfImFreq) for g_sh in G):
gf = [BlockGf(name_block_generator = [(name, GfImTime(beta=block.mesh.beta,
indices=block.indices,n_points=len(block.mesh)+1)) for name, block in g_sh])
for g_sh in G]
for ish in range(len(gf)):
for name, g in gf[ish]:
g.set_from_inverse_fourier(G[ish][name])
# keep a GfImTime from the supplied GfImTime
elif all(isinstance(g_sh._first(), GfImTime) for g_sh in G):
gf = G
# make a spectral function from the supplied GfReFreq
elif all(isinstance(g_sh._first(), GfReFreq) for g_sh in G):
gf = [g_sh.copy() for g_sh in G]
for ish in range(len(gf)):
for name, g in gf[ish]:
g << 1.0j*(g-g.conjugate().transpose())/2.0/numpy.pi
elif all(isinstance(g_sh._first(), GfReTime) for g_sh in G):
def get_delta_from_mesh(mesh):
w0 = None
for w in mesh:
if w0 is None:
w0 = w
else:
return w-w0
gf = [BlockGf(
name_block_generator = [(name,
GfReFreq(
window=(-numpy.pi*(len(block.mesh)-1) / (len(block.mesh)*get_delta_from_mesh(block.mesh)), numpy.pi*(len(block.mesh)-1) / (len(block.mesh)*get_delta_from_mesh(block.mesh))),
n_points=len(block.mesh),
indices=block.indices)) for name, block in g_sh])
for g_sh in G]
for ish in range(len(gf)):
for name, g in gf[ish]:
g.set_from_fourier(G[ish][name])
g << 1.0j*(g-g.conjugate().transpose())/2.0/numpy.pi
else:
raise Exception("G must be a list of BlockGf of either GfImFreq, GfImTime, GfReFreq or GfReTime")
gf = self._get_hermitian_quantity_from_gf(G)
if include_shells is None:
# include all shells