3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-22 04:13:47 +01:00

Documentation and tutorial update

This commit is contained in:
Leonid Pourovskii 2014-03-28 23:29:06 +01:00
parent 6ac850521f
commit 27dd24c490
6 changed files with 64 additions and 57 deletions

View File

@ -178,7 +178,7 @@ Then one needs to load projectors needed for calculations of corresponding proje
Then after the solver initialization and setting up atomic levels we compute atomic Green's function and self-energy on the real axis:: Then after the solver initialization and setting up atomic levels we compute atomic Green's function and self-energy on the real axis::
S.set_atomic_levels( eal = eal ) S.set_atomic_levels( eal = eal )
S.GF_realomega(ommin=ommin, ommax = ommax, N_om=N_om) S.GF_realomega(ommin=ommin, ommax = ommax, N_om=N_om,U_int=U_int,J_hund=J_hund)
put it into SK class and then calculated the actual DOS:: put it into SK class and then calculated the actual DOS::

View File

@ -2,22 +2,25 @@ from pytriqs.applications.dft.sumk_lda import *
from pytriqs.applications.dft.converters.wien2k_converter import * from pytriqs.applications.dft.converters.wien2k_converter import *
from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
LDAFilename = 'Ce' lda_filename = 'Ce-gamma'
Beta = 40 beta = 40
Uint = 6.00 U_int = 6.00
JHund = 0.70 J_hund = 0.70
Loops = 2 # Number of DMFT sc-loops Loops = 2 # Number of DMFT sc-loops
Mix = 0.7 # Mixing factor in QMC Mix = 0.7 # Mixing factor in QMC
DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein
DC_Mix = 1.0 # 1.0 ... all from imp; 0.0 ... all from Gloc DC_Mix = 1.0 # 1.0 ... all from imp; 0.0 ... all from Gloc
useBlocs = False # use bloc structure from LDA input useBlocs = False # use bloc structure from LDA input
useMatrix = True # use the U matrix calculated from Slater coefficients instead of (U+2J, U, U-J) useMatrix = True # use the U matrix calculated from Slater coefficients instead of (U+2J, U, U-J)
Natomic = 1
HDFfilename = LDAFilename+'.h5' HDFfilename = lda_filename+'.h5'
use_val= U_int * (Natomic - 0.5) - J_hund * (Natomic*0.5 - 0.5)
# Convert DMFT input: # Convert DMFT input:
# Can be commented after the first run # Can be commented after the first run
Converter = Wien2kConverter(filename=LDAFilename) Converter = Wien2kConverter(filename=lda_filename)
Converter.convert_dmft_input() Converter.convert_dmft_input()
#check if there are previous runs: #check if there are previous runs:
@ -39,13 +42,13 @@ previous_runs = mpi.bcast(previous_runs)
previous_present = mpi.bcast(previous_present) previous_present = mpi.bcast(previous_present)
# Init the SumK class # Init the SumK class
SK=SumkLDA(hdf_file=LDAFilename+'.h5',use_lda_blocks=False) SK=SumkLDA(hdf_file=lda_filename+'.h5',use_lda_blocks=False)
Norb = SK.corr_shells[0][3] Norb = SK.corr_shells[0][3]
l = SK.corr_shells[0][2] l = SK.corr_shells[0][2]
# Init the Solver: # Init the Solver:
S = Solver(beta = Beta, l = l) S = Solver(beta = beta, l = l)
if (previous_present): if (previous_present):
# load previous data: # load previous data:
@ -77,7 +80,7 @@ for Iteration_Number in range(1,Loops+1):
dm = S.G.density() dm = S.G.density()
if ((Iteration_Number==1)and(previous_present==False)): if ((Iteration_Number==1)and(previous_present==False)):
SK.set_dc( dens_mat=dm, U_interact = Uint, J_hund = JHund, orb = 0, use_dc_formula = DC_type) SK.set_dc( dens_mat=dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type, use_val=use_val)
# set atomic levels: # set atomic levels:
eal = SK.eff_atomic_levels()[0] eal = SK.eff_atomic_levels()[0]
@ -90,7 +93,7 @@ for Iteration_Number in range(1,Loops+1):
del ar del ar
# solve it: # solve it:
S.solve(U_int = Uint, J_hund = JHund, verbosity = 1) S.solve(U_int = U_int, J_hund = J_hund, verbosity = 1)
if (mpi.is_master_node()): if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename) ar = HDFArchive(HDFfilename)
@ -116,7 +119,7 @@ for Iteration_Number in range(1,Loops+1):
# after the Solver has finished, set new double counting: # after the Solver has finished, set new double counting:
dm = S.G.density() dm = S.G.density()
SK.set_dc( dm, U_interact = Uint, J_hund = JHund, orb = 0, use_dc_formula = DC_type ) SK.set_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type , use_val=use_val)
# correlation energy calculations: # correlation energy calculations:
correnerg = 0.5 * (S.G * S.Sigma).total_density() correnerg = 0.5 * (S.G * S.Sigma).total_density()
mpi.report("Corr. energy = %s"%correnerg) mpi.report("Corr. energy = %s"%correnerg)
@ -151,7 +154,7 @@ for Iteration_Number in range(1,Loops+1):
# find exact chemical potential # find exact chemical potential
if (SK.density_required): if (SK.density_required):
SK.chemical_potential = SK.find_mu( precision = 0.000001 ) SK.chemical_potential = SK.find_mu( precision = 0.000001 )
dN,d = SK.calc_density_correction(filename = LDAFilename+'.qdmft') dN,d = SK.calc_density_correction(filename = lda_filename+'.qdmft')
mpi.report("Trace of Density Matrix: %s"%d) mpi.report("Trace of Density Matrix: %s"%d)
@ -163,7 +166,6 @@ if (mpi.is_master_node()):
DCenerg = ar['DCenerg%s'%itn] DCenerg = ar['DCenerg%s'%itn]
del ar del ar
correnerg -= DCenerg[0] correnerg -= DCenerg[0]
f=open(LDAFilename+'.qdmft','a') f=open(lda_filename+'.qdmft','a')
f.write("%.16f\n"%correnerg) f.write("%.16f\n"%correnerg)
f.close() f.close()

View File

@ -1,13 +1,13 @@
from pytriqs.applications.dft.sumk_lda_tools import * from pytriqs.applications.dft.sumk_lda_tools import *
from pytriqs.applications.dft.converters.wien2k_converter import * from pytriqs.applications.dft.converters.wien2k_converter import *
from pytriqs.applications.impurity_solvers.hubbard_I.solver import Solver from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
# Creates the data directory, cd into it: # Creates the data directory, cd into it:
#Prepare_Run_Directory(DirectoryName = "Ce-Gamma") #Prepare_Run_Directory(DirectoryName = "Ce-Gamma")
LDAFilename = 'Ce-gamma' lda_filename = 'Ce-gamma'
Beta = 40 Beta = 40
Uint = 6.00 U_int = 6.00
JHund = 0.70 J_hund = 0.70
DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein
load_previous = True # load previous results load_previous = True # load previous results
useBlocs = False # use bloc structure from LDA input useBlocs = False # use bloc structure from LDA input
@ -17,13 +17,13 @@ ommax=6.0
N_om=2001 N_om=2001
broadening = 0.02 broadening = 0.02
HDFfilename = LDAFilename+'.h5' HDFfilename = lda_filename+'.h5'
# Convert DMFT input: # Convert DMFT input:
# Can be commented after the first run # Can be commented after the first run
Converter = Wien2kConverter(filename=LDAFilename,repacking=True) Converter = Wien2kConverter(filename=lda_filename,repacking=True)
Converter.convert_dmft_input() Converter.convert_dmft_input()
Converter.convert_par_proj_input() Converter.convert_parproj_input()
#check if there are previous runs: #check if there are previous runs:
previous_runs = 0 previous_runs = 0
@ -48,7 +48,7 @@ previous_present = mpi.bcast(previous_present)
# from a converted h5 archive. # from a converted h5 archive.
# Init the SumK class # Init the SumK class
SK = SumkLDATools(hdf_file=LDAFilename+'.h5',use_lda_blocks=False) SK = SumkLDATools(hdf_file=lda_filename+'.h5',use_lda_blocks=False)
if (mpi.is_master_node()): if (mpi.is_master_node()):
@ -58,13 +58,12 @@ N = SK.corr_shells[0][3]
l = SK.corr_shells[0][2] l = SK.corr_shells[0][2]
# Init the Solver: # Init the Solver:
S = Solver(Beta = Beta, Uint = Uint, JHund = JHund, l = l) S = Solver(beta = Beta, l = l)
S.Nmoments=10 S.Nmoments= 8
# set atomic levels: # set atomic levels:
eal = SK.eff_atomic_levels()[0] eal = SK.eff_atomic_levels()[0]
S.set_atomic_levels( eal = eal ) S.set_atomic_levels( eal = eal )
S.GF_realomega(ommin=ommin, ommax = ommax, N_om=N_om) S.GF_realomega(ommin=ommin, ommax = ommax, N_om=N_om,U_int=U_int,J_hund=J_hund)
S.Sigma.save('S.Sigma') SK.put_Sigma(Sigma_imp = [S.Sigma])
SK.put_Sigma(Sigmaimp = [S.Sigma])
SK.dos_partial(broadening=broadening) SK.dos_partial(broadening=broadening)

View File

@ -53,10 +53,12 @@ specific needs. They are:
The solver method is called later by this statement:: The solver method is called later by this statement::
S.solve(U_interact = U, J_hund = J) S.solve(U_interact,J_hund,use_spinflip=False,use_matrix=True,
l=2,T=None, dim_reps=None, irep=None, deg_orbs=[],n_cycles =10000,
length_cycle=200,n_warmup_cycles=1000)
The parameters for the Coulomb interaction `U_interact` and the Hunds coupling `J_hund` are necessary parameters. The parameters for the Coulomb interaction `U_interact` and the Hunds coupling `J_hund` are necessary parameters. The rest are optional parameters, for which default values are set.
The following parameters are optional, by highly recommended to be set: They denerally should be reset for a given problem. Their meaning is as follows:
* `use_matrix`: If `True`, the interaction matrix is calculated from Slater integrals, which are calculated from `U_interact` and * `use_matrix`: If `True`, the interaction matrix is calculated from Slater integrals, which are calculated from `U_interact` and
`J_hund`. Otherwise, a Kanamori representation is used. Attention: We define the intraorbital interaction as `J_hund`. Otherwise, a Kanamori representation is used. Attention: We define the intraorbital interaction as
@ -65,22 +67,20 @@ The following parameters are optional, by highly recommended to be set:
* `T`: A matrix that transforms the interaction matrix from spherical harmonics, to a symmetry adapted basis. Only effective, if * `T`: A matrix that transforms the interaction matrix from spherical harmonics, to a symmetry adapted basis. Only effective, if
`use_matrix=True`. `use_matrix=True`.
* `l`: Orbital quantum number. Again, only effective for Slater parametrisation. * `l`: Orbital quantum number. Again, only effective for Slater parametrisation.
* `deg_shells`: A list that gives the degeneracies of the orbitals. It is used to set up a global move of the CTQMC solver. * `deg_orbs`: A list that gives the degeneracies of the orbitals. It is used to set up a global move of the CTQMC solver.
* `use_spinflip`: If `True`, the full rotationally-invariant interaction is used. Otherwise, only density-density terms are * `use_spinflip`: If `True`, the full rotationally-invariant interaction is used. Otherwise, only density-density terms are
kept in the local Hamiltonian. kept in the local Hamiltonian.
* `dim_reps`: If only a subset of the full d-shell is used a correlated orbtials, one can specify here the dimensions of all the subspaces * `dim_reps`: If only a subset of the full d-shell is used a correlated orbtials, one can specify here the dimensions of all the subspaces
of the d-shell, i.e. t2g and eg. Only effective for Slater parametrisation. of the d-shell, i.e. t2g and eg. Only effective for Slater parametrisation.
* `irep`: The index in the list `dim_reps` of the subset that is used. Only effective for Slater parametrisation. * `irep`: The index in the list `dim_reps` of the subset that is used. Only effective for Slater parametrisation.
* `n_cycles`: Number of CTQMC cycles (a sequence of moves followed by a measurement) per core. The default value of 10000 is the minimum, and generally should be incresed
* `length_cycle`: Number of CTQMC moves per one cycle
* `n_warmup_cycles`: Number of initial CTQMC cycles before measurements start. Usually of order of 10000, sometimes needs to be increased significantly.
Most of above parameters can be taken directly from the :class:`SumkLDA` class, without defining them by hand. We will see a specific example Most of above parameters can be taken directly from the :class:`SumkLDA` class, without defining them by hand. We will see a specific example
at the end of this tutorial. at the end of this tutorial.
After initialisation, several other CTQMC parameters can be set (see CTQMC doc). The most important are: After initialisation, several other CTQMC parameters can be set (see CTQMC doc).
* `S.n_cycles`: Number of QMC cycles per node.
* `S.n_warmup_cycles`: Number of iterations used for thermalisation
.. index:: LDA+DMFT loop, one-shot calculation .. index:: LDA+DMFT loop, one-shot calculation
@ -120,9 +120,9 @@ At the end of the calculation, we can save the Greens function and self energy i
from pytriqs.archive import HDFArchive from pytriqs.archive import HDFArchive
import pytriqs.utility.mpi as mpi import pytriqs.utility.mpi as mpi
if mpi.is_master_node(): if mpi.is_master_node():
R = HDFArchive("YourLDADMFTcalculation.h5",'w') ar = HDFArchive("YourLDADMFTcalculation.h5",'w')
R["G"] = S.G ar["G"] = S.G
R["Sigma"] = S.Sigma ar["Sigma"] = S.Sigma
This is it! This is it!

View File

@ -67,11 +67,7 @@ The next step is to initialise the Solver::
S = SolverMultiBand(beta=beta,n_orb=Norb,gf_struct=SK.gf_struct_solver[0],map=SK.map[0]) S = SolverMultiBand(beta=beta,n_orb=Norb,gf_struct=SK.gf_struct_solver[0],map=SK.map[0])
As we can see, many options of the solver are set by properties of the :class:`SumkLDA` class, so we don't have As we can see, many options of the solver are set by properties of the :class:`SumkLDA` class, so we don't have
to set them manually. We now set the basic parameters of the QMC solver:: to set them manually.
S.n_cycles = qmc_cycles
S.length_cycle = length_cycle
S.n_warmup_cycles = warming_iterations
If there are previous runs stored in the hdf5 archive, we can now load the self energy If there are previous runs stored in the hdf5 archive, we can now load the self energy
of the last iteration:: of the last iteration::
@ -121,7 +117,8 @@ previous section, with some additional refinement::
# Solve the impurity problem: # Solve the impurity problem:
S.Solve(U_interact=U,J_hund=J,n_orb=Norb,use_matrix=use_matrix, S.Solve(U_interact=U,J_hund=J,n_orb=Norb,use_matrix=use_matrix,
T=SK.T[0], gf_struct=SK.gf_struct_solver[0],map=SK.map[0], T=SK.T[0], gf_struct=SK.gf_struct_solver[0],map=SK.map[0],
l=l, deg_orbs=SK.deg_shells[0], use_spinflip=use_spinflip)) l=l, deg_orbs=SK.deg_shells[0], use_spinflip=use_spinflip,
n_cycles =qmc_cycles,length_cycle=length_cycle,n_warmup_cycles=warming_iterations)
# solution done, do the post-processing: # solution done, do the post-processing:
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density()) mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())

View File

@ -66,19 +66,28 @@ Routines with real-frequency self energy
---------------------------------------- ----------------------------------------
In order to plot data including correlation effects on the real axis, one has to provide the real frequency self energy. In order to plot data including correlation effects on the real axis, one has to provide the real frequency self energy.
Most conveniently, it is stored as a real frequency :class:`BlockGf` object in the hdf5 file. There is one important thing to Most conveniently, it is stored as a real frequency :class:`BlockGf` object in the hdf5 file::
keep in mind. The real frequency self energy has to carry the note `ReFreq`::
SigmaReFreq.note = 'ReFreq' ar = HDFArchive(filename+'.h5','a')
ar['SigmaReFreq'] = Sigma_real
This tells the SumkLDA routines, that it is indeed a real frequency Greens function. Supposed you have your self energy now
in the archive, you can type::
ar=HDFArchive(SK.hdf_file)
SK.put_Sigma([ ar['SigmaReFreq'] ])
del ar del ar
This loads the self energy and puts it into the :class:`SumkLDA` class. The chemical potential as well as the double You may also store it in text files. If all blocks of your self energy are of dimension 1x1 you store them in `filename_(block)0.dat` files. Here `(block)` is a block name (`up`, `down`, or combined `ud`). In the case when you have matrix blocks, you store them in `(i)_(j).dat` files in the `filename_(block)` directory
This self energy is loaded and put into the :class:`SumkLDA` class by the function::
SK.constr_Sigma_real_axis(filename, hdf=True, hdf_dataset='SigmaReFreq',n_om=0)
where:
* `filename` is the file name of the hdf5 archive file or the `fname` pattern in text files names as described above.
* `hdf=True` the real-axis self energy will be read from the hdf5 file, `hdf=False`: from the text files
* `hdf_dataset` the name of dataset where the self energy is stored in the hdf5 file
* `n_om` number of points in the real-axis mesh (used only if `hdf=False`)
The chemical potential as well as the double
counting correction was already read in the initialisation process. counting correction was already read in the initialisation process.
With this self energy, we can do now:: With this self energy, we can do now::