mirror of
https://github.com/triqs/dft_tools
synced 2025-01-03 10:05:49 +01:00
Added multiple zero finding methods to sumk.calc_mu
This commit is contained in:
parent
03aa19b90d
commit
27bdb61136
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
||||
compile_commands.json
|
||||
doc/cpp2rst_generated
|
||||
build/
|
||||
|
@ -36,7 +36,7 @@ from .block_structure import BlockStructure
|
||||
from itertools import product
|
||||
from warnings import warn
|
||||
from scipy import compress
|
||||
from scipy.optimize import minimize
|
||||
from scipy.optimize import minimize, newton
|
||||
|
||||
|
||||
class SumkDFT(object):
|
||||
@ -1945,7 +1945,7 @@ class SumkDFT(object):
|
||||
"""
|
||||
self.chemical_potential = mu
|
||||
|
||||
def calc_mu(self, precision=0.01, broadening=None, delta=0.5, max_loops=100):
|
||||
def calc_mu(self, precision=0.01, broadening=None, delta=0.5, max_loops=100, method="dichotomy"):
|
||||
r"""
|
||||
Searches for the chemical potential that gives the DFT total charge.
|
||||
A simple bisection method is used.
|
||||
@ -1961,6 +1961,12 @@ class SumkDFT(object):
|
||||
max_loops : int, optional
|
||||
Number of dichotomy loops maximally performed.
|
||||
|
||||
max_loops : string, optional
|
||||
Type of optimization used:
|
||||
* dichotomy: usual bisection algorithm from the TRIQS library
|
||||
* newton: newton method, faster convergence but more unstable
|
||||
* preconditioned_newton: uses a dichotomy adjustement with low tolerence to initialize the newton algorithm to improve stability
|
||||
|
||||
Returns
|
||||
-------
|
||||
mu : float
|
||||
@ -1968,14 +1974,67 @@ class SumkDFT(object):
|
||||
within specified precision.
|
||||
|
||||
"""
|
||||
def F(mu): return self.total_density(mu=mu, broadening=broadening).real
|
||||
def F_bisection(mu): return self.total_density(mu=mu, broadening=broadening).real
|
||||
density = self.density_required - self.charge_below
|
||||
def F_newton(mu):
|
||||
|
||||
self.chemical_potential = dichotomy.dichotomy(function=F,
|
||||
x_init=self.chemical_potential, y_value=density,
|
||||
precision_on_y=precision, delta_x=delta, max_loops=max_loops,
|
||||
x_name="Chemical Potential", y_name="Total Density",
|
||||
verbosity=3)[0]
|
||||
mpi.report("Trying out mu = {}".format(str(mu)))
|
||||
calc_dens = self.total_density(mu=mu, broadening=broadening).real - density
|
||||
mpi.report("Delta to target density = {}".format(str(calc_dens)))
|
||||
return calc_dens
|
||||
|
||||
#check for lowercase matching for the method variable
|
||||
match method.lower():
|
||||
|
||||
case "dichotomy":
|
||||
mpi.report("SUMK calc_mu: Using dichtomy adjustment to find chemical potential")
|
||||
self.chemical_potential = dichotomy.dichotomy(function=F_bisection,
|
||||
x_init=self.chemical_potential, y_value=density,
|
||||
precision_on_y=precision, delta_x=delta, max_loops=max_loops,
|
||||
x_name="Chemical Potential", y_name="Total Density",
|
||||
verbosity=3)[0]
|
||||
case 'newton':
|
||||
mpi.report("SUMK calc_mu: Using newton method to find chemical potential")
|
||||
self.chemical_potential = newton(func=F_newton,
|
||||
x0=self.chemical_potential,
|
||||
tol=precision, maxiter=max_loops,
|
||||
)
|
||||
|
||||
case 'preconditioned-newton':
|
||||
mpi.report("SUMK calc_mu: preconditioning newton with low tolerance dichtomy")
|
||||
mu_guess_0 = dichotomy.dichotomy(function=F_bisection,
|
||||
x_init=self.chemical_potential, y_value=density,
|
||||
precision_on_y=0.2, delta_x=delta, max_loops=max_loops,
|
||||
x_name="Chemical Potential", y_name="Total Density",
|
||||
verbosity=3)[0]
|
||||
|
||||
mu_guess_1 = dichotomy.dichotomy(function=F_bisection,
|
||||
x_init=mu_guess_0, y_value=density,
|
||||
precision_on_y=0.05, delta_x=delta, max_loops=max_loops,
|
||||
x_name="Chemical Potential", y_name="Total Density",
|
||||
verbosity=3)[0]
|
||||
|
||||
mu_guess_1 = np.round(mu_guess_1, 4)+0.01 # rounding off second guess in case it is numerically too similar to guess 0
|
||||
|
||||
mpi.report(f"SUMK calc_mu: Chemical potential guesses are: {mu_guess_0} and {mu_guess_1}")
|
||||
mpi.report("SUMK calc_mu: Refining guesses with newton method to find chemical potential")
|
||||
|
||||
self.chemical_potential = newton(func=F_newton,
|
||||
x0=mu_guess_0,
|
||||
x1=mu_guess_1,
|
||||
tol=precision, maxiter=max_loops,
|
||||
)
|
||||
|
||||
case _:
|
||||
raise ValueError(
|
||||
f"SUMK calc_mu: The method selected: {method}, is not implemented",
|
||||
"""
|
||||
Please check for typos or select one of the following:
|
||||
* dichotomy: usual bisection algorithm from the TRIQS library
|
||||
* newton: newton method, faster convergence but more unstable
|
||||
* preconditioned_newton: uses a dichotomy adjustement with low tolerence to initialize the newton algorithm to improve stability
|
||||
"""
|
||||
)
|
||||
|
||||
return self.chemical_potential
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user