mirror of
https://github.com/triqs/dft_tools
synced 2024-12-11 23:13:45 +01:00
SumkDFT: analyse_block_structure_from_gf
This commit is contained in:
parent
8ebb0c3c29
commit
25218746f4
@ -25,12 +25,15 @@ import numpy
|
||||
import pytriqs.utility.dichotomy as dichotomy
|
||||
from pytriqs.gf import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from pytriqs.utility.comparison_tests import assert_arrays_are_close
|
||||
from pytriqs.archive import *
|
||||
from symmetry import *
|
||||
from block_structure import BlockStructure
|
||||
from sets import Set
|
||||
from itertools import product
|
||||
from warnings import warn
|
||||
from scipy import compress
|
||||
from scipy.optimize import minimize
|
||||
|
||||
|
||||
class SumkDFT(object):
|
||||
@ -848,6 +851,366 @@ class SumkDFT(object):
|
||||
elif (ind1 < 0) and (ind2 < 0):
|
||||
self.deg_shells[ish].append([block1, block2])
|
||||
|
||||
def analyse_block_structure_from_gf(self, G, threshold=1.e-5, include_shells=None, analyse_deg_shells = True):
|
||||
r"""
|
||||
Determines the block structure of local Green's functions by analysing
|
||||
the structure of the corresponding non-interacting Green's function.
|
||||
The resulting block structures for correlated shells are
|
||||
stored in the :class:`SumkDFT.block_structure <dft.block_structure.BlockStructure>`
|
||||
attribute.
|
||||
|
||||
This is a safer alternative to analyse_block_structure, because
|
||||
the full non-interacting Green's function is taken into account
|
||||
and not just the density matrix and Hloc.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : list of BlockGf of GfImFreq or GfImTime
|
||||
the non-interacting Green's function for each inequivalent correlated shell
|
||||
threshold : real, optional
|
||||
If the difference between matrix elements is below threshold,
|
||||
they are considered to be equal.
|
||||
include_shells : list of integers, optional
|
||||
List of correlated shells to be analysed.
|
||||
If include_shells is not provided all correlated shells will be analysed.
|
||||
analyse_deg_shells : bool
|
||||
Whether to call the analyse_deg_shells function
|
||||
after having finished the block structure analysis
|
||||
|
||||
Returns
|
||||
-------
|
||||
G : list of BlockGf of GfImFreq or GfImTime
|
||||
the Green's function transformed into the new block structure
|
||||
"""
|
||||
|
||||
# make a GfImTime from the supplied G
|
||||
if isinstance(G[0]._first(), GfImFreq):
|
||||
gf = [BlockGf(name_block_generator = [(name, GfImTime(beta=block.mesh.beta,
|
||||
indices=block.indices,n_points=len(block.mesh)+1)) for name, block in g_sh])
|
||||
for g_sh in G]
|
||||
for ish in range(len(gf)):
|
||||
for name, g in gf[ish]:
|
||||
g.set_from_inverse_fourier(G[ish][name])
|
||||
else:
|
||||
assert isinstance(G[0]._first(), GfImTime), "G must be a BlockGf of either GfImFreq or GfImTime"
|
||||
gf = G
|
||||
|
||||
# initialize the variables
|
||||
self.gf_struct_solver = [{} for ish in range(self.n_inequiv_shells)]
|
||||
self.sumk_to_solver = [{} for ish in range(self.n_inequiv_shells)]
|
||||
self.solver_to_sumk = [{} for ish in range(self.n_inequiv_shells)]
|
||||
self.solver_to_sumk_block = [{}
|
||||
for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
# the maximum value of each matrix element of each block and shell
|
||||
max_gf = [{name:numpy.max(numpy.abs(g.data),0) for name, g in gf[ish]} for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
if include_shells is None:
|
||||
# include all shells
|
||||
include_shells = range(self.n_inequiv_shells)
|
||||
|
||||
for ish in include_shells:
|
||||
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
|
||||
n_orb = self.corr_shells[self.inequiv_to_corr[ish]]['dim']
|
||||
|
||||
# gives an index list of entries larger that threshold
|
||||
maxgf_bool = (abs(max_gf[ish][sp]) > threshold)
|
||||
|
||||
# Determine off-diagonal entries in upper triangular part of the
|
||||
# Green's function
|
||||
offdiag = Set([])
|
||||
for i in range(n_orb):
|
||||
for j in range(i + 1, n_orb):
|
||||
if maxgf_bool[i, j]:
|
||||
offdiag.add((i, j))
|
||||
|
||||
# Determine the number of non-hybridising blocks in the gf
|
||||
blocs = [[i] for i in range(n_orb)]
|
||||
while len(offdiag) != 0:
|
||||
pair = offdiag.pop()
|
||||
for b1, b2 in product(blocs, blocs):
|
||||
if (pair[0] in b1) and (pair[1] in b2):
|
||||
if blocs.index(b1) != blocs.index(b2): # In separate blocks?
|
||||
# Merge two blocks
|
||||
b1.extend(blocs.pop(blocs.index(b2)))
|
||||
break # Move on to next pair in offdiag
|
||||
|
||||
# Set the gf_struct for the solver accordingly
|
||||
num_blocs = len(blocs)
|
||||
for i in range(num_blocs):
|
||||
blocs[i].sort()
|
||||
self.gf_struct_solver[ish].update(
|
||||
[('%s_%s' % (sp, i), range(len(blocs[i])))])
|
||||
|
||||
# Construct sumk_to_solver taking (sumk_block, sumk_index) --> (solver_block, solver_inner)
|
||||
# and solver_to_sumk taking (solver_block, solver_inner) -->
|
||||
# (sumk_block, sumk_index)
|
||||
for i in range(num_blocs):
|
||||
for j in range(len(blocs[i])):
|
||||
block_sumk = sp
|
||||
inner_sumk = blocs[i][j]
|
||||
block_solv = '%s_%s' % (sp, i)
|
||||
inner_solv = j
|
||||
self.sumk_to_solver[ish][(block_sumk, inner_sumk)] = (
|
||||
block_solv, inner_solv)
|
||||
self.solver_to_sumk[ish][(block_solv, inner_solv)] = (
|
||||
block_sumk, inner_sumk)
|
||||
self.solver_to_sumk_block[ish][block_solv] = block_sumk
|
||||
|
||||
# transform G to the new structure
|
||||
full_structure = BlockStructure.full_structure(
|
||||
[{sp:range(self.corr_shells[self.inequiv_to_corr[ish]]['dim'])
|
||||
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]}
|
||||
for ish in range(self.n_inequiv_shells)],None)
|
||||
G_transformed = [
|
||||
self.block_structure.convert_gf(G[ish],
|
||||
full_structure, ish, beta=G[ish].mesh.beta, show_warnings=threshold)
|
||||
for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
if analyse_deg_shells:
|
||||
self.analyse_deg_shells(G_transformed, threshold, include_shells)
|
||||
return G_transformed
|
||||
|
||||
def analyse_deg_shells(self, G, threshold=1.e-5, include_shells=None):
|
||||
r"""
|
||||
Determines the degenerate shells of local Green's functions by analysing
|
||||
the structure of the corresponding non-interacting Green's function.
|
||||
The results are stored in the
|
||||
:class:`SumkDFT.block_structure <dft.block_structure.BlockStructure>`
|
||||
attribute.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : list of BlockGf of GfImFreq or GfImTime
|
||||
the non-interacting Green's function for each inequivalent correlated shell
|
||||
threshold : real, optional
|
||||
If the difference between matrix elements is below threshold,
|
||||
they are considered to be equal.
|
||||
include_shells : list of integers, optional
|
||||
List of correlated shells to be analysed.
|
||||
If include_shells is not provided all correlated shells will be analysed.
|
||||
"""
|
||||
|
||||
# initialize
|
||||
self.deg_shells = [[] for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
# helper function
|
||||
def null(A, eps=1e-15):
|
||||
""" Calculate the null-space of matrix A """
|
||||
u, s, vh = numpy.linalg.svd(A)
|
||||
null_mask = (s <= eps)
|
||||
null_space = compress(null_mask, vh, axis=0)
|
||||
return null_space.conjugate().transpose()
|
||||
|
||||
# make a GfImTime from the supplied G
|
||||
if isinstance(G[0]._first(), GfImFreq):
|
||||
gf = [BlockGf(name_block_generator = [(name, GfImTime(beta=block.mesh.beta,
|
||||
indices=block.indices,n_points=len(block.mesh)+1)) for name, block in g_sh])
|
||||
for g_sh in G]
|
||||
for ish in range(len(gf)):
|
||||
for name, g in gf[ish]:
|
||||
g.set_from_inverse_fourier(G[ish][name])
|
||||
else:
|
||||
assert isinstance(G[0]._first(), GfImTime), "G must be a BlockGf of either GfImFreq or GfImTime"
|
||||
gf = G
|
||||
|
||||
if include_shells is None:
|
||||
# include all shells
|
||||
include_shells = range(self.n_inequiv_shells)
|
||||
|
||||
# We consider two blocks equal, if their Green's functions obey
|
||||
# maybe_conjugate1( v1^dagger G1 v1 ) = maybe_conjugate2( v2^dagger G2 v2 )
|
||||
# where maybe_conjugate is a function that conjugates the Green's
|
||||
# function if the flag 'conjugate' is set and the v are unitary
|
||||
# matrices
|
||||
#
|
||||
# for each pair of blocks, we check whether there is a transformation
|
||||
# maybe_conjugate( T G1 T^dagger ) = G2
|
||||
# where our goal is to find T
|
||||
# we just try whether there is such a T with and without conjugation
|
||||
for ish in include_shells:
|
||||
for block1 in self.gf_struct_solver[ish].iterkeys():
|
||||
for block2 in self.gf_struct_solver[ish].iterkeys():
|
||||
if block1==block2: continue
|
||||
|
||||
# check if the blocks are already present in the deg_shells
|
||||
ind1 = -1
|
||||
ind2 = -2
|
||||
for n, ind in enumerate(self.deg_shells[ish]):
|
||||
if block1 in ind:
|
||||
ind1 = n
|
||||
v1 = ind[block1]
|
||||
if block2 in ind:
|
||||
ind2 = n
|
||||
v2 = ind[block2]
|
||||
|
||||
# if both are already present, go to the next pair of blocks
|
||||
if ind1 >= 0 and ind2 >= 0:
|
||||
continue
|
||||
|
||||
gf1 = gf[ish][block1]
|
||||
gf2 = gf[ish][block2]
|
||||
|
||||
# the two blocks have to have the same shape
|
||||
if gf1.target_shape != gf2.target_shape:
|
||||
continue
|
||||
|
||||
# Instead of directly comparing the two blocks, we
|
||||
# compare its eigenvalues. As G(tau) is Hermitian,
|
||||
# they are real and the eigenvector matrix is unitary.
|
||||
# Thus, if the eigenvalues are equal we can transform
|
||||
# one block to make it equal to the other (at least
|
||||
# for tau=0).
|
||||
|
||||
e1 = numpy.linalg.eigvalsh(gf1.data[0])
|
||||
e2 = numpy.linalg.eigvalsh(gf2.data[0])
|
||||
if numpy.any(abs(e1-e2) > threshold): continue
|
||||
|
||||
for conjugate in [False,True]:
|
||||
if conjugate:
|
||||
gf2 = gf2.conjugate()
|
||||
|
||||
# we want T gf1 T^dagger = gf2
|
||||
# while for a given tau, T could be calculated
|
||||
# by diagonalizing gf1 and gf2, this does not
|
||||
# work for all taus simultaneously because of
|
||||
# numerical imprecisions
|
||||
|
||||
# rather, we rewrite the equation to
|
||||
# T gf1 = gf2 T
|
||||
# which is the Sylvester equation.
|
||||
# For that equation, one can use the Kronecker
|
||||
# product to get a linear problem, which consists
|
||||
# of finding the null space of M vec T = 0.
|
||||
|
||||
M = numpy.kron(numpy.eye(*gf1.target_shape),gf2.data[0])-numpy.kron(gf1.data[0].transpose(),numpy.eye(*gf1.target_shape))
|
||||
N = null(M, threshold)
|
||||
|
||||
# now we get the intersection of the null spaces
|
||||
# of all values of tau
|
||||
for i in range(1,len(gf1.data)):
|
||||
M = numpy.kron(numpy.eye(*gf1.target_shape),gf2.data[i])-numpy.kron(gf1.data[i].transpose(),numpy.eye(*gf1.target_shape))
|
||||
# transform M into current null space
|
||||
M = numpy.dot(M, N)
|
||||
N = numpy.dot(N, null(M, threshold))
|
||||
if numpy.size(N) == 0:
|
||||
break
|
||||
|
||||
# no intersection of the null spaces -> no symmetry
|
||||
if numpy.size(N) == 0: continue
|
||||
|
||||
# reshape N: it then has the indices matrix, matrix, number of basis vectors of the null space
|
||||
N = N.reshape(gf1.target_shape[0], gf1.target_shape[1], -1).transpose([1, 0, 2])
|
||||
|
||||
"""
|
||||
any matrix in the null space can now be constructed as
|
||||
M = 0
|
||||
for i in range(N.shape[-1]):
|
||||
M += y[i]*N[:,:,i]
|
||||
with coefficients (complex numbers) y[i].
|
||||
|
||||
We want to get a set of coefficients y so that M is unitary.
|
||||
Unitary means M M^dagger = 1.
|
||||
Thus,
|
||||
sum y[i] N[:,:,i] y[j].conjugate() N[:,:,j].conjugate().transpose() = eye.
|
||||
The object N[:,:,i] N[:,:,j] is a four-index object which we call Z.
|
||||
"""
|
||||
Z = numpy.einsum('aci,bcj->abij', N, N.conjugate())
|
||||
|
||||
"""
|
||||
function chi2
|
||||
This function takes a real parameter vector y and reinterprets it as complex.
|
||||
Then, it calculates the chi2 of
|
||||
sum y[i] N[:,:,i] y[j].conjugate() N[:,:,j].conjugate().transpose() - eye.
|
||||
"""
|
||||
def chi2(y):
|
||||
# reinterpret y as complex number
|
||||
y = y.view(numpy.complex_)
|
||||
ret = 0.0
|
||||
for a in range(Z.shape[0]):
|
||||
for b in range(Z.shape[1]):
|
||||
ret += numpy.abs(numpy.dot(y, numpy.dot(Z[a, b], y.conjugate()))
|
||||
- (1.0 if a == b else 0.0))**2
|
||||
return ret
|
||||
|
||||
# use the minimization routine from scipy
|
||||
res = minimize(chi2, numpy.ones(2 * N.shape[-1]))
|
||||
|
||||
# if the minimization fails, there is probably no symmetry
|
||||
if not res.success: continue
|
||||
# check if the minimization returned zero within the tolerance
|
||||
if res.fun > threshold: continue
|
||||
|
||||
# reinterpret the solution as a complex number
|
||||
y = res.x.view(numpy.complex_)
|
||||
|
||||
# reconstruct the T matrix
|
||||
T = numpy.zeros(N.shape[:-1], dtype=numpy.complex_)
|
||||
for i in range(len(y)):
|
||||
T += N[:, :, i] * y[i]
|
||||
|
||||
# transform gf1 using T
|
||||
G_transformed = gf1.copy()
|
||||
G_transformed.from_L_G_R(T, gf1, T.conjugate().transpose())
|
||||
|
||||
# it does not make sense to check the tails for an
|
||||
# absolute error because it will usually not hold;
|
||||
# we could just check the relative error
|
||||
# (here, we ignore it, reasoning that if the data
|
||||
# is the same, the tails have to coincide as well)
|
||||
try:
|
||||
assert_arrays_are_close(G_transformed.data, gf2.data, threshold)
|
||||
except (RuntimeError, AssertionError):
|
||||
# the symmetry does not hold
|
||||
continue
|
||||
|
||||
# Now that we have found a valid T, we have to
|
||||
# rewrite it to match the convention that
|
||||
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2),
|
||||
# where C conjugates if the flag is True
|
||||
|
||||
# For each group of degenerate shells, the list
|
||||
# SK.deg_shells[ish] contains a dict. The keys
|
||||
# of the dict are the block names, the values
|
||||
# are tuples. The first entry of the tuple is
|
||||
# the transformation matrix v, the second entry
|
||||
# is the conjugation flag
|
||||
|
||||
# the second block is already present
|
||||
# set v1 and C1 so that they are compatible with
|
||||
# C(T gf1 T^dagger) = gf2
|
||||
# and with
|
||||
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2)
|
||||
if (ind1 < 0) and (ind2 >= 0):
|
||||
if conjugate:
|
||||
self.deg_shells[ish][ind2][block1] = numpy.dot(T.conjugate().transpose(), v2[0].conjugate()), not v2[1]
|
||||
else:
|
||||
self.deg_shells[ish][ind2][block1] = numpy.dot(T.conjugate().transpose(), v2[0]), v2[1]
|
||||
# the first block is already present
|
||||
# set v2 and C2 so that they are compatible with
|
||||
# C(T gf1 T^dagger) = gf2
|
||||
# and with
|
||||
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2)
|
||||
elif (ind1 >= 0) and (ind2 < 0):
|
||||
if conjugate:
|
||||
self.deg_shells[ish][ind1][block2] = numpy.dot(T.conjugate(), v1[0].conjugate()), not v1[1]
|
||||
else:
|
||||
self.deg_shells[ish][ind1][block2] = numpy.dot(T, v1[0]), v1[1]
|
||||
# the blocks are not already present
|
||||
# we arbitrarily choose v1=eye and C1=False and
|
||||
# set v2 and C2 so that they are compatible with
|
||||
# C(T gf1 T^dagger) = gf2
|
||||
# and with
|
||||
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2)
|
||||
elif (ind1 < 0) and (ind2 < 0):
|
||||
d = dict()
|
||||
d[block1] = numpy.eye(*gf1.target_shape), False
|
||||
if conjugate:
|
||||
d[block2] = T.conjugate(), True
|
||||
else:
|
||||
d[block2] = T, False
|
||||
self.deg_shells[ish].append(d)
|
||||
|
||||
def density_matrix(self, method='using_gf', beta=40.0):
|
||||
"""Calculate density matrices in one of two ways.
|
||||
|
||||
@ -1616,3 +1979,38 @@ class SumkDFT(object):
|
||||
def __set_deg_shells(self,value):
|
||||
self.block_structure.deg_shells = value
|
||||
deg_shells = property(__get_deg_shells,__set_deg_shells)
|
||||
|
||||
# a helper function
|
||||
def conjugate_in_tau(gf_im_freq, in_place=False):
|
||||
""" Calculate the conjugate in tau of a GfImFreq
|
||||
|
||||
Parameters
|
||||
----------
|
||||
gf_im_freq : GfImFreq of BlockGf
|
||||
the Green's function
|
||||
in_place : whether to modify the gf_im_freq object (True) or return a copy (False)
|
||||
|
||||
Returns
|
||||
-------
|
||||
ret : GfImFreq of BlockGf
|
||||
the Green's function that has been FT to G(tau), conjugated, and
|
||||
FT back
|
||||
"""
|
||||
if in_place:
|
||||
ret = gf_im_freq
|
||||
else:
|
||||
ret = gf_im_freq.copy()
|
||||
if isinstance(ret, BlockGf):
|
||||
for name, gf in ret:
|
||||
conjugate_in_tau(gf, in_place=True)
|
||||
else:
|
||||
""" there is an easier way to do this, namely to make
|
||||
ret.data[:,:,:] = gf_im_freq.data[::-1,:,:].conjugate()
|
||||
ret.tail.data[:,:,:] = gf_im_freq.tail.data.conjugate()
|
||||
but this relies on symmetric Matsubara meshes and is maybe
|
||||
not safe enough"""
|
||||
G_tau = GfImTime(beta=gf_im_freq.mesh.beta,
|
||||
indices=gf_im_freq.indices,n_points=len(gf_im_freq.mesh)+1)
|
||||
G_tau.set_from_inverse_fourier(gf_im_freq)
|
||||
ret.set_from_fourier(G_tau.conjugate())
|
||||
return ret
|
||||
|
Loading…
Reference in New Issue
Block a user