diff --git a/doc/reference/h5structure.rst b/doc/reference/h5structure.rst index e38ec01d..e9622a62 100644 --- a/doc/reference/h5structure.rst +++ b/doc/reference/h5structure.rst @@ -25,19 +25,19 @@ calculation. The default name of this group is `dft_input`. Its contents are ================= ====================================================================== ===================================================================================== Name Type Meaning ================= ====================================================================== ===================================================================================== -energy_unit numpy.float Unit of energy used for the calculation. -n_k numpy.int Number of k-points used for the BZ integration. -k_dep_projection numpy.int 1 if the dimension of the projection operators depend on the k-point, +energy_unit float Unit of energy used for the calculation. +n_k int Number of k-points used for the BZ integration. +k_dep_projection int 1 if the dimension of the projection operators depend on the k-point, 0 otherwise. -SP numpy.int 1 for spin-polarised Hamiltonian, 0 for paramagnetic Hamiltonian. -SO numpy.int 1 if spin-orbit interaction is included, 0 otherwise. -charge_below numpy.float Number of electrons in the crystal below the correlated orbitals. +SP int 1 for spin-polarised Hamiltonian, 0 for paramagnetic Hamiltonian. +SO int 1 if spin-orbit interaction is included, 0 otherwise. +charge_below float Number of electrons in the crystal below the correlated orbitals. Note that this is for compatibility with dmftproj, otherwise set to 0 -density_required numpy.float Required total electron density. Needed to determine the chemical potential. +density_required float Required total electron density. Needed to determine the chemical potential. The density in the projection window is then `density_required`-`charge_below`. -symm_op numpy.int 1 if symmetry operations are used for the BZ sums, +symm_op int 1 if symmetry operations are used for the BZ sums, 0 if all k-points are directly included in the input. -n_shells numpy.int Number of atomic shells for which post-processing is possible. +n_shells int Number of atomic shells for which post-processing is possible. Note: this is `not` the number of correlated orbitals! If there are two equivalent atoms in the unit cell, `n_shells` is 2. shells list of dict {string:int}, dim n_shells x 4 Atomic shell information. @@ -46,17 +46,17 @@ shells list of dict {string:int}, dim n_shells x 4 'l' is the angular quantum number, 'dim' is the dimension of the atomic shell. e.g. for two equivalent atoms in the unit cell, `atom` runs from 0 to 1, but `sort` can take only one value 0. -n_corr_shells numpy.int Number of correlated atomic shells. +n_corr_shells int Number of correlated atomic shells. If there are two correlated equivalent atoms in the unit cell, `n_corr_shells` is 2. -n_inequiv_shells numpy.int Number of inequivalent atomic shells. Needs to be smaller than `n_corr_shells`. +n_inequiv_shells int Number of inequivalent atomic shells. Needs to be smaller than `n_corr_shells`. The up / downfolding routines mediate between all correlated shells and the actual inequivalent shells, by using the self-energy etc. for all equal shells belonging to the same class of inequivalent shells. The mapping is performed with information stored in `corr_to_inequiv` and `inequiv_to_corr`. -corr_to_inequiv list of numpy.int, dim `n_corr_shells` mapping from correlated shells to inequivalent correlated shells. +corr_to_inequiv list of int, dim `n_corr_shells` mapping from correlated shells to inequivalent correlated shells. A list of length `n_corr_shells` containing integers, where same numbers mark equivalent sites. -inequiv_to_corr list of numpy.int, dim `n_inequiv_shells` A list of length `n_inequiv_shells` containing list indices as integers pointing +inequiv_to_corr list of int, dim `n_inequiv_shells` A list of length `n_inequiv_shells` containing list indices as integers pointing to the corresponding sites in `corr_to_inequiv`. corr_shells list of dict {string:int}, dim n_corr_shells x 6 Correlated orbital information. For each correlated shell, have a dict with keys @@ -64,28 +64,28 @@ corr_shells list of dict {string:int}, dim n_corr_shells x 6 'atom' is the atom index, 'sort' defines the equivalency of the atoms, 'l' is the angular quantum number, 'dim' is the dimension of the atomic shell. 'SO' is one if spin-orbit is included, 0 otherwise, 'irep' is a dummy integer 0. -use_rotations numpy.int 1 if local and global coordinate systems are used, 0 otherwise. -rot_mat list of numpy.array.complex, Rotation matrices for correlated shells, if `use_rotations`. +use_rotations int 1 if local and global coordinate systems are used, 0 otherwise. +rot_mat list of array.complex, Rotation matrices for correlated shells, if `use_rotations`. dim n_corr_shells x [corr_shells['dim'],corr_shells['dim']] These rotations are automatically applied for up / downfolding. Set to the unity matrix if no rotations are used. -rot_mat_time_inv list of numpy.int, dim n_corr_shells If `SP` is 1, 1 if the coordinate transformation contains inversion, 0 otherwise. +rot_mat_time_inv list of int, dim n_corr_shells If `SP` is 1, 1 if the coordinate transformation contains inversion, 0 otherwise. If `use_rotations` or `SP` is 0, give a list of zeros. -n_reps numpy.int Number of irreducible representations of the correlated shell. +n_reps int Number of irreducible representations of the correlated shell. e.g. 2 if eg/t2g splitting is used. -dim_reps list of numpy.int, dim n_reps Dimension of the representations. +dim_reps list of int, dim n_reps Dimension of the representations. e.g. [2,3] for eg/t2g subsets. -T list of numpy.array.complex, Transformation matrix from the spherical harmonics to impurity problem basis +T list of array.complex, Transformation matrix from the spherical harmonics to impurity problem basis dim n_inequiv_corr_shell x normally the real cubic harmonics). [max(corr_shell['dim']),max(corr_shell['dim'])] This matrix can be used to calculate the 4-index U matrix, not automatically done. -n_orbitals numpy.array.int, dim [n_k,SP+1-SO] Number of Bloch bands included in the projection window for each k-point. +n_orbitals array.int, dim [n_k,SP+1-SO] Number of Bloch bands included in the projection window for each k-point. If SP+1-SO=2, the number of included bands may depend on the spin projection up/down. -proj_mat numpy.array.complex, Projection matrices from Bloch bands to Wannier orbitals. +proj_mat array.complex, Projection matrices from Bloch bands to Wannier orbitals. dim [n_k,SP+1-SO,n_corr_shells,max(corr_shell['dim']),max(n_orbitals)] For efficient storage reasons, all matrices must be of the same size (given by last two indices). For k-points with fewer bands, only the first entries are used, the rest are zero. e.g. if number of Bloch bands ranges from 4-6, all matrices are of size 6. -bz_weights numpy.array.float, dim n_k Weights of the k-points for the k summation. Soon be replaced by `kpt_weights` -hopping numpy.array.complex, Non-interacting Hamiltonian matrix for each k point. +bz_weights array.float, dim n_k Weights of the k-points for the k summation. Soon be replaced by `kpt_weights` +hopping array.complex, Non-interacting Hamiltonian matrix for each k point. dim [n_k,SP+1-SO,max(n_orbitals),max(n_orbitals)] As for `proj_mat`, all matrices have to be of the same size. ================= ====================================================================== ===================================================================================== @@ -100,18 +100,18 @@ For the Vasp converter: ================= ====================================================================== ===================================================================================== Name Type Meaning ================= ====================================================================== ===================================================================================== -kpt_basis numpy.array.float, dim 3x3 Basis for the k-point mesh, reciprocal lattice vectors. -kpts numpy.array.float, dim n_k x 3 k-points given in reciprocal coordinates. -kpt_weights numpy.array.float, dim n_k Weights of the k-points for the k summation. +kpt_basis array.float, dim 3x3 Basis for the k-point mesh, reciprocal lattice vectors. +kpts array.float, dim n_k x 3 k-points given in reciprocal coordinates. +kpt_weights array.float, dim n_k Weights of the k-points for the k summation. proj_or_hk string Switch determining whether the Vasp converter is running in projection mode `proj`, or in Hamiltonian mode `hk`. In Hamiltonian mode, the hopping matrix is written in orbital basis, whereas in projection mode hopping is written in band basis. -proj_mat_csc numpy.array.complex, Projection matrices from Bloch bands to Wannier orbitals for Hamiltonian based `hk` +proj_mat_csc array.complex, Projection matrices from Bloch bands to Wannier orbitals for Hamiltonian based `hk` dim approach. No site index is given, since hk is written in orbital basis. The last to [n_k,SP+1-SO, n_corr_shells x max(corr_shell['dim']), max(n_orbitals)] indices are a square matrix rotating from orbital to band space. -dft_fermi_weights numpy.array.float, dim n_k x 1 x max(n_orbitals) DFT fermi weights (occupations) of KS eigenstates for each k-point for calculation +dft_fermi_weights array.float, dim n_k x 1 x max(n_orbitals) DFT fermi weights (occupations) of KS eigenstates for each k-point for calculation (stored in dft_misc_input) of density matrix correction. -band_window list of numpy.array.int , dim(SP+1-SO)x n_k x 2 Band windows as KS band indices in Vasp for each spin channel, and k-point. Needed for +band_window list of array.int , dim(SP+1-SO)x n_k x 2 Band windows as KS band indices in Vasp for each spin channel, and k-point. Needed for (stored in dft_misc_input) writing out the GAMMA file. ================= ====================================================================== ===================================================================================== diff --git a/python/triqs_dft_tools/block_structure.py b/python/triqs_dft_tools/block_structure.py index 840779b2..b949d646 100644 --- a/python/triqs_dft_tools/block_structure.py +++ b/python/triqs_dft_tools/block_structure.py @@ -637,7 +637,7 @@ class BlockStructure(object): return self._create_gf_or_matrix(ish, gf_function, BlockGf, space, **kwargs) - def create_matrix(self, ish=0, space='solver', dtype=np.complex_): + def create_matrix(self, ish=0, space='solver', dtype=complex): """ Create a zero matrix having the correct structure. For ``space='solver'``, the structure is according to diff --git a/python/triqs_dft_tools/converters/hk.py b/python/triqs_dft_tools/converters/hk.py index 0984a7b4..16704506 100644 --- a/python/triqs_dft_tools/converters/hk.py +++ b/python/triqs_dft_tools/converters/hk.py @@ -131,7 +131,7 @@ class HkConverter(ConverterTools): use_rotations = 0 rot_mat = [numpy.identity( - corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)] + corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)] rot_mat_time_inv = [0 for i in range(n_corr_shells)] # Representative representations are read from file @@ -149,7 +149,7 @@ class HkConverter(ConverterTools): # Wien2k) ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1 lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1) - T.append(numpy.zeros([lmax, lmax], numpy.complex_)) + T.append(numpy.zeros([lmax, lmax], complex)) T[ish] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0], [1.0 / sqrt(2.0), 0.0, 0.0, @@ -167,11 +167,11 @@ class HkConverter(ConverterTools): # define the number of n_orbitals for all k points: it is the # number of total bands and independent of k! n_orbitals = numpy.ones( - [n_k, n_spin_blocs], numpy.int) * sum([sh['dim'] for sh in shells]) + [n_k, n_spin_blocs], int) * sum([sh['dim'] for sh in shells]) # Initialise the projectors: proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max( - [crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_) + [crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex) # Read the projectors from the file: for ik in range(n_k): @@ -193,9 +193,9 @@ class HkConverter(ConverterTools): # now define the arrays for weights and hopping ... # w(k_index), default normalisation - bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k) + bz_weights = numpy.ones([n_k], float) / float(n_k) hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max( - n_orbitals), numpy.max(n_orbitals)], numpy.complex_) + n_orbitals), numpy.max(n_orbitals)], complex) if (weights_in_file): # weights in the file diff --git a/python/triqs_dft_tools/converters/plovasp/elstruct.py b/python/triqs_dft_tools/converters/plovasp/elstruct.py index 6418b5ea..728faad0 100644 --- a/python/triqs_dft_tools/converters/plovasp/elstruct.py +++ b/python/triqs_dft_tools/converters/plovasp/elstruct.py @@ -152,10 +152,10 @@ class ElectronicStructure: # Spin factor sp_fac = 2.0 if ns == 1 and not self.nc_flag else 1.0 - den_mat = np.zeros((ns, nproj, nproj), dtype=np.float64) - overlap = np.zeros((ns, nproj, nproj), dtype=np.float64) -# ov_min = np.ones((ns, nproj, nproj), dtype=np.float64) * 100.0 -# ov_max = np.zeros((ns, nproj, nproj), dtype=np.float64) + den_mat = np.zeros((ns, nproj, nproj), dtype=float) + overlap = np.zeros((ns, nproj, nproj), dtype=float) +# ov_min = np.ones((ns, nproj, nproj), dtype=float) * 100.0 +# ov_max = np.zeros((ns, nproj, nproj), dtype=float) for ispin in range(ns): for ik in range(nk): kweight = self.kmesh['kweights'][ik] diff --git a/python/triqs_dft_tools/converters/plovasp/inpconf.py b/python/triqs_dft_tools/converters/plovasp/inpconf.py index 0c2b3a4e..1be71172 100644 --- a/python/triqs_dft_tools/converters/plovasp/inpconf.py +++ b/python/triqs_dft_tools/converters/plovasp/inpconf.py @@ -268,7 +268,7 @@ class ConfigParameters: err_mess = "Complex matrix must contain 2*M values:\n%s"%(par_str) assert 2 * (nm // 2) == nm, err_mess - tmp = np.array(rows, dtype=np.complex128) + tmp = np.array(rows, dtype=complex) mat = tmp[:, 0::2] + 1.0j * tmp[:, 1::2] return mat diff --git a/python/triqs_dft_tools/converters/plovasp/proj_group.py b/python/triqs_dft_tools/converters/plovasp/proj_group.py index 0237ae6e..28628a2f 100644 --- a/python/triqs_dft_tools/converters/plovasp/proj_group.py +++ b/python/triqs_dft_tools/converters/plovasp/proj_group.py @@ -68,7 +68,7 @@ class ProjectorGroup: # Determine the minimum and maximum band numbers if 'bands' in gr_pars: nk, nband, ns_band = eigvals.shape - ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32) + ib_win = np.zeros((nk, ns_band, 2), dtype=int) ib_win[:,:,0] = gr_pars['bands'][0]-1 ib_win[:,:,1] = gr_pars['bands'][1]-1 ib_min = gr_pars['bands'][0] - 1 @@ -152,7 +152,7 @@ class ProjectorGroup: block_maps, ndim = self.get_block_matrix_map() _, ns, nk, _, _ = self.shells[0].proj_win.shape - p_mat = np.zeros((ndim, self.nb_max), dtype=np.complex128) + p_mat = np.zeros((ndim, self.nb_max), dtype=complex) # Note that 'ns' and 'nk' are the same for all shells for isp in range(ns): for ik in range(nk): @@ -201,7 +201,7 @@ class ProjectorGroup: _, ns, nk, _, _ = self.shells[0].proj_win.shape - self.hk = np.zeros((ns,nk,ndim,ndim), dtype=np.complex128) + self.hk = np.zeros((ns,nk,ndim,ndim), dtype=complex) # Note that 'ns' and 'nk' are the same for all shells for isp in range(ns): for ik in range(nk): @@ -209,7 +209,7 @@ class ProjectorGroup: bmax = self.ib_win[ik, isp, 1]+1 nb = bmax - bmin - p_mat = np.zeros((ndim, nb), dtype=np.complex128) + p_mat = np.zeros((ndim, nb), dtype=complex) #print(bmin,bmax,nb) # Combine all projectors of the group to one block projector for bl_map in block_maps: @@ -251,8 +251,8 @@ class ProjectorGroup: block_maps, ndim = self.get_block_matrix_map() _, ns, nk, _, _ = self.shells[0].proj_win.shape - p_mat = np.zeros((ndim, self.nb_max), dtype=np.complex128) - p_full = np.zeros((1,ns,nk,self.nb_max, self.nb_max), dtype=np.complex128) + p_mat = np.zeros((ndim, self.nb_max), dtype=complex) + p_full = np.zeros((1,ns,nk,self.nb_max, self.nb_max), dtype=complex) # Note that 'ns' and 'nk' are the same for all shells @@ -452,7 +452,7 @@ class ProjectorGroup: raise Exception("Energy window does not overlap with the band structure") nk, nband, ns_band = eigvals.shape - ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32) + ib_win = np.zeros((nk, ns_band, 2), dtype=int) ib_min = 10000000 ib_max = 0 diff --git a/python/triqs_dft_tools/converters/plovasp/proj_shell.py b/python/triqs_dft_tools/converters/plovasp/proj_shell.py index 628357b0..483f16f5 100644 --- a/python/triqs_dft_tools/converters/plovasp/proj_shell.py +++ b/python/triqs_dft_tools/converters/plovasp/proj_shell.py @@ -155,7 +155,7 @@ class ProjectorShell: assert nr%ns_dim == 0, "Number of rows in TRANSFILE is not compatible with the spin dimension" ndim = nr // ns_dim - self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=np.complex128) + self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=complex) if is_complex: raw_matrices = raw_matrices[:, ::2] + raw_matrices[:, 1::2] * 1j @@ -187,7 +187,7 @@ class ProjectorShell: ndim = nrow - self.tmatrices = np.zeros((nion, nrow, nm), dtype=np.complex128) + self.tmatrices = np.zeros((nion, nrow, nm), dtype=complex) for io in range(nion): self.tmatrices[io, :, :] = raw_matrix @@ -200,9 +200,9 @@ class ProjectorShell: ndim = nm * ns_dim # We still need the matrices for the output - self.tmatrices = np.zeros((nion, ndim, ndim), dtype=np.complex128) + self.tmatrices = np.zeros((nion, ndim, ndim), dtype=complex) for io in range(nion): - self.tmatrices[io, :, :] = np.identity(ndim, dtype=np.complex128) + self.tmatrices[io, :, :] = np.identity(ndim, dtype=complex) return ndim @@ -230,11 +230,11 @@ class ProjectorShell: # TODO: implement a non-collinear case # for a non-collinear case 'ndim' is 'ns * nm' ndim = self.tmatrices.shape[1] - self.proj_arr = np.zeros((nion, ns, nk, ndim, nb), dtype=np.complex128) + self.proj_arr = np.zeros((nion, ns, nk, ndim, nb), dtype=complex) for ik in range(nk): kp = kmesh['kpoints'][ik] for io, ion in enumerate(self.ion_list): - proj_k = np.zeros((ns, nlm, nb), dtype=np.complex128) + proj_k = np.zeros((ns, nlm, nb), dtype=complex) qcoord = structure['qcoords'][ion] # kphase = np.exp(-2.0j * np.pi * np.dot(kp, qcoord)) # kphase = 1.0 @@ -249,7 +249,7 @@ class ProjectorShell: else: # No transformation: just copy the projectors as they are - self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=np.complex128) + self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=complex) for io, ion in enumerate(self.ion_list): qcoord = structure['qcoords'][ion] for m in range(nlm): @@ -282,7 +282,7 @@ class ProjectorShell: # Set the dimensions of the array nion, ns, nk, nlm, nbtot = self.proj_arr.shape # !!! Note that the order of the two last indices is different !!! - self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128) + self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex) # Select projectors for a given energy window ns_band = self.ib_win.shape[1] @@ -310,14 +310,14 @@ class ProjectorShell: assert spin_diag, "spin_diag = False is not implemented" if site_diag: - occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=np.float64) - overlaps = np.zeros((ns, nion, nlm, nlm), dtype=np.float64) + occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=float) + overlaps = np.zeros((ns, nion, nlm, nlm), dtype=float) else: ndim = nion * nlm - occ_mats = np.zeros((ns, 1, ndim, ndim), dtype=np.float64) - overlaps = np.zeros((ns, 1, ndim, ndim), dtype=np.float64) + occ_mats = np.zeros((ns, 1, ndim, ndim), dtype=float) + overlaps = np.zeros((ns, 1, ndim, ndim), dtype=float) -# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128) +# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex) kweights = el_struct.kmesh['kweights'] occnums = el_struct.ferw ib1 = self.ib_min @@ -332,7 +332,7 @@ class ProjectorShell: overlaps[isp, io, :, :] += np.dot(proj_k, proj_k.conj().T).real * weight else: - proj_k = np.zeros((ndim, nbtot), dtype=np.complex128) + proj_k = np.zeros((ndim, nbtot), dtype=complex) for isp in range(ns): for ik, weight, occ in zip(it.count(), kweights, occnums[isp, :, :]): for io in range(nion): @@ -363,9 +363,9 @@ class ProjectorShell: assert site_diag, "site_diag = False is not implemented" assert spin_diag, "spin_diag = False is not implemented" - loc_ham = np.zeros((ns, nion, nlm, nlm), dtype=np.complex128) + loc_ham = np.zeros((ns, nion, nlm, nlm), dtype=complex) -# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128) +# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex) kweights = el_struct.kmesh['kweights'] occnums = el_struct.ferw ib1 = self.ib_min @@ -403,7 +403,7 @@ class ProjectorShell: ne = len(emesh) dos = np.zeros((ne, ns, nion, nlm)) - w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=np.complex128) + w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=complex) for isp in range(ns): for ik in range(nk): is_b = min(isp, ns_band) diff --git a/python/triqs_dft_tools/converters/plovasp/vaspio.py b/python/triqs_dft_tools/converters/plovasp/vaspio.py index 322bf47d..0b0876b7 100644 --- a/python/triqs_dft_tools/converters/plovasp/vaspio.py +++ b/python/triqs_dft_tools/converters/plovasp/vaspio.py @@ -163,7 +163,7 @@ class Plocar: line = f.readline() nproj, nspin, nk, nband = list(map(int, line.split())) - plo = np.zeros((nproj, nspin, nk, nband), dtype=np.complex128) + plo = np.zeros((nproj, nspin, nk, nband), dtype=complex) proj_params = [{} for i in range(nproj)] iproj_site = 0 @@ -251,7 +251,7 @@ class Plocar: except: print("!!! WARNING !!!: Error reading E-Fermi from LOCPROJ, trying DOSCAR") - plo = np.zeros((nproj, self.nspin, nk, self.nband), dtype=np.complex128) + plo = np.zeros((nproj, self.nspin, nk, self.nband), dtype=complex) proj_params = [{} for i in range(nproj)] iproj_site = 0 @@ -685,7 +685,7 @@ def read_symmcar(vasp_dir, symm_filename='SYMMCAR'): print(" {0:>26} {1:d}".format("L_max:", lmax)) rot_mats = np.zeros((nrot, lmax+1, mmax, mmax)) - rot_map = np.zeros((nrot, ntrans, nion), dtype=np.int32) + rot_map = np.zeros((nrot, ntrans, nion), dtype=int) for irot in range(nrot): # Empty line diff --git a/python/triqs_dft_tools/converters/vasp.py b/python/triqs_dft_tools/converters/vasp.py index 6aaf521e..27347def 100644 --- a/python/triqs_dft_tools/converters/vasp.py +++ b/python/triqs_dft_tools/converters/vasp.py @@ -256,7 +256,7 @@ class VaspConverter(ConverterTools): # NB!: these rotation matrices are specific to Wien2K! Set to identity in VASP use_rotations = 1 - rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)] + rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],complex) for icrsh in range(n_corr_shells)] rot_mat_time_inv = [0 for i in range(n_corr_shells)] # TODO: implement transformation matrices @@ -273,16 +273,16 @@ class VaspConverter(ConverterTools): ll = 2 * corr_shells[inequiv_to_corr[ish]]['l']+1 lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1) # TODO: at the moment put T-matrices to identities - T.append(numpy.identity(lmax, numpy.complex_)) + T.append(numpy.identity(lmax, complex)) # if nc_flag: ## TODO: implement the noncollinear part # raise NotImplementedError("Noncollinear calculations are not implemented") # else: - hopping = numpy.zeros([n_k, n_spin_blocs, nb_max, nb_max], numpy.complex_) - f_weights = numpy.zeros([n_k, n_spin_blocs, nb_max], numpy.complex_) + hopping = numpy.zeros([n_k, n_spin_blocs, nb_max, nb_max], complex) + f_weights = numpy.zeros([n_k, n_spin_blocs, nb_max], complex) band_window = [numpy.zeros((n_k, 2), dtype=int) for isp in range(n_spin_blocs)] - n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int) + n_orbitals = numpy.zeros([n_k, n_spin_blocs], int) for isp in range(n_spin_blocs): @@ -296,7 +296,7 @@ class VaspConverter(ConverterTools): f_weights[ik, isp, ib] = next(rf) if self.proj_or_hk == 'hk': - hopping = numpy.zeros([n_k, n_spin_blocs, n_orbs, n_orbs], numpy.complex_) + hopping = numpy.zeros([n_k, n_spin_blocs, n_orbs, n_orbs], complex) # skip header lines hk_file = self.basename + '.hk%i'%(ig + 1) f_hk = open(hk_file, 'rt') @@ -321,7 +321,7 @@ class VaspConverter(ConverterTools): # Projectors # print n_orbitals # print [crsh['dim'] for crsh in corr_shells] - proj_mat_csc = numpy.zeros([n_k, n_spin_blocs, sum([sh['dim'] for sh in shells]), numpy.max(n_orbitals)], numpy.complex_) + proj_mat_csc = numpy.zeros([n_k, n_spin_blocs, sum([sh['dim'] for sh in shells]), numpy.max(n_orbitals)], complex) # TODO: implement reading from more than one projector group # In 'dmftproj' each ion represents a separate correlated shell. @@ -348,7 +348,7 @@ class VaspConverter(ConverterTools): proj_mat_csc[ik, isp, ilm, ib] = complex(pr, pi) # now save only projectors with flag 'corr' to proj_mat - proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_) + proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex) if self.proj_or_hk == 'proj': for ish, sh in enumerate(p_shells): if sh['corr']: diff --git a/python/triqs_dft_tools/converters/wannier90.py b/python/triqs_dft_tools/converters/wannier90.py index e0d297ee..535dd769 100644 --- a/python/triqs_dft_tools/converters/wannier90.py +++ b/python/triqs_dft_tools/converters/wannier90.py @@ -200,7 +200,7 @@ class Wannier90Converter(ConverterTools): for ish in range(n_inequiv_shells): ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1 lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1) - T.append(numpy.zeros([lmax, lmax], numpy.complex_)) + T.append(numpy.zeros([lmax, lmax], complex)) spin_w90name = ['_up', '_down'] hamr_full = [] @@ -267,7 +267,7 @@ class Wannier90Converter(ConverterTools): # we assume spin up and spin down always have same total number # of WFs n_orbitals = numpy.ones( - [self.n_k, n_spin], numpy.int) * self.nwfs + [self.n_k, n_spin], int) * self.nwfs else: # consistency check between the _up and _down file contents @@ -322,7 +322,7 @@ class Wannier90Converter(ConverterTools): # Third, compute the hoppings in reciprocal space hopping = numpy.zeros([self.n_k, n_spin, numpy.max( - n_orbitals), numpy.max(n_orbitals)], numpy.complex_) + n_orbitals), numpy.max(n_orbitals)], complex) for isp in range(n_spin): # make Fourier transform H(R) -> H(k) : it can be done one spin at # a time @@ -336,7 +336,7 @@ class Wannier90Converter(ConverterTools): # Then, initialise the projectors k_dep_projection = 0 # we always have the same number of WFs at each k-point proj_mat = numpy.zeros([self.n_k, n_spin, n_corr_shells, max( - [crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_) + [crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex) iorb = 0 # Projectors simply consist in identity matrix blocks selecting those MLWFs that # correspond to the specific correlated shell indexed by icrsh. @@ -346,7 +346,7 @@ class Wannier90Converter(ConverterTools): for icrsh in range(n_corr_shells): norb = corr_shells[icrsh]['dim'] proj_mat[:, :, icrsh, 0:norb, iorb:iorb + - norb] = numpy.identity(norb, numpy.complex_) + norb] = numpy.identity(norb, complex) iorb += norb # Finally, save all required data into the HDF archive: @@ -410,7 +410,7 @@ class Wannier90Converter(ConverterTools): # Hamiltonian rvec_idx = numpy.zeros((nrpt, 3), dtype=int) rvec_deg = numpy.zeros(nrpt, dtype=int) - h_of_r = [numpy.zeros((num_wf, num_wf), dtype=numpy.complex_) + h_of_r = [numpy.zeros((num_wf, num_wf), dtype=complex) for n in range(nrpt)] # variable currpos points to the current line in the file @@ -607,7 +607,7 @@ class Wannier90Converter(ConverterTools): """ twopi = 2 * numpy.pi - h_of_k = [numpy.zeros((norb, norb), dtype=numpy.complex_) + h_of_k = [numpy.zeros((norb, norb), dtype=complex) for ik in range(self.n_k)] ridx = numpy.array(list(range(self.nrpt))) for ik, ir in product(list(range(self.n_k)), ridx): diff --git a/python/triqs_dft_tools/converters/wien2k.py b/python/triqs_dft_tools/converters/wien2k.py index b45ffa72..6ecfaa55 100644 --- a/python/triqs_dft_tools/converters/wien2k.py +++ b/python/triqs_dft_tools/converters/wien2k.py @@ -152,7 +152,7 @@ class Wien2kConverter(ConverterTools): use_rotations = 1 rot_mat = [numpy.identity( - corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)] + corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)] # read the matrices rot_mat_time_inv = [0 for i in range(n_corr_shells)] @@ -183,7 +183,7 @@ class Wien2kConverter(ConverterTools): # is of dimension 2l+1 without SO, and 2*(2l+1) with SO! ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1 lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1) - T.append(numpy.zeros([lmax, lmax], numpy.complex_)) + T.append(numpy.zeros([lmax, lmax], complex)) # now read it from file: for i in range(lmax): @@ -197,14 +197,14 @@ class Wien2kConverter(ConverterTools): n_spin_blocs = SP + 1 - SO # read the list of n_orbitals for all k points - n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int) + n_orbitals = numpy.zeros([n_k, n_spin_blocs], int) for isp in range(n_spin_blocs): for ik in range(n_k): n_orbitals[ik, isp] = int(next(R)) # Initialise the projectors: proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max( - [crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_) + [crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex) # Read the projectors from the file: for ik in range(n_k): @@ -224,9 +224,9 @@ class Wien2kConverter(ConverterTools): # now define the arrays for weights and hopping ... # w(k_index), default normalisation - bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k) + bz_weights = numpy.ones([n_k], float) / float(n_k) hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max( - n_orbitals), numpy.max(n_orbitals)], numpy.complex_) + n_orbitals), numpy.max(n_orbitals)], complex) # weights in the file for ik in range(n_k): @@ -301,7 +301,7 @@ class Wien2kConverter(ConverterTools): mpi.report("Reading input from %s..." % self.parproj_file) - dens_mat_below = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], numpy.complex_) for ish in range(self.n_shells)] + dens_mat_below = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], complex) for ish in range(self.n_shells)] for isp in range(self.n_spin_blocs)] R = ConverterTools.read_fortran_file( @@ -312,10 +312,10 @@ class Wien2kConverter(ConverterTools): # Initialise P, here a double list of matrices: proj_mat_all = numpy.zeros([self.n_k, self.n_spin_blocs, self.n_shells, max( - n_parproj), max([sh['dim'] for sh in self.shells]), numpy.max(self.n_orbitals)], numpy.complex_) + n_parproj), max([sh['dim'] for sh in self.shells]), numpy.max(self.n_orbitals)], complex) rot_mat_all = [numpy.identity( - self.shells[ish]['dim'], numpy.complex_) for ish in range(self.n_shells)] + self.shells[ish]['dim'], complex) for ish in range(self.n_shells)] rot_mat_all_time_inv = [0 for i in range(self.n_shells)] for ish in range(self.n_shells): @@ -406,14 +406,14 @@ class Wien2kConverter(ConverterTools): n_k = int(next(R)) # read the list of n_orbitals for all k points - n_orbitals = numpy.zeros([n_k, self.n_spin_blocs], numpy.int) + n_orbitals = numpy.zeros([n_k, self.n_spin_blocs], int) for isp in range(self.n_spin_blocs): for ik in range(n_k): n_orbitals[ik, isp] = int(next(R)) # Initialise the projectors: proj_mat = numpy.zeros([n_k, self.n_spin_blocs, self.n_corr_shells, max( - [crsh['dim'] for crsh in self.corr_shells]), numpy.max(n_orbitals)], numpy.complex_) + [crsh['dim'] for crsh in self.corr_shells]), numpy.max(n_orbitals)], complex) # Read the projectors from the file: for ik in range(n_k): @@ -432,7 +432,7 @@ class Wien2kConverter(ConverterTools): proj_mat[ik, isp, icrsh, i, j] += 1j * next(R) hopping = numpy.zeros([n_k, self.n_spin_blocs, numpy.max( - n_orbitals), numpy.max(n_orbitals)], numpy.complex_) + n_orbitals), numpy.max(n_orbitals)], complex) # Grab the H # we use now the convention of a DIAGONAL Hamiltonian!!!! @@ -448,7 +448,7 @@ class Wien2kConverter(ConverterTools): # Initialise P, here a double list of matrices: proj_mat_all = numpy.zeros([n_k, self.n_spin_blocs, self.n_shells, max(n_parproj), max( - [sh['dim'] for sh in self.shells]), numpy.max(n_orbitals)], numpy.complex_) + [sh['dim'] for sh in self.shells]), numpy.max(n_orbitals)], complex) for ish in range(self.n_shells): for ik in range(n_k): @@ -751,7 +751,7 @@ class Wien2kConverter(ConverterTools): for i_symm in range(n_symm): mat.append([numpy.zeros([orbits[orb]['dim'], orbits[orb][ - 'dim']], numpy.complex_) for orb in range(n_orbits)]) + 'dim']], complex) for orb in range(n_orbits)]) for orb in range(n_orbits): for i in range(orbits[orb]['dim']): for j in range(orbits[orb]['dim']): @@ -762,7 +762,7 @@ class Wien2kConverter(ConverterTools): mat[i_symm][orb][i, j] += 1j * \ next(R) # imaginary part - mat_tinv = [numpy.identity(orbits[orb]['dim'], numpy.complex_) + mat_tinv = [numpy.identity(orbits[orb]['dim'], complex) for orb in range(n_orbits)] if ((SO == 0) and (SP == 0)): diff --git a/python/triqs_dft_tools/sumk_dft.py b/python/triqs_dft_tools/sumk_dft.py index 28ff9ac8..427ddfb9 100644 --- a/python/triqs_dft_tools/sumk_dft.py +++ b/python/triqs_dft_tools/sumk_dft.py @@ -576,7 +576,7 @@ class SumkDFT(object): G_latt << Omega + 1j * broadening idmat = [numpy.identity( - self.n_orbitals[ik, ntoi[sp]], numpy.complex_) for sp in spn] + self.n_orbitals[ik, ntoi[sp]], complex) for sp in spn] M = copy.deepcopy(idmat) for ibl in range(self.n_spin_blocks[self.SO]): @@ -928,7 +928,7 @@ class SumkDFT(object): for block, inner in self.gf_struct_solver[ish].items(): # get dm for the blocks: dm[block] = numpy.zeros( - [len(inner), len(inner)], numpy.complex_) + [len(inner), len(inner)], complex) for ind1 in inner: for ind2 in inner: block_sumk, ind1_sumk = self.solver_to_sumk[ @@ -1275,7 +1275,7 @@ class SumkDFT(object): """ def chi2(y): # reinterpret y as complex number - y = y.view(numpy.complex_) + y = y.view(complex) ret = 0.0 for a in range(Z.shape[0]): for b in range(Z.shape[1]): @@ -1292,10 +1292,10 @@ class SumkDFT(object): if res.fun > threshold: continue # reinterpret the solution as a complex number - y = res.x.view(numpy.complex_) + y = res.x.view(complex) # reconstruct the T matrix - T = numpy.zeros(N.shape[:-1], dtype=numpy.complex_) + T = numpy.zeros(N.shape[:-1], dtype=complex) for i in range(len(y)): T += N[:, :, i] * y[i] @@ -1465,7 +1465,7 @@ class SumkDFT(object): for icrsh in range(self.n_corr_shells): for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]: dens_mat[icrsh][sp] = numpy.zeros( - [self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], numpy.complex_) + [self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], complex) ikarray = numpy.array(list(range(self.n_k))) for ik in mpi.slice_array(ikarray): @@ -1483,7 +1483,7 @@ class SumkDFT(object): ntoi = self.spin_names_to_ind[self.SO] spn = self.spin_block_names[self.SO] dims = {sp:self.n_orbitals[ik, ntoi[sp]] for sp in spn} - MMat = [numpy.zeros([dims[sp], dims[sp]], numpy.complex_) for sp in spn] + MMat = [numpy.zeros([dims[sp], dims[sp]], complex) for sp in spn] for isp, sp in enumerate(spn): ind = ntoi[sp] @@ -1564,7 +1564,7 @@ class SumkDFT(object): for ish in range(self.n_inequiv_shells): for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]: eff_atlevels[ish][sp] = numpy.identity( - self.corr_shells[self.inequiv_to_corr[ish]]['dim'], numpy.complex_) + self.corr_shells[self.inequiv_to_corr[ish]]['dim'], complex) eff_atlevels[ish][sp] *= -self.chemical_potential eff_atlevels[ish][ sp] -= self.dc_imp[self.inequiv_to_corr[ish]][sp] @@ -1578,13 +1578,13 @@ class SumkDFT(object): dim = self.corr_shells[icrsh]['dim'] for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]: self.Hsumk[icrsh][sp] = numpy.zeros( - [dim, dim], numpy.complex_) + [dim, dim], complex) for isp, sp in enumerate(self.spin_block_names[self.corr_shells[icrsh]['SO']]): ind = self.spin_names_to_ind[ self.corr_shells[icrsh]['SO']][sp] for ik in range(self.n_k): n_orb = self.n_orbitals[ik, ind] - MMat = numpy.identity(n_orb, numpy.complex_) + MMat = numpy.identity(n_orb, complex) MMat = self.hopping[ ik, ind, 0:n_orb, 0:n_orb] - (1 - 2 * isp) * self.h_field * MMat projmat = self.proj_mat[ik, ind, icrsh, 0:dim, 0:n_orb] @@ -1626,7 +1626,7 @@ class SumkDFT(object): dim = self.corr_shells[icrsh]['dim'] spn = self.spin_block_names[self.corr_shells[icrsh]['SO']] for sp in spn: - self.dc_imp[icrsh][sp] = numpy.zeros([dim, dim], numpy.float_) + self.dc_imp[icrsh][sp] = numpy.zeros([dim, dim], float) self.dc_energ = [0.0 for icrsh in range(self.n_corr_shells)] def set_dc(self, dc_imp, dc_energ): @@ -1704,7 +1704,7 @@ class SumkDFT(object): Ncr[bl] += dens_mat[block].real.trace() Ncrtot = sum(Ncr.values()) for sp in spn: - self.dc_imp[icrsh][sp] = numpy.identity(dim, numpy.float_) + self.dc_imp[icrsh][sp] = numpy.identity(dim, float) if self.SP == 0: # average the densities if there is no SP: Ncr[sp] = Ncrtot / len(spn) # correction for SO: we have only one block in this case, but @@ -2025,14 +2025,14 @@ class SumkDFT(object): # Convert Fermi weights to a density matrix dens_mat_dft = {} for sp in spn: - dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(numpy.complex_) for ik in range(self.n_k)] + dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(complex) for ik in range(self.n_k)] # Set up deltaN: deltaN = {} for sp in spn: deltaN[sp] = [numpy.zeros([self.n_orbitals[ik, ntoi[sp]], self.n_orbitals[ - ik, ntoi[sp]]], numpy.complex_) for ik in range(self.n_k)] + ik, ntoi[sp]]], complex) for ik in range(self.n_k)] ikarray = numpy.array(list(range(self.n_k))) for ik in mpi.slice_array(ikarray): @@ -2204,7 +2204,7 @@ class SumkDFT(object): def check_projectors(self): """Calculated the density matrix from projectors (DM = P Pdagger) to check that it is correct and specifically that it matches DFT.""" - dens_mat = [numpy.zeros([self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], numpy.complex_) + dens_mat = [numpy.zeros([self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], complex) for icrsh in range(self.n_corr_shells)] for ik in range(self.n_k): diff --git a/python/triqs_dft_tools/sumk_dft_tools.py b/python/triqs_dft_tools/sumk_dft_tools.py index e11f42d7..9bb5bcf0 100644 --- a/python/triqs_dft_tools/sumk_dft_tools.py +++ b/python/triqs_dft_tools/sumk_dft_tools.py @@ -100,16 +100,16 @@ class SumkDFTTools(SumkDFT): for icrsh in range(self.n_corr_shells): G_loc[icrsh].zero() - DOS = {sp: numpy.zeros([n_om], numpy.float_) + DOS = {sp: numpy.zeros([n_om], float) for sp in self.spin_block_names[self.SO]} DOSproj = [{} for ish in range(self.n_inequiv_shells)] DOSproj_orb = [{} for ish in range(self.n_inequiv_shells)] for ish in range(self.n_inequiv_shells): for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]: dim = self.corr_shells[self.inequiv_to_corr[ish]]['dim'] - DOSproj[ish][sp] = numpy.zeros([n_om], numpy.float_) + DOSproj[ish][sp] = numpy.zeros([n_om], float) DOSproj_orb[ish][sp] = numpy.zeros( - [n_om, dim, dim], numpy.complex_) + [n_om, dim, dim], complex) ikarray = numpy.array(list(range(self.n_k))) for ik in mpi.slice_array(ikarray): @@ -240,16 +240,16 @@ class SumkDFTTools(SumkDFT): for block, inner in gf_struct_parproj_all[0]] G_loc_all = BlockGf(name_list=spn, block_list=glist_all, make_copies=False) - DOS = {sp: numpy.zeros([n_om], numpy.float_) + DOS = {sp: numpy.zeros([n_om], float) for sp in self.spin_block_names[self.SO]} DOSproj = {} DOSproj_orb = {} for sp in self.spin_block_names[self.SO]: dim = n_local_orbs - DOSproj[sp] = numpy.zeros([n_om], numpy.float_) + DOSproj[sp] = numpy.zeros([n_om], float) DOSproj_orb[sp] = numpy.zeros( - [n_om, dim, dim], numpy.complex_) + [n_om, dim, dim], complex) ikarray = numpy.array(list(range(self.n_k))) for ik in mpi.slice_array(ikarray): @@ -375,16 +375,16 @@ class SumkDFTTools(SumkDFT): for ish in range(self.n_shells): G_loc[ish].zero() - DOS = {sp: numpy.zeros([n_om], numpy.float_) + DOS = {sp: numpy.zeros([n_om], float) for sp in self.spin_block_names[self.SO]} DOSproj = [{} for ish in range(self.n_shells)] DOSproj_orb = [{} for ish in range(self.n_shells)] for ish in range(self.n_shells): for sp in self.spin_block_names[self.SO]: dim = self.shells[ish]['dim'] - DOSproj[ish][sp] = numpy.zeros([n_om], numpy.float_) + DOSproj[ish][sp] = numpy.zeros([n_om], float) DOSproj_orb[ish][sp] = numpy.zeros( - [n_om, dim, dim], numpy.complex_) + [n_om, dim, dim], complex) ikarray = numpy.array(list(range(self.n_k))) for ik in mpi.slice_array(ikarray): @@ -518,11 +518,11 @@ class SumkDFTTools(SumkDFT): om_maxplot = plot_range[1] if ishell is None: - Akw = {sp: numpy.zeros([self.n_k, n_om], numpy.float_) + Akw = {sp: numpy.zeros([self.n_k, n_om], float) for sp in spn} else: Akw = {sp: numpy.zeros( - [self.shells[ishell]['dim'], self.n_k, n_om], numpy.float_) for sp in spn} + [self.shells[ishell]['dim'], self.n_k, n_om], float) for sp in spn} if not ishell is None: gf_struct_parproj = [ @@ -649,7 +649,7 @@ class SumkDFTTools(SumkDFT): spn = self.spin_block_names[self.SO] ntoi = self.spin_names_to_ind[self.SO] # Density matrix in the window - self.dens_mat_window = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], numpy.complex_) + self.dens_mat_window = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], complex) for ish in range(self.n_shells)] for isp in range(len(spn))] # Set up G_loc @@ -921,7 +921,7 @@ class SumkDFTTools(SumkDFT): print("Omega mesh automatically repined to: ", self.Om_mesh) self.Gamma_w = {direction: numpy.zeros( - (len(self.Om_mesh), n_om), dtype=numpy.float_) for direction in self.directions} + (len(self.Om_mesh), n_om), dtype=float) for direction in self.directions} # Sum over all k-points ikarray = numpy.array(list(range(self.n_k))) @@ -929,7 +929,7 @@ class SumkDFTTools(SumkDFT): # Calculate G_w for ik and initialize A_kw G_w = self.lattice_gf(ik, mu, iw_or_w="w", beta=beta, broadening=broadening, mesh=mesh, with_Sigma=with_Sigma) - A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=numpy.complex_) + A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=complex) for isp in range(n_inequiv_spin_blocks)] for isp in range(n_inequiv_spin_blocks): diff --git a/test/python/analyse_block_structure_from_gf.py b/test/python/analyse_block_structure_from_gf.py index 328425c4..d90b5c17 100644 --- a/test/python/analyse_block_structure_from_gf.py +++ b/test/python/analyse_block_structure_from_gf.py @@ -105,7 +105,7 @@ else: for conjugate in conjugate_values: # construct a random block-diagonal Hloc - Hloc = np.zeros((10,10), dtype=np.complex_) + Hloc = np.zeros((10,10), dtype=complex) # the Hloc of the first three 2x2 blocks is equal Hloc0 = get_random_hermitian(2) Hloc[:2,:2] = Hloc0 diff --git a/test/python/analyse_block_structure_from_gf2.py b/test/python/analyse_block_structure_from_gf2.py index 25806815..76e0aa71 100644 --- a/test/python/analyse_block_structure_from_gf2.py +++ b/test/python/analyse_block_structure_from_gf2.py @@ -20,7 +20,7 @@ def get_random_transformation(dim): return T # construct a random block-diagonal Hloc -Hloc = np.zeros((10,10), dtype=np.complex_) +Hloc = np.zeros((10,10), dtype=complex) # the Hloc of the first three 2x2 blocks is equal Hloc0 = get_random_hermitian(2) Hloc[:2,:2] = Hloc0 @@ -88,7 +88,7 @@ Gt = BlockGf(name_block_generator = [(name, n_points=len(block.mesh), indices=block.indices)) for name, block in G], make_copies=False) -known_moments = np.zeros((2,10,10), dtype=np.complex) +known_moments = np.zeros((2,10,10), dtype=complex) known_moments[1,:] = np.eye(10) tail, err = fit_tail(G['ud'], known_moments) Gt['ud'].set_from_fourier(G['ud'], tail) diff --git a/test/python/plovasp/proj_group/test_block_map.py b/test/python/plovasp/proj_group/test_block_map.py index 2c923226..b6622be8 100644 --- a/test/python/plovasp/proj_group/test_block_map.py +++ b/test/python/plovasp/proj_group/test_block_map.py @@ -29,7 +29,7 @@ class TestBlockMap(mytest.MyTestCase): self.mock_eigvals = np.zeros((1, 11, 1)) nproj = 16 - self.mock_plo = np.zeros((nproj, 1, 1, 11), dtype=np.complex128) + self.mock_plo = np.zeros((nproj, 1, 1, 11), dtype=complex) self.mock_proj_params = [{} for i in range(nproj)] ip = 0 # Mock d-sites diff --git a/test/python/plovasp/proj_group/test_one_site_compl.py b/test/python/plovasp/proj_group/test_one_site_compl.py index 2df4d960..f7a71686 100644 --- a/test/python/plovasp/proj_group/test_one_site_compl.py +++ b/test/python/plovasp/proj_group/test_one_site_compl.py @@ -73,7 +73,7 @@ class TestProjectorGroupCompl(mytest.MyTestCase): bmax = self.proj_gr.ib_win[ik, isp, 1]+1 nb = bmax - bmin - p_mat = np.zeros((ndim, nb), dtype=np.complex128) + p_mat = np.zeros((ndim, nb), dtype=complex) #print(bmin,bmax,nb) # Combine all projectors of the group to one block projector for bl_map in block_maps: