From 1c29776727761d41896ecb14c3167fa9d2b094ff Mon Sep 17 00:00:00 2001 From: Manuel Zingl Date: Fri, 8 Jul 2016 12:04:31 +0200 Subject: [PATCH] [doc] Restructuring doc II * Committing missing files of last commit * Correcting typos * Modifications according to issue #56 --- doc/about.rst | 6 +- doc/basicnotions/dft_dmft.rst | 27 +- doc/basicnotions/structure.rst | 52 +-- doc/conf.py.in | 9 +- doc/documentation.rst | 4 +- doc/guide/SrVO3.rst | 28 +- doc/guide/analysis.rst | 44 +-- doc/guide/conversion.rst | 99 +++-- doc/guide/dftdmft_singleshot.rst | 368 ++++++------------ doc/guide/full_tutorial.rst | 4 +- .../images_scripts/SrVO3_Sigma_iw_it1.png | Bin 0 -> 47306 bytes doc/guide/images_scripts/dft_dmft_cthyb.py | 18 +- .../images_scripts/dft_dmft_cthyb_slater.py | 15 +- doc/guide/transport.rst | 10 +- doc/index.rst | 8 +- python/sumk_dft.py | 9 +- 16 files changed, 299 insertions(+), 402 deletions(-) create mode 100644 doc/guide/images_scripts/SrVO3_Sigma_iw_it1.png diff --git a/doc/about.rst b/doc/about.rst index 2b5f8ed4..79519de8 100644 --- a/doc/about.rst +++ b/doc/about.rst @@ -14,14 +14,16 @@ Olivier Parcollet (CEA Saclay). A first step has been the definition of the framework and the construction of the projective Wannier functions as input for the DMFT calculations [#dft_tools1]_. This has been followed by the introduction of full charge self-consistency [#dft_tools2]_, necessary for total energy -calculations. +calculations. The package at hand is fully implemented as an application +based on the TRIQS library [#dft_tools3]_. -**Developers**: M. Aichhorn, L. Pourovskii, V. Vildosola, C. Martins, P. Seth, M. Zingl +**Developers**: M. Aichhorn, L. Pourovskii, P.Seth, V. Vildosola, M. Zingl, O. E. Peil, X. Deng, J. Mravlje, G. Kraberger, C. Martins, M. Ferrero, O. Parcollet **Related papers**: .. [#dft_tools1] `M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009) `_ (:download:`bibtex file `) .. [#dft_tools2] `M. Aichhorn, L. Pourovskii, and A. Georges, Phys. Rev. B 84, 054529 (2011) `_ (:download:`bibtex file `) +.. [#dft_tools3] `M. Aichhorn, L. Pourovskii, P.Seth, V. Vildosola, M. Zingl, O. E. Peil, X. Deng, J. Marvlje, G. Kraberger, C. Martins, M. Ferrero, and O. Parcollet, Commt. Phys. Commun. 204, 200 (2016) `_ (:download:`bibtex file `) This application is a part of our scientific work and we would appreciate if projects using it will include a citation to the above relevant papers. In diff --git a/doc/basicnotions/dft_dmft.rst b/doc/basicnotions/dft_dmft.rst index 48aaadb4..6671d161 100644 --- a/doc/basicnotions/dft_dmft.rst +++ b/doc/basicnotions/dft_dmft.rst @@ -1,3 +1,5 @@ +.. _dftplusdmft: + Introduction to DFT+DMFT ======================== @@ -8,7 +10,7 @@ terms it states that electrons in a crystal form bands of allowed states in momentum space. These states are then filled by the electrons according to Pauli's principle up the Fermi level. With this simple picture one can explain the electronic band structure of simple -materials such as elementary copper or aluminium. +materials such as elementary copper or aluminum. Following this principle one can easily classify all existing materials into metals and insulators, with semiconductors being @@ -17,9 +19,8 @@ spectrum. Following this band theory, a system is a metal if there is an odd number of electrons in the valence bands, since this leads to a partially filled band, cutting the Fermi energy and, thus, producing a Fermi surface, i.e metallic behavior. On the other hand, an even -number of electrons leads to -completely filled bands with a finite excitation gap to the conduction -bands, i.e. insulating behavior. +number of electrons leads to completely filled bands with a finite +excitation gap to the conduction bands, i.e. insulating behavior. This classification works pretty well for a large class of materials, where the electronic band structures are reproduced by @@ -41,7 +42,7 @@ current because of the strong Coulomb repulsion between the electrons. With reference to Sir Nevill Mott, who contributed substantially to the explanation of this effect in the 1930's, these materials are in -general reffered to as Mott insulators. +general referred to as Mott insulators. Density-functional theory in a (very small) nutshell ---------------------------------------------------- @@ -63,7 +64,7 @@ that is discussed in the literature on DFT, let us just note that the main result of DFT calculations are the Kohn-Sham energies :math:`\varepsilon_{\nu\mathbf{k}}` and the Kohn-Sham orbitals :math:`\psi_{\nu\mathbf{k}}(\mathbf{r})`. This set of equations is exact, however, the exchange correlation -potential :math:`V_{xc}(\mathbf{r})` is not known explicitely. In +potential :math:`V_{xc}(\mathbf{r})` is not known explicitly. In order to do actual calculations, it needs to be approximated in some way. The local density approximation is one of the most famous approximations used in this context. This approximation works well for @@ -75,7 +76,7 @@ From DFT to DMFT In order to extend our calculations to strong correlations, we need to go from a description by bands to a description in terms of -(localised) orbitals: Wannier functions. +(localized) orbitals: Wannier functions. In principle, Wannier functions :math:`\chi_{\mu\sigma}(\mathbf{r})` are nothing else than a Fourier transform of the Bloch basis set from @@ -88,7 +89,7 @@ where we introduced also the spin degree of freedom :math:`\sigma`. The unitary matrix :math:`U_{\mu\nu}` is not uniquely defined, but allows for a certain amount of freedom in the calculation of Wannier function. A very popular choice is the constraint that the resulting Wannier -functions should be maximally localised in space. Another route, +functions should be maximally localized in space. Another route, computationally much lighter and more stable, are projective Wannier functions. This scheme is used for the Wien2k interface in this package. @@ -98,7 +99,7 @@ A central quantity in this scheme is the projection operator :math:`\nu` a Bloch band index. Its definition and how it is calculated can be found in the original literature or in the extensive documentation of the -:program:`dmftproj` program shipped with :program:`dft_tools`. +:program:`dmftproj` program shipped with :program:`DFTTools`. Using projective Wannier functions for DMFT ------------------------------------------- @@ -121,7 +122,7 @@ with the DFT Green function This non-interacting Green function :math:`G^0_{mn}(i\omega)` defines, together with the interaction Hamiltonian, the Anderson impurity -model. The DMFT self-consitency cycle can now be formulated as +model. The DMFT self-consistency cycle can now be formulated as follows: #. Take :math:`G^0_{mn}(i\omega)` and the interaction Hamiltonian and @@ -173,9 +174,9 @@ Full charge self-consistency The feedback of the electronic correlations to the Kohn-Sham orbitals is included by the interacting density matrix. With going into the -details, it basically consists of calculating the Kohn Sham density +details, it basically consists of calculating the Kohn-Sham density :math:`\rho(\mathbf{r})` in the presence of this interacting density -matrix. This new density now defines a new Kohn Sham +matrix. This new density now defines a new Kohn-Sham exchange-correlation potential, which in turn leads to new :math:`\varepsilon_{\nu\mathbf{k}}`, :math:`\psi_{\nu\mathbf{k}}(\mathbf{r})`, and projectors @@ -186,4 +187,4 @@ step 3, before the local lattice Green function is downfolded again into orbital space. How all these calculations can be done in practice with this -:program:`dft_tools` package is subject of the user guide in this documentation. +:program:`DFTTools` package is subject of the user guide in this documentation. diff --git a/doc/basicnotions/structure.rst b/doc/basicnotions/structure.rst index 740e5ec6..26660747 100644 --- a/doc/basicnotions/structure.rst +++ b/doc/basicnotions/structure.rst @@ -1,18 +1,21 @@ -Structure of DFT Tools -====================== +.. _structure: + +Structure of :program:`DFTTools` +================================ .. image:: images/structure.png :width: 700 :align: center -The central part of :program:`dft_tools`, which is performing the +The central part of :program:`DFTTools`, which is performing the steps for the DMFT self-consistency cycle, is written following the same philosophy as the :ref:`TRIQS ` toolbox. At the user level, easy-to-use python modules are provided that allow to -write simple and short scripts performing the actual -calculation. Here, we will describe the general structure of the -package, for the details of how to use the modules, please consult the -user guide of this :ref:`documentation`. +write simple and short scripts performing the actual calculation. +The usage of those modules is presented in the user guide of this +:ref:`documentation`. Before considering the user guide, we suggest +to read the following introduction on the general structure of +the :program:`DFTTools` package. The interface layer ------------------- @@ -30,37 +33,37 @@ Wien2k interface """""""""""""""" This interface layer consists of two parts. First, the output from Wien2k -is taken, and localised Wannier orbitals are constructed. This is done -by the fortran program :program:`dmftproj`. The second part consist in +is taken, and localized Wannier orbitals are constructed. This is done +by the FORTRAN program :program:`dmftproj`. The second part consist in the conversion of the :program:`dmftproj` into the hdf5 file format to be used for the DMFT calculation. This step is done by a python routine called :class:`Wien2kConverter`, that reads the text output and creates the hdf5 input file with the necessary ingredients. Quite -naturally, :program:`dft_tools` will adopt this converter concept also for future +naturally, :program:`DFTTools` will adopt this converter concept also for future developments for other DFT packages. General interface """"""""""""""""" -In addition to the specialised Wien2k interface, :program:`dft_tools` +In addition to the specialized Wien2k interface, :program:`DFTTools` provides also a very light-weight general interface. It basically consists of a very simple :class:`HkConverter`. As input it requires a -hamiltonian matrix :math:`H_{mn}(\mathbf{k})` written already in -localised-orbital indices :math:`m,n`, on a :math:`\mathbf{k}`-point +Hamiltonian matrix :math:`H_{mn}(\mathbf{k})` written already in +localized-orbital indices :math:`m,n`, on a :math:`\mathbf{k}`-point grid covering the Brillouin zone, and just a few other informations -like total numer of electrons, how many correlated atoms in the unit -cell, and so on. It converts this hamiltonian into a hdf5 format and +like total number of electrons, how many correlated atoms in the unit +cell, and so on. It converts this Hamiltonian into a hdf5 format and sets some variables to standard values, such that it can be used with the python modules performing the DMFT calculation. How the -hamiltonian matrix :math:`H_{mn}(\mathbf{k})` is actually calculated, -is **not** part of this interace. +Hamiltonian matrix :math:`H_{mn}(\mathbf{k})` is actually calculated, +is **not** part of this interface. The DMFT calculation -------------------- As mentioned above, there are a few python routines that allow to perform the multi-band DMFT calculation in the context of real -materials. The major part is contained inte module +materials. The major part is contained in the module :class:`SumkDFT`. It contains routines to * calculate local Greens functions @@ -69,7 +72,7 @@ materials. The major part is contained inte module * calculate the double-counting correction * calculate the chemical potential in order to get the electron count right * other things like determining the structure of the local - hamiltonian, rotating from local to global coordinate systems, etc. + Hamiltonian, rotating from local to global coordinate systems, etc. At the user level, all these routines can be used to construct situation- and problem-dependent DMFT calculations in a very efficient @@ -90,8 +93,8 @@ Post-processing The main result of DMFT calculation is the interacting Greens function and the Self energy. However, one is normally interested in -quantitites like band structure, density of states, or transport -properties. In order to calculate these things, :program:`dft_tools` +quantities like band structure, density of states, or transport +properties. In order to calculate these things, :program:`DFTTools` provides the post-processing modules :class:`SumkDFTTools`. It contains routines to calculate @@ -102,11 +105,8 @@ contains routines to calculate or thermopower. .. warning:: - At the moment neither :ref:`TRIQS` nor :program:`dft_tools` + At the moment neither :ref:`TRIQS` nor :program:`DFTTools` provides Maximum Entropy routines! You can use the Pade - approximants implemented in the TRIQS library, or you use your own + approximation implemented in the :ref:`TRIQS ` library, or you use your own home-made Maximum Entropy code to do the analytic continuation from Matsubara to the real-frequency axis. - - - diff --git a/doc/conf.py.in b/doc/conf.py.in index eef3fb3d..2a8f2bb6 100644 --- a/doc/conf.py.in +++ b/doc/conf.py.in @@ -17,7 +17,7 @@ extensions = ['sphinx.ext.autodoc', source_suffix = '.rst' -project = u'TRIQS_DFT Tools' +project = u'TRIQS DFTTools' copyright = u'2011-2013, M. Aichhorn, L. Pourovskii, V. Vildosola, C. Martins' version = '@DFT_TOOLS_VERSION@' release = '@DFT_TOOLS_RELEASE@' @@ -28,16 +28,15 @@ templates_path = ['@CMAKE_SOURCE_DIR@/doc/_templates'] html_theme = 'triqs' html_theme_path = ['@TRIQS_THEMES_PATH@'] html_show_sphinx = False -html_context = {'header_title': 'dft_tools', +html_context = {'header_title': 'dft tools', 'header_subtitle': 'connecting TRIQS to DFT packages', 'header_links': [['Install', 'install'], ['Documentation', 'documentation'], ['Issues', 'issues'], - ['About dft_tools', 'about']]} + ['About DFTTools', 'about']]} html_static_path = ['@CMAKE_SOURCE_DIR@/doc/_static'] html_sidebars = {'index': ['sideb.html', 'searchbox.html']} htmlhelp_basename = 'TRIQSDftToolsdoc' -intersphinx_mapping = {'python': ('http://docs.python.org/2.7', None), 'triqslibs': ('http://ipht.cea.fr/triqs', None), - 'triqscthyb': ('http://ipht.cea.fr/triqs/applications/cthyb', None)} +intersphinx_mapping = {'python': ('http://docs.python.org/2.7', None), 'triqslibs': ('http://ipht.cea.fr/triqs', None), 'triqscthyb': ('http://ipht.cea.fr/triqs/applications/cthyb', None)} diff --git a/doc/documentation.rst b/doc/documentation.rst index af0720eb..293a2431 100644 --- a/doc/documentation.rst +++ b/doc/documentation.rst @@ -1,4 +1,4 @@ -.. module:: pytriqs.applications.dft_tools +.. module:: pytriqs.applications.dft .. _documentation: @@ -11,6 +11,7 @@ Basic notions .. toctree:: :maxdepth: 2 + basicnotions/first basicnotions/dft_dmft basicnotions/structure @@ -23,6 +24,7 @@ User guide guide/conversion guide/dftdmft_singleshot + guide/SrVO3 guide/dftdmft_selfcons guide/analysis guide/full_tutorial diff --git a/doc/guide/SrVO3.rst b/doc/guide/SrVO3.rst index 19250c38..f9770b32 100644 --- a/doc/guide/SrVO3.rst +++ b/doc/guide/SrVO3.rst @@ -55,20 +55,21 @@ And next, we can initialize the :class:`SumkDFT ` class:: Initializing the solver ----------------------- -We also have to specify the :ref:`CTHYB solver ` related settings. The -minimal parameters for a SrVO3 DMFT calculation on 16 cores are:: +We also have to specify the :ref:`CTHYB solver ` related settings. +We assume that the DMFT script for SrVO3 is executed on 16 cores. A sufficient set +of parameters for a first guess is:: p = {} # solver p["random_seed"] = 123 * mpi.rank + 567 p["length_cycle"] = 200 - p["n_warmup_cycles"] = 50000 - p["n_cycles"] = 500000 + p["n_warmup_cycles"] = 100000 + p["n_cycles"] = 1000000 # tail fit p["perform_tail_fit"] = True p["fit_max_moment"] = 4 - p["fit_min_n"] = 60 - p["fit_max_n"] = 140 + p["fit_min_n"] = 30 + p["fit_max_n"] = 60 Here we use a tail fit to deal with numerical noise of higher Matsubara frequencies. For other options and more details on the solver parameters, we refer the user to @@ -180,17 +181,26 @@ This is all we need for the DFT+DMFT calculation. You can see in this code snippet, that all results of this calculation will be stored in a separate subgroup in the hdf5 file, called `dmft_output`. Note that this script performs 15 DMFT cycles, but does not check for -convergence. Of course, it is possible to build in convergence criterias. +convergence. Of course, it would be possible to build in convergence criteria. A simple check for convergence can be also done if you store multiple quantities of each iteration and analyze the convergence by hand. In general, it is advisable to start with a lower statistics (less measurements), but then increase it at a point close to converged results (e.g. after a few initial iterations). This helps to keep computational costs low during the first iterations. +Using the Kanamori Hamiltonian and the parameters above (but on 16 cores), +your self energy after the **first iteration** should look like the +self energy shown below. + +.. image:: images_scripts/SrVO3_Sigma_iw_it1.png + :width: 700 + :align: center + + .. _tailfit: -Tail fit paramters ------------------- +Tail fit parameters +------------------- A good way to identify suitable tail fit parameters is by "human inspection". Therefore disabled the tail fitting first:: diff --git a/doc/guide/analysis.rst b/doc/guide/analysis.rst index b22fea9e..58203400 100644 --- a/doc/guide/analysis.rst +++ b/doc/guide/analysis.rst @@ -7,13 +7,13 @@ This section explains how to use some tools of the package in order to analyse t There are two practical tools for which a self energy on the real axis is not needed, namely: - * :meth:`dos_wannier_basis ` for the density of states of the Wannier orbitals and - * :meth:`partial_charges ` for the partial charges according to the :program:`Wien2k` definition. + * :meth:`dos_wannier_basis ` for the density of states of the Wannier orbitals and + * :meth:`partial_charges ` for the partial charges according to the :program:`Wien2k` definition. However, a real frequency self energy has to be provided by the user for the methods: - * :meth:`dos_parproj_basis ` for the momentum-integrated spectral function including self energy effects and - * :meth:`spaghettis ` for the momentum-resolved spectral function (i.e. ARPES) + * :meth:`dos_parproj_basis ` for the momentum-integrated spectral function including self energy effects and + * :meth:`spaghettis ` for the momentum-resolved spectral function (i.e. ARPES) .. warning:: This package does NOT provide an explicit method to do an **analytic continuation** of the @@ -24,26 +24,26 @@ However, a real frequency self energy has to be provided by the user for the met Initialisation -------------- -All tools described below are collected in an extension of the :class:`SumkDFT ` class and are -loaded by importing the module :class:`SumkDFTTools `:: +All tools described below are collected in an extension of the :class:`SumkDFT ` class and are +loaded by importing the module :class:`SumkDFTTools `:: from pytriqs.applications.dft.sumk_dft_tools import * -The initialisation of the class is equivalent to that of the :class:`SumkDFT ` +The initialisation of the class is equivalent to that of the :class:`SumkDFT ` class:: SK = SumkDFTTools(hdf_file = filename + '.h5') -Note that all routines available in :class:`SumkDFT ` are also available here. +Note that all routines available in :class:`SumkDFT ` are also available here. -If required, we have to load and initialise the real frequency self energy. Most conveniently, -you have your self energy already stored as a real frequency :class:`BlockGf ` object +If required, we have to load and initialise the real frequency self energy. Most conveniently, +you have your self energy already stored as a real frequency :class:`BlockGf ` object in a hdf5 file:: ar = HDFArchive('case.h5', 'a') SigmaReFreq = ar['dmft_output']['Sigma_w'] -You may also have your self energy stored in text files. For this case the :ref:`TRIQS ` library offers +You may also have your self energy stored in text files. For this case the :ref:`TRIQS ` library offers the function :meth:`read_gf_from_txt`, which is able to load the data from text files of one Greens function block into a real frequency :class:`ReFreqGf ` object. Loading each block separately and building up a :class:´BlockGf ´ is done with:: @@ -58,18 +58,18 @@ building up a :class:´BlockGf ´ is done with:: where: - * `block_txtfiles` is a rank 2 square np.array(str) or list[list[str]] holding the file names of one block and + * `block_txtfiles` is a rank 2 square np.array(str) or list[list[str]] holding the file names of one block and * `block_name` is the name of the block. It is important that each data file has to contain three columns: the real frequency mesh, the real part and the imaginary part -of the self energy - exactly in this order! The mesh should be the same for all files read in and non-uniform meshes are not supported. - -Finally, we set the self energy into the `SK` object:: - +of the self energy - exactly in this order! The mesh should be the same for all files read in and non-uniform meshes are not supported. + +Finally, we set the self energy into the `SK` object:: + SK.set_Sigma([SigmaReFreq]) and additionally set the chemical potential and the double counting correction from the DMFT calculation:: - + chemical_potential, dc_imp, dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ']) SK.set_mu(chemical_potential) SK.set_dc(dc_imp,dc_energ) @@ -84,16 +84,16 @@ For plotting the density of states of the Wannier orbitals, you type:: SK.dos_wannier_basis(broadening=0.03, mesh=[om_min, om_max, n_om], with_Sigma=False, with_dc=False, save_to_file=True) -which produces plots between the real frequencies `om_min` and `om_max`, using a mesh of `n_om` points. The parameter +which produces plots between the real frequencies `om_min` and `om_max`, using a mesh of `n_om` points. The parameter `broadening` defines an additional Lorentzian broadening, and has the default value of `0.01 eV`. To check the Wannier density of states after the projection set `with_Sigma` and `with_dc` to `False`. If `save_to_file` is set to `True` the output is printed into the files * `DOS_wannier_(sp).dat`: The total DOS, where `(sp)` stands for `up`, `down`, or combined `ud`. The latter case is relevant for calculations including spin-orbit interaction. - * `DOS_wannier_(sp)_proj(i).dat`: The DOS projected to an orbital with index `(i)`. The index `(i)` refers to + * `DOS_wannier_(sp)_proj(i).dat`: The DOS projected to an orbital with index `(i)`. The index `(i)` refers to the indices given in ``SK.shells``. - * `DOS_wannier_(sp)_proj(i)_(m)_(n).dat`: As above, but printed as orbitally-resolved matrix in indices + * `DOS_wannier_(sp)_proj(i)_(m)_(n).dat`: As above, but printed as orbitally-resolved matrix in indices `(m)` and `(n)`. For `d` orbitals, it gives the DOS separately for, e.g., :math:`d_{xy}`, :math:`d_{x^2-y^2}`, and so on, otherwise, the output is returned by the function for a further usage in :program:`python`. @@ -110,7 +110,7 @@ real frequency self energy for this purpose. The calculation is done by:: which calculates the partial charges using the self energy, double counting, and chemical potential as set in the `SK` object. On return, `dm` is a list, where the list items correspond to the density matrices of all shells defined in the list `SK.shells`. This list is constructed by the :program:`Wien2k` converter routines and stored automatically -in the hdf5 archive. For the structure of `dm`, see also :meth:`reference manual `. +in the hdf5 archive. For the structure of `dm`, see also :meth:`reference manual `. Correlated spectral function (with real frequency self energy) -------------------------------------------------------------- @@ -129,7 +129,7 @@ Momentum resolved spectral function (with real frequency self energy) Another quantity of interest is the momentum-resolved spectral function, which can directly be compared to ARPES experiments. First we have to execute `lapw1`, `lapw2 -almd` and :program:`dmftproj` with the `-band` -option and use the :meth:`convert_bands_input ` +option and use the :meth:`convert_bands_input ` routine, which converts the required files (for a more detailed description see :ref:`conversion`). The spectral function is then calculated by typing:: SK.spaghettis(broadening=0.01,plot_shift=0.0,plot_range=None,ishell=None,save_to_file='Akw_') diff --git a/doc/guide/conversion.rst b/doc/guide/conversion.rst index dc732294..b8949539 100644 --- a/doc/guide/conversion.rst +++ b/doc/guide/conversion.rst @@ -34,9 +34,9 @@ some files that we need for the Wannier orbital construction. The orbital construction itself is done by the Fortran program :program:`dmftproj`. For an extensive manual to this program see :download:`TutorialDmftproj.pdf `. -Here we will only describe only the basic steps. +Here we will only describe the basic steps. -Let us take the example of SrVO3, a commonly used +Let us take the compound SrVO3, a commonly used example for DFT+DMFT calculations. The input file for :program:`dmftproj` looks like @@ -56,9 +56,9 @@ following 3 to 5 lines: harmonics). #. The four numbers refer to *s*, *p*, *d*, and *f* electrons, resp. Putting 0 means doing nothing, putting 1 will calculate - **unnormalised** projectors in compliance with the Wien2k + **unnormalized** projectors in compliance with the Wien2k definition. The important flag is 2, this means to include these - electrons as correlated electrons, and calculate normalised Wannier + electrons as correlated electrons, and calculate normalized Wannier functions for them. In the example above, you see that only for the vanadium *d* we set the flag to 2. If you want to do simply a DMFT calculation, then set everything to 0, except one flag 2 for the @@ -100,12 +100,12 @@ directory name): respectively. These files are needed for projected density-of-states or spectral-function calculations in post-processing only. - * :file:`case.oubwin` needed for the charge desity recalculation in + * :file:`case.oubwin` needed for the charge density recalculation in the case of fully self-consistent DFT+DMFT run (see below). Now we convert these files into an hdf5 file that can be used for the DMFT calculations. For this purpose we -use the python module :class:`Wien2kConverter `. It is initialised as:: +use the python module :class:`Wien2kConverter `. It is initialized as:: from pytriqs.applications.dft.converters.wien2k_converter import * Converter = Wien2kConverter(filename = case) @@ -119,7 +119,7 @@ an hdf5 archive, named :file:`case.h5`, where all the data is stored. For other parameters of the constructor please visit the :ref:`refconverters` section of the reference manual. -After initialising the interface module, we can now convert the input +After initializing the interface module, we can now convert the input text files to the hdf5 archive by:: Converter.convert_dft_input() @@ -133,21 +133,21 @@ After this step, all the necessary information for the DMFT loop is stored in the hdf5 archive, where the string variable `Converter.hdf_filename` gives the file name of the archive. -At this point you should use the method :meth:`dos_wannier_basis ` -contained in the module :class:`SumkDFTTools ` to check the density of -states of the Wannier orbitals (see :ref:`analysis`). +At this point you should use the method :meth:`dos_wannier_basis ` +contained in the module :class:`SumkDFTTools ` to check the density of +states of the Wannier orbitals (see :ref:`analysis`). You have now everything for performing a DMFT calculation, and you can -proceed with :ref:`singleshot`. +proceed with the section on :ref:`single-shot DFT+DMFT calculations `. Data for post-processing """""""""""""""""""""""" In case you want to do post-processing of your data using the module -:class:`SumkDFTTools `, some more files +:class:`SumkDFTTools `, some more files have to be converted to the hdf5 archive. For instance, for calculating the partial density of states or partial charges -consistent with the definition of :program:`Wien2k`, you have to invoke:: +consistent with the definition of :program:`Wien2k`, you have to invoke:: Converter.convert_parproj_input() @@ -165,8 +165,8 @@ following. First, one has to do the Wien2k calculation on the given Again, maybe with the optional additional extra flags according to Wien2k. Now we use a routine of the converter module allows to read -and convert the input for :class:`SumkDFTTools `:: - +and convert the input for :class:`SumkDFTTools `:: + Converter.convert_bands_input() After having converted this input, you can further proceed with the @@ -186,7 +186,7 @@ A general H(k) -------------- In addition to the more complicated Wien2k converter, -:program:`dft_tools` contains also a light converter. It takes only +:program:`DFTTools` contains also a light converter. It takes only one inputfile, and creates the necessary hdf outputfile for the DMFT calculation. The header of this input file has to have the following format: @@ -204,15 +204,13 @@ The lines of this header define #. The last line contains several numbers: the number of irreducible representations, and then the dimensions of the irreps. One possibility is as the example above, another one would be 2 - 2 3. Thiw would mean, 2 irreps (eg and t2g), of dimension 2 and 3, - resp. + 2 3. This would mean, 2 irreps (eg and t2g), of dimension 2 and 3, + resp. After these header lines, the file has to contain the Hamiltonian matrix in orbital space. The standard convention is that you give for -each -:math:`\mathbf{k}`-point first the matrix of the real part, then the -matrix of the imaginary part, and then move on to the next -:math:`\mathbf{k}`-point. +each :math:`\mathbf{k}`-point first the matrix of the real part, then the +matrix of the imaginary part, and then move on to the next :math:`\mathbf{k}`-point. The converter itself is used as:: @@ -221,8 +219,7 @@ The converter itself is used as:: Converter.convert_dft_input() where :file:`hkinputfile` is the name of the input file described -above. This produces the hdf file that you need, and you cna proceed -with the +above. This produces the hdf file that you need for a DMFT calculation. For more options of this converter, have a look at the :ref:`refconverters` section of the reference manual. @@ -231,24 +228,24 @@ For more options of this converter, have a look at the Wannier90 Converter ------------------- -Using this converter it is possible to convert the output of -:program:`Wannier90` (http://wannier.org) calculations of -Maximally Localized Wannier Functions (MLWF) and create a HDF5 archive +Using this converter it is possible to convert the output of +`wannier90 `_ +Maximally Localized Wannier Functions (MLWF) and create a HDF5 archive suitable for one-shot DMFT calculations with the -:class:`SumkDFT ` class. +:class:`SumkDFT ` class. The user must supply two files in order to run the Wannier90 Converter: #. The file :file:`seedname_hr.dat`, which contains the DFT Hamiltonian in the MLWF basis calculated through :program:`wannier90` with ``hr_plot = true`` (please refer to the :program:`wannier90` documentation). -#. A file named :file:`seedname.inp`, which contains the required +#. A file named :file:`seedname.inp`, which contains the required information about the :math:`\mathbf{k}`-point mesh, the electron density, the correlated shell structure, ... (see below). Here and in the following, the keyword ``seedname`` should always be intended as a placeholder for the actual prefix chosen by the user when creating the -input for :program:`wannier90`. +input for :program:`wannier90`. Once these two files are available, one can use the converter as follows:: from pytriqs.applications.dft.converters import Wannier90Converter @@ -260,8 +257,8 @@ the following format: .. literalinclude:: images_scripts/LaVO3_w90.inp -The example shows the input for the perovskite crystal of LaVO\ :sub:`3` -in the room-temperature `Pnma` symmetry. The unit cell contains four +The example shows the input for the perovskite crystal of LaVO\ :sub:`3` +in the room-temperature `Pnma` symmetry. The unit cell contains four symmetry-equivalent correlated sites (the V atoms) and the total number of electrons per unit cell is 8 (see second line). The first line specifies how to generate the :math:`\mathbf{k}`-point @@ -269,18 +266,18 @@ mesh that will be used to obtain :math:`H(\mathbf{k})` by Fourier transforming :math:`H(\mathbf{R})`. Currently implemented options are: -* :math:`\Gamma`-centered uniform grid with dimensions - :math:`n_{k_x} \times n_{k_y} \times n_{k_z}`; +* :math:`\Gamma`-centered uniform grid with dimensions + :math:`n_{k_x} \times n_{k_y} \times n_{k_z}`; specify ``0`` followed by the three grid dimensions, like in the example above * :math:`\Gamma`-centered uniform grid with dimensions - automatically determined by the converter (from the number of + automatically determined by the converter (from the number of :math:`\mathbf{R}` vectors found in :file:`seedname_hr.dat`); just specify ``-1`` -Inside :file:`seedname.inp`, it is crucial to correctly specify the +Inside :file:`seedname.inp`, it is crucial to correctly specify the correlated shell structure, which depends on the contents of the -:program:`wannier90` output :file:`seedname_hr.dat` and on the order +:program:`wannier90` output :file:`seedname_hr.dat` and on the order of the MLWFs contained in it. The number of MLWFs must be equal to, or greater than the total number @@ -291,7 +288,7 @@ additional MLWFs correspond to uncorrelated orbitals (e.g., the O-\ `2p` shells) When reading the hoppings :math:`\langle w_i | H(\mathbf{R}) | w_j \rangle` (where :math:`w_i` is the :math:`i`-th MLWF), the converter also assumes that the first indices correspond to the correlated shells (in our example, -the V-t\ :sub:`2g` shells). Therefore, the MLWFs corresponding to the +the V-t\ :sub:`2g` shells). Therefore, the MLWFs corresponding to the uncorrelated shells (if present) must be listed **after** those of the correlated shells. With the :program:`wannier90` code, this can be achieved this by listing the @@ -303,19 +300,19 @@ In our `Pnma`-LaVO\ :sub:`3` example, for instance, we could use:: O:l=1:mr=1,2,3:z=0,0,1:x=-1,1,0 End Projections -where the ``x=-1,1,0`` option indicates that the V--O bonds in the octahedra are +where the ``x=-1,1,0`` option indicates that the V--O bonds in the octahedra are rotated by (approximatively) 45 degrees with respect to the axes of the `Pbnm` cell. -The converter will analyse the matrix elements of the local hamiltonian -to find the symmetry matrices `rot_mat` needed for the global-to-local -transformation of the basis set for correlated orbitals +The converter will analyze the matrix elements of the local Hamiltonian +to find the symmetry matrices `rot_mat` needed for the global-to-local +transformation of the basis set for correlated orbitals (see section :ref:`hdfstructure`). The matrices are obtained by finding the unitary transformations that diagonalize :math:`\langle w_i | H_I(\mathbf{R}=0,0,0) | w_j \rangle`, where :math:`I` runs over the correlated shells and `i,j` belong to the same shell (more details elsewhere...). If two correlated shells are defined as equivalent in :file:`seedname.inp`, then the corresponding eigenvalues have to match within a threshold of 10\ :sup:`-5`, -otherwise the converter will produce an error/warning. +otherwise the converter will produce an error/warning. If this happens, please carefully check your data in :file:`seedname_hr.dat`. This method might fail in non-trivial cases (i.e., more than one correlated shell is present) when there are some degenerate eigenvalues: @@ -330,10 +327,10 @@ The current implementation of the Wannier90 Converter has some limitations: * No charge self-consistency possible at the moment. * Calculations with spin-orbit (``SO=1``) are not supported. * The spin-polarized case (``SP=1``) is not yet tested. -* The post-processing routines in the module - :class:`SumkDFTTools ` - were not tested with this converter. -* ``proj_mat_all`` are not used, so there are no projectors onto the +* The post-processing routines in the module + :class:`SumkDFTTools ` + were not tested with this converter. +* ``proj_mat_all`` are not used, so there are no projectors onto the uncorrelated orbitals for now. @@ -344,14 +341,14 @@ The interface packages are written such that all the file operations are done only on the master node. In general, the philosophy of the package is that whenever you read in something from the archive yourself, you have to *manually* broadcast it to the nodes. An -exception to this rule is when you use routines from :class:`SumkDFT ` -or :class:`SumkDFTTools `, where the broadcasting is done for you. +exception to this rule is when you use routines from :class:`SumkDFT ` +or :class:`SumkDFTTools `, where the broadcasting is done for you. Interfaces to other packages ---------------------------- -Because of the modular structure, it is straight forward to extend the :ref:`TRIQS ` package -in order to work with other band-structure codes. The only necessary requirement is that +Because of the modular structure, it is straight forward to extend the :ref:`TRIQS ` package +in order to work with other band-structure codes. The only necessary requirement is that the interface module produces an hdf5 archive, that stores all the data in the specified form. For the details of what data is stored in detail, see the :ref:`hdfstructure` part of the reference manual. diff --git a/doc/guide/dftdmft_singleshot.rst b/doc/guide/dftdmft_singleshot.rst index 37028594..f02841ad 100644 --- a/doc/guide/dftdmft_singleshot.rst +++ b/doc/guide/dftdmft_singleshot.rst @@ -5,287 +5,163 @@ Single-shot DFT+DMFT ==================== +After having set up the hdf5 archive, we can now proceed to our first DFT+DMFT calculation. +It consists of initialization steps, and the actual DMFT self-consistency loop, +With the code snippets below you can build your own script and target +it to your needs. Little examples on :ref:`mixing ` and on +:ref:`restarting from a previous calculation ` at the end of this page +should also demonstrate how simple you can modify your own DMFT script. A full working +calculation for SrVO3 is discussed in the :ref:`next section `. -After having set up the hdf5 archive, we can now do our DFT+DMFT calculation. It consists of -initialization steps, and the actual DMFT self-consistency loop, as is -discussed below. -Initialisation of the calculation +Initialization of the calculation --------------------------------- -Before doing the calculation, we have to intialize all the objects that we will need. The first thing is the -:class:`SumkDFT ` class. It contains all basic routines that are necessary to perform a summation in k-space +Before doing the actual calculation, we have to initialize all needed objects. +The first thing is the :class:`SumkDFT ` class. +It contains all basic routines that are necessary to perform a summation in k-space to get the local quantities used in DMFT. It is initialized by:: - from pytriqs.applications.dft.sumk_dft import * - SK = SumkDFT(hdf_file = filename + '.h5') + from pytriqs.applications.dft.sumk_dft import * + SK = SumkDFT(hdf_file = filename + '.h5') Setting up the impurity solver ------------------------------ The next step is to setup an impurity solver. There are different -solvers available within the :ref:`TRIQS ` framework. Below, we will discuss -the example of the hybridisation +solvers available within the :ref:`TRIQS ` framework. +E.g. for :ref:`SrVO3 `, we will use the hybridization expansion :ref:`CTHYB solver `. Later on, we will -see also the example of the Hubbard-I solver. They all have in common, -that they are called by a uniform command:: - - S.solve(params) +see also the example of the `Hubbard-I solver `_. +They all have in common, that they are called by an uniform command:: -where `params` are the solver parameters and depend on the actual -solver that is used. Before going into the details of the solver, let -us discuss in the next section how to perform the DMFT loop using -the methods of :program:`dft_tools`, assuming that we have set up a -working solver instance. + S.solve(params) + +where :emphasis:`params` are the solver parameters and depend on the actual +solver. Setting up the :ref:`CTHYB solver ` for SrVO3 is +discussed on the :ref:`next page `. Here, let us now perform the DMFT +loop using the methods of :program:`DFTTools`, assuming that we have already +set up a working solver instance. Doing the DMFT loop ------------------- -Having initialized the SumK class and the Solver, we can proceed with the DMFT -loop itself. We have to set up the loop over DMFT -iterations and the self-consistency condition:: +Having initialized the :class:`Sumk class ` +and the solver, we can proceed with the actual DMFT part of the calculation. +We set up the loop over DMFT iterations and the self-consistency condition:: - n_loops = 5 - for iteration_number in range(n_loops) : # start the DMFT loop + n_loops = 15 + for iteration_number in range(n_loops) : # start the DMFT loop + SK.set_Sigma([ S.Sigma ]) # Put self energy to the SumK class + chemical_potential = SK.calc_mu() # calculate the chemical potential for the given density + S.G_iw << SK.extract_G_loc()[0] # extract the local Green function + S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw)) # finally get G0, the input for the solver - SK.set_Sigma([ S.Sigma ]) # Put self energy to the SumK class - chemical_potential = SK.calc_mu() # calculate the chemical potential for the given density - S.G_iw << SK.extract_G_loc()[0] # extract the local Green function - S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw)) # finally get G0, the input for the Solver + S.solve(h_int=h_int, **p) # now solve the impurity problem - S.solve(h_int=h_int, **p) # now solve the impurity problem + dm = S.G_iw.density() # Density matrix of the impurity problem + SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=1) # Set the double counting term + SK.save(['chemical_potential','dc_imp','dc_energ']) # Save data in the hdf5 archive - dm = S.G_iw.density() # Density matrix of the impurity problem - SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=1) # Set the double counting term - SK.save(['chemical_potential','dc_imp','dc_energ']) # Save data in the hdf5 archive - -These basic steps are enough to set up the basic DMFT Loop. For a detailed -description of the :class:`SumkDFT ` routines, see the reference -manual. - -After -the self-consistency steps (extracting a new :math:`G^0(i\omega)`), -the Anderson impurity problem is solved. - -Different to model calculations, we have to do a few +These steps are enough for a basic DMFT Loop. +After the self-consistency steps, which lead to a new :math:`G^0(i\omega)`, +the impurity solver is called. Different to model calculations, we have to do a few more steps after this, because of the double-counting correction. We first -calculate the density of the impurity problem. Then, the routine `calc_dc` +calculate the density of the impurity problem. Then, the routine :meth:`calc_dc ` takes as parameters this density matrix, the Coulomb interaction, Hund's rule coupling, and the type of double-counting that should be used. Possible values -for `use_dc_formula` are: +for :emphasis:`use_dc_formula` are: - * `0`: Full-localised limit - * `1`: DC formula as given in K. Held, Adv. Phys. 56, 829 (2007). - * `2`: Around-mean-field + * `0`: Full-localised limit (FLL) + * `1`: DC formula as given in K. Held, Adv. Phys. 56, 829 (2007). + * `2`: Around-mean-field (AMF) At the end of the calculation, we can save the Greens function and self energy into a file:: - from pytriqs.archive import HDFArchive - import pytriqs.utility.mpi as mpi - if mpi.is_master_node(): - ar = HDFArchive("YourDFTDMFTcalculation.h5",'w') - ar["G"] = S.G_iw - ar["Sigma"] = S.Sigma_iw - -This is it! - -These are the essential steps to do a one-shot DFT+DMFT calculation. -For full charge-self consistent calculations, there are some more things -to consider, which we will see later on. - - -A full DFT+DMFT calculation ---------------------------- - -We will discuss now how to set up a full working calculation, -including setting up the CTHYB solver, and specifying some more parameters -in order to make the calculation more efficient. Here, we -will see a more advanced example, which is also suited for parallel -execution. For the convenience of the user, we provide also two -working python scripts in this documentation. One for a calculation -using Kanamori definitions (:download:`dft_dmft_cthyb.py -`) and one with a -rotational-invariant Slater interaction Hamiltonian (:download:`dft_dmft_cthyb_slater.py -`). The user has to adapt these -scripts to his own needs. - -First, we load the necessary modules:: - - from pytriqs.applications.dft.sumk_dft import * - from pytriqs.gf.local import * - from pytriqs.archive import HDFArchive - from pytriqs.operators.util import * - from pytriqs.applications.impurity_solvers.cthyb import * - -The last two lines load the modules for the construction of the CTHYB -solver. - -Then we define some parameters:: - - dft_filename='SrVO3' - U = 4.0 - J = 0.65 - beta = 40 - loops = 10 # Number of DMFT sc-loops - sigma_mix = 0.8 # Mixing factor of Sigma after solution of the AIM - dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF - use_blocks = True # use bloc structure from DFT input - prec_mu = 0.0001 - - # Solver parameters - p = {} - p["length_cycle"] = 200 - p["n_warmup_cycles"] = 2000 - p["n_cycles"] = 20000 - -Most of these parameters are self-explanatory. The first, -`dft_filename`, gives the filename of the input files. For more -details on the solver parameters, we refer the user to -the :ref:`CTHYB solver ` documentation. - -We assume that the conversion to the hdf5 archive is already done. We -can check now in this archive, if previous runs are present, or if we have to start -from scratch:: - - previous_runs = 0 - previous_present = False - if mpi.is_master_node(): - f = HDFArchive(dft_filename+'.h5','a') - if 'dmft_output' in f: - ar = f['dmft_output'] - if 'iterations' in ar: - previous_present = True - previous_runs = ar['iterations'] - else: - f.create_group('dmft_output') - del f - previous_runs = mpi.bcast(previous_runs) - previous_present = mpi.bcast(previous_present) - - -You can see in this code snippet, that all results of this calculation -will be stored in a separate subgroup in the hdf5 file, called -`dmft_output`. Removing this subgroup allows you to reset your -calculation to the starting point easily. - -Now we can use all this information to initialise the :class:`SumkDFT ` class:: - - SK = SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=use_blocks) - -The next step is to initialise the :class:`Solver ` class. It consist -of two steps - -#. Calculating the multi-band interaction matrix, and setting up the - interaction Hamiltonian -#. Setting up the solver class - -The first step is done using methods of -the :ref:`TRIQS ` library:: - - n_orb = SK.corr_shells[0]['dim'] - l = SK.corr_shells[0]['l'] - spin_names = ["up","down"] - orb_names = [i for i in range(n_orb)] - # Use GF structure determined by DFT blocks: - gf_struct = SK.gf_struct_solver[0] - # Construct U matrix for density-density calculations: - Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J) - -We assumed here that we want to use an interaction matrix with -Kanamori definitions of :math:`U` and :math:`J`. For -other choices (Slater interaction matrix for instance), and other -parameters, we refer to the reference manual -of the :ref:`TRIQS ` library. - -Next, we construct the Hamiltonian and the solver:: - - h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat) - S = Solver(beta=beta, gf_struct=gf_struct) - -As you see, we take only density-density interactions into -account. Other choices for the Hamiltonian are - -* h_int_kanamori -* h_int_slater - -These two include full rotational invariant interactions. Again, -options can be found in the :ref:`TRIQS ` library -reference manual. - - -If there are previous runs stored in the hdf5 archive, we can now load the self energy -of the last iteration:: - - if previous_present: + from pytriqs.archive import HDFArchive + import pytriqs.utility.mpi as mpi if mpi.is_master_node(): - ar = HDFArchive(dft_filename+'.h5','a') - S.Sigma_iw << ar['dmft_output']['Sigma_iw'] - del ar + ar = HDFArchive("YourDFTDMFTcalculation.h5",'w') + ar["G"] = S.G_iw + ar["Sigma"] = S.Sigma_iw + +These are the essential steps necessary for a one-shot DFT+DMFT calculation. +For a detailed description of the :class:`SumkDFT ` +routines, see the :ref:`reference manual `. To perform full charge self-consistent calculations, there +are some more things to consider, which we will see :ref:`later on `. + +.. _restartcalc: + + +Restarting a calculation +------------------------ + +Often only a few DMFT iterations are performed first, and thus, it is desirable to +carry out further iterations, e.g. to improve on the convergence. With a little modification +at the initialization stage (before the DMFT loop) it is possible to detect if previous runs +are present, or if the calculation should start from scratch:: + + previous_runs = 0 + previous_present = False + if mpi.is_master_node(): + f = HDFArchive(dft_filename+'.h5','a') + if 'dmft_output' in f: + ar = f['dmft_output'] + if 'iterations' in ar: + previous_present = True + previous_runs = ar['iterations'] + else: + f.create_group('dmft_output') + del f + previous_runs = mpi.bcast(previous_runs) + previous_present = mpi.bcast(previous_present) + + +You can see from this code snippet, that removing the subgroup :emphasis:`dmft_results` from the +hdf file has the effect of reseting the calculation to the starting point. If there are previous +runs stored in the hdf5 archive, we can now load the self energy, the chemical potential and +double counting values of the last iteration:: + + if previous_present: + if mpi.is_master_node(): + ar = HDFArchive(dft_filename+'.h5','a') + S.Sigma_iw << ar['dmft_output']['Sigma_iw'] + del ar + + S.Sigma_iw << mpi.bcast(S.Sigma_iw) chemical_potential,dc_imp,dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ']) - S.Sigma_iw << mpi.bcast(S.Sigma_iw) - SK.set_mu(chemical_potential) - SK.set_dc(dc_imp,dc_energ) + SK.set_mu(chemical_potential) + SK.set_dc(dc_imp,dc_energ) + +The data is loaded only on the master node, and therefore we broadcast it to the slave nodes. +Be careful when storing the :emphasis:`iteration_number` as we also have to add the previous +iteration count:: + + ar['dmft_output']['iterations'] = iteration_number + previous_runs -The self-energy is broadcast from the master node to the slave nodes. Also, the -last saved chemical potential and double counting values are read in and set. +.. _mixing: -Now we can go to the definition of the self-consistency step. It consists again -of the basic steps discussed in the previous section, with some additional -refinements:: - for iteration_number in range(1,loops+1): - if mpi.is_master_node(): print "Iteration = ", iteration_number - - SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrise Sigma - SK.set_Sigma([ S.Sigma_iw ]) # put Sigma into the SumK class - chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density - S.G_iw << SK.extract_G_loc()[0] # calc the local Green function - mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density()) - - # Init the DC term and the real part of Sigma, if no previous runs found: - if (iteration_number==1 and previous_present==False): - dm = S.G_iw.density() - SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type) - S.Sigma_iw << SK.dc_imp[0]['up'][0,0] - - # Calculate new G0_iw to input into the solver: - S.G0_iw << S.Sigma_iw + inverse(S.G_iw) - S.G0_iw << inverse(S.G0_iw) +Mixing +------ - # Solve the impurity problem: - S.solve(h_int=h_int, **p) - - # Solved. Now do post-solution stuff: - mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density()) - - # Now mix Sigma and G with factor sigma_mix, if wanted: - if (iteration_number>1 or previous_present): - if mpi.is_master_node(): - ar = HDFArchive(dft_filename+'.h5','a') - mpi.report("Mixing Sigma and G with factor %s"%sigma_mix) - S.Sigma_iw << sigma_mix * S.Sigma_iw + (1.0-sigma_mix) * ar['dmft_output']['Sigma_iw'] - S.G_iw << sigma_mix * S.G_iw + (1.0-sigma_mix) * ar['dmft_output']['G_iw'] - del ar - S.G_iw << mpi.bcast(S.G_iw) - S.Sigma_iw << mpi.bcast(S.Sigma_iw) - - # Write the final Sigma and G to the hdf5 archive: - if mpi.is_master_node(): - ar = HDFArchive(dft_filename+'.h5','a') - ar['dmft_output']['iterations'] = iteration_number + previous_runs - ar['dmft_output']['G_0'] = S.G0_iw - ar['dmft_output']['G_tau'] = S.G_tau - ar['dmft_output']['G_iw'] = S.G_iw - ar['dmft_output']['Sigma_iw'] = S.Sigma_iw - del ar +In some cases a mixing of two consecutive self energies (or alternatively two hybridization +functions) can be necessary in order to ensure convergence:: - # Set the new double counting: - dm = S.G_iw.density() # compute the density matrix of the impurity problem - SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type) + mix = 0.8 # mixing factor + if (iteration_number>1 or previous_present): + if mpi.is_master_node(): + ar = HDFArchive(dft_filename+'.h5','a') + mpi.report("Mixing Sigma and G with factor %s"%mix) + S.Sigma_iw << mix * S.Sigma_iw + (1.0-mix) * ar['dmft_output']['Sigma_iw'] + S.G_iw << mix * S.G_iw + (1.0-mix) * ar['dmft_output']['G_iw'] + del ar + S.G_iw << mpi.bcast(S.G_iw) + S.Sigma_iw << mpi.bcast(S.Sigma_iw) - # Save stuff into the dft_output group of hdf5 archive in case of rerun: - SK.save(['chemical_potential','dc_imp','dc_energ']) - -This is all we need for the DFT+DMFT calculation. At the end, all results are stored in the hdf5 output file. +In this little piece of code, which should be placed after calling the solver, two consecutive +self energies are linearly mixed with the factor :emphasis:`mix`. Of course, it is possible +to implement more advanced mixing schemes (e.g. Broyden's methods), however, in most cases +simple linear mixing or even no mixing is sufficient for a reasonably fast convergence. diff --git a/doc/guide/full_tutorial.rst b/doc/guide/full_tutorial.rst index 2a35360a..15c8f6f3 100644 --- a/doc/guide/full_tutorial.rst +++ b/doc/guide/full_tutorial.rst @@ -89,7 +89,7 @@ however there are also some differences. First difference is that we import the The Hubbard-I solver is very fast and we do not need to take into account the DFT block structure or use any approximation for the *U*-matrix. We load and convert the :program:`dmftproj` output and initialize the -:class:`SumkDFT ` class as described in :ref:`conversion` and +:class:`SumkDFT ` class as described in :ref:`conversion` and :ref:`singleshot` and then set up the Hubbard-I solver :: S = Solver(beta = beta, l = l) @@ -206,7 +206,7 @@ symmetries:: Converter.convert_parpoj_input() To get access to analysing tools we initialize the -:class:`SumkDFTTools ` class :: +:class:`SumkDFTTools ` class :: SK = SumkDFTTools(hdf_file=dft_filename+'.h5', use_dft_blocks=False) diff --git a/doc/guide/images_scripts/SrVO3_Sigma_iw_it1.png b/doc/guide/images_scripts/SrVO3_Sigma_iw_it1.png new file mode 100644 index 0000000000000000000000000000000000000000..3b6c514f4f3f5c5a443e4f1451481697b4ad409f GIT binary patch literal 47306 zcmdqJ1yGgi+cye=qM~9@(n>cdC8;7HA|))kq#KcL6fww6E8Vf^?vj%3PU-H>b1mKf z_so3X_s%&p=bV`{pEG+l;)3-&&wbz5^{Z=rlaUg;d7bDw8XDS7@s}^&prK*#p`oF> zT)hI{q0F_lga2V#Jr|e13V)oh>VAd4Uwijb*$NE}=Pl|#^i-h~BQ!J$H1QYDi*};+s`>L#clt7`}P6V|3_aYIz1eg#ht_P zice(pdJ{|6;_nr|n;v&g=@m~!@AW2?u0>o#Hkm^q19f$`pMP!aUJW7@k)=VC_;B=; ze2Q%|GoCIpJ$3T_Ax;j);>`*y=R~>|9p8JofA1lloeqgq;rq-hi>oJ;qlxHOE*4^} zVXe82Khk*k*E#_P=;h}chg<(znh=#SEQ79P&q zxs0HdB9RjriLO*RaV*cS!@C}orhMqkApLZE`n(t38-eh~6%oh$jHZf)E7Fa2r)Cn# zV@A$)>X#Q+gM;Xk#<9H{BC?475q1tEuXs%K zZzcmzy?rj49(xNG+rEU~`Xc|I;NTbU-myK+K_bQN$P{rKu5DWE*1&pr&ACnuPx61pnay#h;w!XX3)306_3ZCYzC{i#ORrS|)FY4hLM#m>4bQ^|WWV<<5Mt4N$F5ax(@FvD=Ts$yJ<^8*}_K^pFZiWz#fFPlFNhweFn#Yx!+DF@SZBcw- zv9T1>Gc!*dwi9#LBP^=KpFR74myk(L?t1vZ$jE5mR>JTrDJhzV4?q6=`8HhK7bXY`^Yx3@EsIW_k-< z9Ca2L_j^V0*-cMRUvkgRX6;RpUZ}n}V-@~#D|7#JP{YZ$rsipp#iV&8{?hVt3*SaX zodj#;r5-aBSD?a7 z%4@CFk3^s)CML4kZ)&Njscr7xH#|HX*Kh0_!|0@+5*zET zoUi|TY3W;fI%9&E|NQCE4y-FalaiM0I^351a$3qeJG-XVR`22oM{IYig${P(J~}mZ z^{xGVeR%RTXSf6ek1ZznKYDmr!V4Q3E=Nfr%#`z z78hR*W~m?T_DVC8VLvrDXSsIm8Wg)zfA((l@B9vrSXfw0$4YWXcI4#bp4hGub_yIs zHrp9B`rJ=Nwj@hNF#TD2FDiKQEml}hEtzIhNS*%k?)a|%|Wz5(a{=aPE}P^X!t@*ZVOg4aK1tq6(4EWU&UwD z@JUFZl$DhY8MyqN?d>HZ-_PH_6FwIfRxU8SBN58<0Jf`C6z?5kVu@n&@$UjoTvt45 z?KPyNZkY^b>1|HcGHFzNUtBcIQY(F~t4s9-hrEbxAK4h!yEK$<;J;<1pnwmhrlGO1 zkqUm$JuED&!46v)y^$%?Y?gtM({QC7WOQW*o<7I67 zy?(``-(ScHdEQanzkeTXcXjxlot>TS#)R43Akl;e)YP6875r$gBqWB5Ey&>{KDxh= zCYJ&Sia#JAfJwEe?YnbQah9X;U}A-cH$LW-EAJP(;*2|4gnuVhB9RqH2lQv|$Lnpb%LkJQt``E!P1uvNp0MdiD;K_WT zC=8Fug4h>C)uSLbg6i20@P%Lk3WW(Q&kB^a#l^W{B=24DE+j{wBI}4qPcp~hs zQmy6ho>96R}Ue2{crWm>hD@~t%Oe_z&778n0ElB*+zkj1sxnr_h7=~>yM zvGMlymOO6m=uj9fGE0Y5EF58b_wv+KtRIRc|#3Sh+fs;6Uj+Z_Lk& z9;}ad8yC{xe6`z{Acg(Z5iOuO_M@YtAN5(?hCZDm!J(mnAt54`mh82)wKf{L zEd2Z=HTF&QT5PxP-u>AXC+uryo0p&e#Bnz@H;cOJXr5T5z_8YvwaW03A78e#zCI0{ zAJOc=ne}yZrj7n|0w~UN&`H=sJv}`Gf`fI{=(IN`DsPYrMnbXH$++TyE+Tss8~gDR zEd@o5ZdrUvO3JWJmbgRpKGeo05)u+)wVL>>1#Wp&L_kV8lf3*$&*8+xemEW_3I?uA zn~hEoyYTSx_8<|AL64vY@>(xyDGc`ahfKPrJ5VbrDk^GgYk&Rr?e|!z)#^~L2em|K z&ilDnV`F3XCu_xw0<4sj7`~!9MFx^k=+aly6goEHd65W0~T4078{$(vGt8B7X}eqnL(s#e}Rky7Zs`MCr8r`t1ocO=Y4kf{2a z*Xu|;$;a2)7!S|og$|#6*T|hde?=H!u+nP9?ne-G}Xu@(06`Bx`^4ZoyvojwryMvG4c(PF~Eh~Em zYNu)K<)Zr1jcJ2y69eU`mW@ zc%1N;yLax$TAZAJ^7OP^AA16jhMu1OZH+rR+!x#p8{v)B;ruV?7+3m?DP_pX$sav_ z+|D&xVa3S}e?bch8EhdHa*c#yOT6)BXn6R}-MiX8;wio8dU9Ll6BW&$ZxZ|1IT1aF z9+_KMI0t}$W)6-R6)o*OLPDj6A9^kRlMd&e*aSQP=zRa~UEQYV0%VR?_e6)o`X*-b zLjJIr7gmS}%_8Q2z`&pV>5Ake0TTmT^_(JnaMfmFGNHvR|c3B zvNg<@80qQR%LQR4LeIEMKp-Y1<(GTEnCIr_8~=GAtW@nP0F|O~TUzKW7y$TSNv`43r)cNr=gyn8SWq~K zS{1W3eBI*hWxBn0<`1?++pF;xTr-pOTC=OVVg?J zL0iB1yQm*YGk`{SGp*-Hrtoq-JH#`gfN zBA-~H8Amw0nZtqS*0GfoA%uxsT7^|a8B#>vC_sRUA+GNaugW2a)YoY_L;|bK^NZY z^JB)=P-eoH81BP`{be7}sB5pYR^d>nT`;43$E!rQVc5$9rAJrsHZ0 z&sW8WEhzE)Ej0QcuvEqubXi1}L6QQ=nB81rIb*+8IQUXpdSTpda;||uQ+I8oaCc?U z|I;T-QGYUZGa2!WVIgg3Xqb62oTrBk>(2q}ztGM- znFz2nWZek&&YjvKvr)r-B;L+^yAGVw8-#4`l}-mlDWxIAY+7gl=S#}UddlrAbQ~O} z<&@tj^m8JYRpe6uQBzS-0nGdbRG>wS+@&5U1=B?RV+IBjBC16rJDS_%M0t-TX-@f4NqijR#6Q2+siozpeh; z1A*XFRV|tB9Ey#N74?^vXNGbNLngVgUfjq$OCgb3=vo8z8VoyIusRQ&BP zpHj)8?CI-mR34DQJ>1;?r{cD+NHmaPZQro1%1W2e|9Tx97b+T>?ZpItZ4;ALs2#&a zX2hLB7ZtTkziyj+L9fZvYyH)cb&S(8=hWX9Qe4ap@7+I;wiLFP zoSMwuukTr0X83AQ5t!xTL|u%gbV-6`Yh%YuU|}7qIe#ii;TU+12aWs&8GniFvGHq3 zz1MJKEtf7A%3EiymXi85ak4}Ph+O~6rVWvxG9-N@>CEFM3L(EJZ!fDw-8K9sBo&bJ z@n053&M|uu$bTRC?dS4h@Xlqji*KE?>C;>tg#HyP_JH3@B-xtzZbXsj9U1-oZa4#Q z_vYRdShWNNE_^)H_1%t73k3ddUH2s}G+3QW%x>63?9V%XO@0Nx*?4VE+(=>A%amEA z`SIT_B=~=W;Ac+hD-3J!d6|%K?)9qGWeSM-8dasZ1bT`SQg-sY{46n0~`L2x?qp%!G8SwROSEu$oMS3Z_!vbW!drhmQ3o`~8|4SUht05y z0!7>bP%mH(F(x02wYrTCH9fyE#NAFp`rR~Y~h)QhxX7pjfV56;R>>C zdWvjT6oA-yeEEXKsF6|SPa9xpt4uW9rQG*Psqny?xPBvK=L zK9cqWfxA{L_3c!ou~(9dM)gGCw)Mhsp`0CY8ESD~M7aP-g66q1Y!Jh4IsGC?2b$?v zg+uS*aAV^YV&aI#Te%a%BU~q%Z!?#p>?VFE_zV7QZ2SxW{hx4^@=8igr!~$?7#PD< zF6EXgi9o_PDt2zMR_@+)b#+xRN`G|lGb-xlQyi_Ude{7K9mamPigX{ZiCIss`#3#$ zFk)02Qf~BTI~+Xt-%$!!6RY}vT?&wRVqvjSF6H>&u>Oo51w^=wN(S949E!V(=}6M!;QUKLywr86GZTJCrdhD>Rdwj6rpPg+HvKB%P zym1ElQ%3FuUkcOGo@3SFG&YTNbQ{QKZ6K_C^YTI#u+)6Ib`J~%3L2WvsBX!mQg9Ur z1b_r#&;fv}q3AupiC#dqproMxYHofDU6y~ZPmcfMbZ2&cKF@YdBa5@kg&Aa2p9X)O;>LJ57NQvczGDm*8nmB#~g8YYk*8q6`;JFuiS1!fA&{E<9CpP0N2jW&4CmJ9YqgX zH|oM@W&~`OaY5}d7%4E~-)VcCp}3s?u#{e_kw@@u)VKkjnboA-V}!<~3)XCmc+^$QnR% zd>zgIA11$BX%I%)g< zIVe5AD`w19SiT(q4cboLFj9u2oM8#EfJ$d>^1lt6c2AKu#Bq@bj%)4e_dD(cq3 zfdPPM=iP2Ge9bz(CKM@|Jm2T;>FL?r+0g+yIy5?Z@BaO7wOU$G-<~RK!z=VH$)U{F z0`DazZUwgRA#Y^|dV6@k3vm9e-CbRH*g(rL^e(tuj(6XlpB^<{X1sEX4%x?a!gAGHJt$t+R+tULKq_Nx{mM8@Pl=JCUQ+;FO!1VHX<@RM( z;Oy;wg=V9npq?tB*5ts*)a*km9%xRLmvzSl2Pm!x2;vr|UPjwz)+3656535TQdW>u zS>)nTHB!bgl#N64KL`blFR)^r4%Xp%t@c-kjYr?Vd#43(zwren3yUAfP19>@?Etgr z7#NV-V<3m169#>F|KH05-=vI;=#`a~LAAU`LZY^Sx6%^yalG6PL+{#)moKlvcH*SL z2Zi(xjs1|?%suHW?2XTCztun>*=V`2*WA{IdLD~=jymxedU8vjZ;`gZYjl{fv9T%X z>6=Sr>L)6l?h88eeE9I8QR(It3=pHJ^-++%7f(Pypgqe3oRbpdh(y7mnTCyvAuzJJS_1U$=lb0Lq$&vO1^-uAmYSjau8-P(zu3%?8z@2{a{? za1LFtzP;VIc+$1JXXnwQM_q;-`Vu&HP$OEZfNbmHmwR|%kdcwm%!M?N5fC)>BuR)% zNF6l`7#I~cge^);1~^oj0o*|VSBC>1PPGB zj00COF)_bWNol#Rp#zC#KKAP)0O)`g&uy!UFbZtGm4m6IC>)hvBT|#D z9T!hm+z}-U?oEZ8p-f_fYGm80s{lv z$jb2LOVbPxI6jJzS$f|Nbw1`E0z_aVneG%mtH z2_?Y7!m?c(5rGxi+TM-_Aq6P^*7?bXoV@%eIEkw7(3dy(-Vn^mbpXdVnyjj9&ILau zNCb}v=qX3DktskF1Y+;S&1`Kg@~JGkS2CWxSaMuhXE*Q9_>N6pI9fh(&=j_%M!`^7 zllAp=>!lt~Z-VsmlWc!~oTQ{A{pQ9rxxMPbMmTbdBZZ8bu1C};f&_qrbrU;S5^E z#rX-%9HT-;D&j_{Pcxu31VVECIZA|dIay!#Z?xN2jwV6r>u{cl!^Upm;Lw6R?tz6f zV0@kUsk}TcDDsb3exd25FO566K;^r3;|3KAONZ|9JT&{EDi^-GFF4$3150cmmn+oW9qsh&>OsB@%L*MT)ZX*`8?r!4QnQ-J19(nzAX8*)+iZ#?)Md|oNP1R}Cr0|CF zpGT06OePs$lTUQO88a!dM=9rK3dU<<)^YhEv9@{=MnsC|>0C_^x z(2x$A(e!L{ko(-XAJjTTPu^2qoGu7COn;*#gu-Uf8LbDp0i4W#Vqz?g+|w8HLEHfD z`x&H0{r2NC#b;4c25LuHMc3*2};Tgm38YuS&mofeCJc4zz3(5CJJ?6M)F=d-rrA=M~IBBm~qpwYqAWS1n_2 z&to!>k;XxvzFaQTUzpkf(&Be+i)it30H4CLxPaQ;=;YnQ!)pN3QW>atzJB{pP(Dko z7KlbOd{Lz6m5yLnAIZ2Y865}&-MSw>lHU}1qtrw0PTWMUeTe-f6E_ak!8s60u@r}X z0$c7#x5n!$65z7Z(S5y1%=Mj_|G}ri{@uw?ukgLcd;@(JPlfuN3D8yrSd{;A%dh2f zN=k+b`>^%i>ge?9k_Qs}eADhq6j2B_B4b@jy3az}Wv?;c!}_CO$*}4q{SWDq!@qY= zSX=v{zu+-lQBjd8c()}0nA-XBIw%-fTYq}p7?}%j*d86*AejJ51g+JfOwIxIYPb6au`z&=F;lHT1Nnw->$#7+jh8%G)3F7iPteniOydC;3eN6-R=P zW`m@mDS^7rX|D+qZ(EE|47gd~vwuuUp#^yRdoE0q=JC!!B^sUx9PTUrDRG=3mK>gh z#_3>wBhnR6HKRLAoew;15EiB{&NnWg78jO8F{>8c#>M>v1}$_r=;Y7>-z&2B8>rfW z^5S)c|$~z>hoR zRTjJ_$6j1&vWrkj*sA!bzS0&hjauMOsbXMP;x#unJMRx0ypH7Qo>c-XgWF<)!?h?k zx3;k{IafHtuBd36admuqe}5iIHQ2&+O27%Mlcl0sK*n!VwWt(9SxaU!g@YQDY;6BP zA0bW=DJv`6?%>I!};f*+a#ooNFdwW%Q6EB-D`N@f9uTUY zGBnWnpC)uehYgLkW(ha9xAP9o;of}61j50{L#ZJsj{=-#@UrFF zmT9P{Zr{J(3_=O2O=VXdGYFk-VxVd=Fbj9oVP9YGfEp~R-DAiBBIQ3}VOURr<$*J! z(-r&dza#}(@G&4xaz7}$uTLI3Tcw{xqvEQ2N{T_@-YrsIOq6>d*-}|qxzrVh0mlaa zKsm+?A&x*eAa*W&MB`*oZ#K3K zGQLe|Al|Oy?<~}v43T68C35+s3#HqQ9^E2kUZG3($oB|HD9D zM7HlTHvadhlb_hEgsrb$z3Ky=hxCe1g%#%_4${cxPE%D=GwqRvAjC+KnW_yqL;ZeR zQmCtPadGjDsRoe=-f|D556B2C1Kf}YeqsX^VY&X>J>NYt$HfOW;6dXb?DQ*YronH9 zcnbUdFH$LTa91`-Rc#Q#^^aHPJR|*Xbj2{^qN`*II5A`Kve}41kO-@%=h>i8< z>NFvtZ7+lCB9B1yCni#%-gqUunrmQZYYX*|4pxVCn9ASJd7&Z^Rr@0*`2J~+pmNER zJ8wP%^(D&~xK$y_=t97aYr38FuY$vO)(5Vr(%8m$5u(>km7(fSK}z)9s`MDg`>Q99 z)v;)N+F2mpw>ilky$MFRQR9KRxw$n25i%88;nscUKniFYACH1ftuPu26!_#|V_|Pl z6RTx?^K}$29uQgm_HYqYVrRj8RDp|94~{;~+<&h({Qo7EP(|!^Izx_%IRW#}ur%7< zE?EQR#P10YPoFWm55PT!ZEHn=cU!KT2M1YsrvfX ze1f;{oO+pcnx#*_QE&219R5u-&=a6D>aY=h{rdH3N-sOas~{;N0Yn;@YvC(f&@49h z_W?9FCsu$yq`&9>Dy8Y@<(pW2=(*d@-T4Go$h+#f8gfYUykR*k!g8Rjy?As~1&n61f8 zU;Q`35W5}H=0`3hwK91H zHTI)1-}zrl3D75{uV;toC42SWyj#uPC!_k87>}IhnSJ}8wSf?6RY!P=k}ZlEO0wyM zO!tF)eI*+j=+TC%-Grc{q$4yDd;izMfcD;Ue`6ldx%`!xwKYjCEeePR%+Agdw)z7# z-Cr98g|I~Y4D9&*jmb_3OIY|c_x1*Xq7JRrBc86%uaFBI(RQf44zmGbsJu&N$IYu( zYbGaSKnQp5>6yH!sdn5m#ua%B4nH_W43B&>qh}Wi8jto*`pzc1Eq=usuV4e%pFWrG z4^AkL@+xpSv4t&#a_}J=2FT^zeA|7XNMhiz0ro~jt5ylMJ8e`pL4^gCKo5XlB)`Mm z9DeqE-Pe$-oQ=6SrIqI2!USDo0RRk&*8-;nlFUs04$lR&tPqd{{|OCkgn#jw1KSRz zt@rVMAOryc+V!k2_XLH2K-9ms!TbMN2`IIkxdMtzEOcr8iz{$^!PfW+s#F6N4It}q zPLsv4(#IfC=JRxnINL!5AcT7X^$j}8_R&I21j)vDId`Sw9Qss4g5CXTnXX2YWN`d;I~cU;l@o!mrLw16XwDgK;}u zJw3RfX8@w0H*k%n&vkHJoF7#8LNf)YaTvlEkfVYUdjU&Cj)nDww?QLUEql;vYgzZ>nbzkW?cN0-{-xKYg+fkhdL{_gDoTXgt=WQYw!GryiZ zgAn3T)@Ch)3^SQcmpYZY4+DdOfK_S3nSCA3(LD0|>f89_iz0cd&egtqIFny|HlozC z|3gY!LDCHmsf4r)DnETFy#1Vm<42={^c8=y=5FC4I%f0Viw|0*QJXs60q*$$J9_|t zTU=FD)gtrp7Qhqs=SK_ep%~_dAlLMpe>B$75r#6dGA0dhFpO34;v`%lyx+P`r;^LyClX+rpUqR{zjcfzR zPuwIE`%B&vKAKDzj$VA!)~xrRG^KTZ9b72<@B2Vt3G{%kg>`6JkXg|+Fi>=;aLx`d z1C~bf;6dC7FXvg_1a3b^@<_&}0>R(7h5xn{fA@r|8$$y{GlU_&p1{-vE`D-QjN5l? zf+A%;lJ2(uWuO6)8vfhZD)%STx!wM%059qway8rNn=rdTt7xAj^X5$vR8bAa_ASeqM$6dxk+^FQUW9 zJti%jd2ma2U3;bNGf4;}I-~=m97F9gN%zP7&~r{SV;=wR7gB!m5O(W9LVSGs>>O#y z8ShJt33TuEq1m}otLYbPw9@;(XPYUcqHj!}9+?M+ju5Vtl!4BEdnhHi2%WZM$>pp3 z=;O$W$c6(?zp*acd9QNTq`^x>@4v#6pagM6S<2jm-=ey++O`jw3-?kYG*%Ykb}}4} zF*|?$LSsT2_P`)2FwQ6yd9~{7`gHv_Ef$U4%eXqE($a*FFpn|Ay5?(V)GUJP;{x*| ztAgvQz0^w92RzgLNM$)Ey1ENo$|GdtvnlbOe;o1AcZqaYJ83zj#>?3q{`2| zm9*LUby`*nq0-WmQr9y&8I?7MIXhE7@{Oi%_gus!u;+WI$r)&%In-?azCBhP%!Ly@ zB^vQ!f0Dnw*}Hnn{~Jj(mq5{yX(%gpZ|Av97iBq)|C zczMICPv=;JLlrJujFxvD1yC|IG@^l9A{>_Of-pdS;C|G|g`{Jt)b3)udriIy{edVi7&Hm}HWO&tvIariYAui< zX#tOHX{k8qeA#`#K zax`g0*~$Bh7^jzcZrGz;kmp=pR2XQe%RqfUDvSsS#_gjN| zp4X5?=hZ+={Rk3hn7uEJzlIDQKfyR}ifhV!<9MO=dKBB%uy4CMRxw~`h_PhX_8D=82ysRO^{>kd zXa<4)RKhvRHnN?lK?3N!Pj}>9kXY0w3GrEJR2{py}hZ#_B#{ zM;ex>)dcPLOJW2vapMkz6&U9w&-K;{o)_I@{Oz&uyMK<&G~%=E!WttLuO2SnWiuh> zH4VcrlVYxz`6lElyZ5`}b4}K(wK;D5Kan}XE$B9UePIR<^gBqw zFhB=M%17Y(bi@exizd9S{die_A)3eXV@kB+br_idjAp-*S&YVGw@#8E>ie_5A0 zI{~3RF)2y8uMFX?#&EKnRL1bx9N0t={iXrvYsgO&;+^eBJ6r$!<2`X9xoF`A5pcYA3ZuJ{? zHn;80Eq0@m2#mz^^_@owp53OVu9m)IY5AenBhJmuKGj07ND%9g{eYsJMRTf&iLRo{ zmysIhU287JVR+G6AeMk%NaZD*$$BA4j~Ukh2*swW9q$$G{*h0@>ir4Y!L3 z@I!xtm;&4fq*N+!IZ+BJ7zH2!NPxwM_Tq3!)2ZsL*VLBVPxy4?4h#U}}@pz+mB32aD6d0!&TrX3jc|Worrn z7B`k9*&7cn1RGyWHn{o{rk)zj1bPIqHo$e*qF22;RJC_h_XO!S99%f{wBTQ?CDH z0lu$-`}|Kpz}rWc%}@cdlaqYyhU=(#L+|Y0Q8O@wG-Kg*LJWhhhet=bb{iV2Yir+p zd_Z4k(`mdB%QOs0j&y`jp{$b9ubj7a_7Dn3LuH!o!}bMpw=JC0TOm`We@GN21|h-P zxRAlXz*_$9_a%_xo+d3A=@FIYlFdl)iM5I&vdgh`u8N-wu7P(s-Z*t->;wD#a?o3!7q>BCf_QO-=CQ%3SrKQ z%PRR?5`U9f!d#`G>_k%uNPBy-+T85yn2l42k%@t#Rg!)eme#hS6XYn%>^3?;kn{O= z>nV(@!CY&$rGp;m;V7{tUc`H-#F7&99PlOMx(&aBR|i^nZI+iMF!P%=-){s*Jh7sI z(6qR3uF0Pn)hBM}{Gfeu-VcI-Uh!2T-$owKtb&4IaOz=t^4hIiH1uiH_pTKxM$4>C zR1ymb3EjBju~ixfsUiY*co9UQTJk#uRa2^rw;^KCy}E-MjDUd|m>GTUyFh>&d=^kY zF>&gD7l0&<&GP#y>T9oDiu9Nz9}UYQ_84T&DqUfa-^IN=p6(f5^yvN9!}%{y(w}7W zcQ0M%2f5#ZbFUCS9>6=y*V%NJ&2?nmYdVyXG4I-gdV%;79`8sJjN#$(UmX+TuC9;t z?qM+4Exn;VciZpaXK69MnAtG+>~epfG~j8&L+*D3vM++h2AMW0KmV9pOJ)wW%}=+s zm}_8`$UhCCR}UM@RO{+{@u==Ho}$`Q8Qf>Kn3x99ljInbl;sp9kq0ZBtOgxVI-g7$ z^f^RtSXE7Sax2=mNF5XGeYFAes8A(Bb=D6!_8)ZdbAoQyvxX!dXprys6 zag4?Ov-KB)0JBkJ^4}p3g!37voQOuqt34*a-6b*q9!f03P9pgzIA;;&EX>Q0GB&br zr}cVbdn!W&(0qJ-`&*x+vf}VoWaP4Oa%OIRnrvx##Y!80BjlBcf`V@`eX2YIWNEKK z5D2C)P#Pvwd(;STNC+atffCL(9j@2)_l*-12yaFQdwcnu@%sA2kI$9#io{;LU<1kK z?=V+)p_79{zrA1oZxDO{tU~}tA9xu!%#cWY4N@Vr4H}R(pd7)tv$bEh$J00&d7iL5 z((h1$RodSgBhN0>G?e0f0KZkT<4hl7aVpAf$?)LqS6fTc zftpJ^up=%rAwQ|Fd)QsU)$z6#o%kDNSLx48t<-(@tmJeuA4c?x2XpmX4I|-PW>U`=5=8i2L_Zik8cKQ-Fk{FETDG{$&aMijwdWD}yazqzS(dbkA4Gc!qR zYYu~s$l9KsKydr|96OL?S5y0!9YFd!CSG~|t3_^LetB6XF54&XpM0cWaejXK zp44mMj(&Omo(?H`w`VI;!D%^WXvt%blks91TsE%U5Or$c)iC$Dfr)Kg^p9#QRcCTNuukX#+n;#gZ5#<~p!9w79X|6X?$c-#kCE(jO9qx5-*Xm$E zk8!u5zJ3Zuh?98G-6JB1p+bd_xh-}*fRRy6Mm{3PtmNqcJKI;nT}TEB6)sWP^)o%9 zXYcvAJ7vQdRe~9Dhfz=Pt#CrAr1^S`uHM=MMiW*C2X@5#m?6hq0@k91`fn4EZtyNC ziJqMszd6j#=ANZq_=H=)sima2v@O7gj!RRZIh6QlYmv^t-GGSuApR_=bZWi6O*&|pWhy_A?da@HkmT* zg7oy?;AqOH^Wy{OL7D3i`G8rb4_PkV@gg>Paa;?D@(clb_mx9!W^}Z*{|q&fepnv3 zapMN27L279m<&qMmX5;&O(>Hxs3(Ift4f>}6C_D*#DTp7*61!|RnALn(Sh311}FmE z(5?toW6z(iZ2hFxE(ENW~Kz??k6bs`|ekSDcGoj)-l@fuw#9I}>h$*W45+n=Ma@fomLT?G z!tzKuuefE@wT@}c`^LvDgQz@0Z)-i|OX3gvA6j@?NjBz}GT2PaJ|`LuMd&@7d4o_= zQLpQ7L5ASA`6H3NQ?(u_-5u-*1BkxC1Y4f<(i;F&&7Ij!d;U&?yMO$_Z!im#{JNBQ76x2X z<*L$6s{BGi@Zhs9^kKPP27ZFW0ohw>0fEY%EgBjcAWK1AT{66O>uq46qhg$o_1jWI z?yBBLg&0wpWt5cxB6VF&jXP-O5Vuof#F~NO3|+v*koVadP_+p7t3Viy7BNE#HoK7Y zrhuXxMPwA#r<43~>ka0$Pp1V>DQ_F*0$KP2AAfOj*GzeU20no>yk)4k#Tk&$r6^YJolU8 zT7QoolJ;taz~PXO_oM#cplX%jq@vR=w=zapuE27S*`A|hQ28IKv^QAsW&7bM`vfvm z;6``@RS5j?<6CAXGbAqcAsqnpFnz?v_3$@VWK@XUaN_-mw;FM#*fUzmsWs!z@Q#;YT_UBPLlAB%OA@Wdbp2`UIEvxDphz0y84a&$+ z$Hk3Ie{U-KnNiGd7g9CfVJ^me!n$`){O;kA5w`u6%eB4d+)sk{i6eq;Z5bF}vD3xL ziy95Gc&q+a;|s^)yBlR>Wxj41R}i-S@L50~KIzd)WL(P3SvT@Uez`8Z^5tSat|(Ye zXNNT<9695fo%<21b8Dt)3#L2ZlUzbVhi}VMac~3!s|HzXurHZ^zi)T+O|;|M>dQb~ zs@ClU&G8jNObEA-U&ywB()0NRa{cD()YIQuBTEPPkY-=Oc)n9)|yI_Yb zW5UBt{px!YhJ31kJ%=$WI=h!ke^xF2Jf*dkF6XZr+2T9D@X0VaQ6u4op zC8G|>FFIY!^ITDW#yKraR^|-rzg{-pMY1qtIH~H88u}t5Ud@hP4Ua@&5>gU(IJ5Ec z3^opIA4j^oj+8zg%T2Ns{jM4L%r+!yxiUCU_jtbhg8Vy>?A_BocV7DtLj>x zs1FFpjcRLKo1Hy&0bpVE%=#m(<%P^nL`*Ya5)NRJZ^zpq(p;LERee33HPxBcVNILWcu|L zicG77W#rus->JA1`1BVLaw6bkKt93HZ8*0@2P)PFpQuAL9ttyv@Y!(vh^L_P5GT?| zzkmPU*YovCxQQHsOxA&D<v^d1#A1WhL zjL{t>S<|l92NPq@>GEL9Ju?F-BPJtbTvy+ml2V7Sp<$4LR8h_Jm8t3NFSk73Ey`S_ zr)Q=k4g$o8M_FoE&;j@71aEMm9YnXr?E?d6Zpd{dZC#dN$^w{R`o) z^GhmfY|NQfI%rCZ#IcyIexXCVxwU2foC@QaFO7S^GE~#A5V{2AaFcVbaem|p(o%EY9k(Hd9n%Z)nM7 z`v@=h0S~wPkL>$gE@nB`ifYTkIIl1~FlD&Sf$K{x|JKy>HKaa>^fI^kUq2@S;ALTa zkH}Ny;(2SHS{&hr+q9|CRURH+hxNbc#(elDcb&-B=Xsy#ZGi7+y2_H~<~Q!&uYR{P z&k8jx%UaDcmtM?&|997eOb@HGV|8hfxUPY6hjWLk*U+<5tcLy%&i*>8>op4ZMM)6^ zL6J^LkrYH)us}dUkVYEmkPd0-2I&@%2I-RSmhMox8>G+tt-bddW1q3_xcA&Y)>vz} zRDQp2yze{b^E{vF?8rmLw!L_z$tn9-HFAAJEX`WXvK~CchN_JoI!@Q`Jzp8CsJph& zB#Rb`P8^jE^6|E_y~I+57nqV@XY=znI&l|$l|t8D8TUA&9GV1|TM|9$Y~%tSp>7vH zo=L)Qi^ncMCya}0hzQ?@%-VErzH?;qP7{?I_R>Pr3vvO%*Pr)if8P}oE3iJiJe-3OQT3oDh?R+r#gUhI&mifV->0FhIj-A{XTKYi%`PN^u^}!N(>>Ld9t2GP^SwQx+pdWVe5^V)AHNQLol+CECP5 zNE10rgU$!XwHC(c4oq`0)%;E3<+IUfb3c*-&BfErXT0&$(501 zK_}#b4>81S8+E%1uED`qyp~#z;52g7iXP8B%+K@6N2ExD)1Wk@l<(TWX*-B^H5%2P zyf*UBKdhN!f7$G&)2ByMn(ubk?r#lsTUk8L{h?x8*?i(y;H5j*k0QP#3-wTw?!Xnl zK&UU_N7~=tO{iquuqAM!L!uzdbbC6 zpX^ha=GNuMXVu=y*`zYBJ|Z@$`zq00Jp%8X&Ygyad1OD>R1bY#9k8c)Y|J}2*ivnk zSzb8Xh~(+1HNjEfm2TBZf1pE0)ge~08*17cbR}+0B_b|)^_y$_!PNC(y%#S1!7_Ku*JI zMzOw5R^?Kw(`Kd;&1;*>cySU;$M3|uzHT4*I3dpH&|Ea=cL4SSvLE}y)hYj`cb$2Y z>2-|fUM{osSu0`f3%d!Q37sWs zD+@GST(IygK!EWNILdK<)l0a#J_pQ$KG%WlT1bh$Ce| zGzazm^vBR3fjqwj!rK9@Za}CYOnbh*Vtp7fRwr93|1m$vdEKEBfM2 zNz5y*)-*7{4!iyC8y%BE^fD`s;jpfl;*Z*$gD*nbRMd$S@RVE16Mm15u81xxvz@6= z`k);on!Yqq{CsPgCjb@0Cn9P&W3#k)aAzin82Re_1;pnP2F!oVk3C{rj@8zijwEA? zY$WM6_9r8Jb+NcNv-7fs>KjK74>Go-ru~!sXHBktLUvx;Ke2wk)PD4B7)|CG)G!EW z4HXseM;=+!9TUP?JCWZu0P1QEpuZ)R9uA68?GLzJm-@37{uhTVVc{t!!3~0t8RB#d zrHmt(2tlel5bVsYayott7F)2!Ac6uQT|%0Nl2Imk31l~7(y{0Hl@C{qv37bU!}ZT} z)~7A##5btLhr}9{N>~gO>}Mh+lD7(-EzF%VFLSw5 z$U{+R`z)z)PvFzn7sU@PWwMLVa?KwXcyYB#kJR0}y`v2sE^;6eK~Z`LCd7?nfHzuS zoS4lTWXk!=<@~Y_5W9=&)uE z-cd8HbKRvfhjzq3MB-&mGRSR@00YLi(yP+G_lE~+42{#v~ zD?k^^%i9|rgg>y({b=W7|2TB*whd=g@8`6%v@EQ< zIUle=dj${U11xkX%RYPS4x|VVfVfv&QPDm)818npsfh&XcrHMqe0WR%?;4_3a@vGH z!U1+#2p%GSV{@}7;LO01s8q{dL=K-40STxXfUG+(hU6^XLER_&=m9tZ<;E*O?SP-P zzrSCu3axt==<+~EylC7NV0rNCV1RRarUKtFHufzzMyXq4*42jaPBk;??Vy)Odn34~VkDqbown$`n9rS4q=M ze-Axl3%gy)mg_6p&b~UbnC-vcXX_mQpsx+0vgx&#UiUg_1o|`5FQu_4Wk!s-A^MsMXJSOy0l{*F z$O80_fhE8ItDG*PKLbg71l<9?8NfAFmcQt`z|}#-__+(+c2T{c!!TB)IRH8#B6y2P zDl9a5M1`OuqW6G`{Oapl3dEA2nJ5phNgg3aK>h@5`Th>?)j0?Hwk($dqP_CmOFqW zA%FsRGiO+}ycoI6t@7c+hc=sI!H@wg(e1bkPWLwG1{{%hV2DHX5(1oHQYn6^2~`0+ zWMc64eVEyeS~3%lU~wnRWZxZ%A<{y@Mo%`!yF-P_(i_C|cE5e*m>(;0ntbAf%SANA z(6|)#Tznr@m%s#`O3TG|2~I9I^bvygM1k?7kF^>ACK%My=i8hDy=UYRG1n~=6zV4z z_f2GqmPZL1!r!k2EaA0Ev0n)yO=GVSWNLSwpu}r(ioN`+fzi=9diz5AWCFLcqb8=j zv*F%{p70Q{N7AgWsV2mHWP|%}+sJBtGP1M%z@YX7gf}D&r*(SBd^rM(O1ajK6&gaf zQlW+@GoOuzAUk|_h2<~M8g1$5@P)1@;<`GW?jW4JK)P&hYD#PVcTmmtKS>+*bB?|s zmZBm+5(uXb#LpgoEP|i{;yFNq@YOvT85u}=ih^Xj+i>$7iM{?GO<`dn0$Rpz&@na^ z4R-H3yfPrJ4nbrZ5q|;gM`?3+Z|)E%9}AF(rF;II5;z)nVf!mCegcmJBiNyM<{VIe z^9w+~RzXU|A|N0DVSrQt4?7a#>_8&uzyY4scX6EP0s^(9pR$F)XN~cD*(eGyt=^C& zhxUtcl*w?IH8;WO=2j5OIckiArh$jq^7FvfZ_b_lmgD{z49PQC&6BWW1iQ23b#+g* z1d}m~%glcjwa#k>J)+{ZXvlKqe7ohMPgddVm}0FLJi$jB=;Ib2wP)9Df05klib8P? z+By$g;eKVoR-2G{x4!~K@P1!-c9oaz!8gpiv=l$7j6!ouB_5nU7>WNoq7xubnO{1r z{Of$AP>Ny;oocBdmvA;cmw^I?^-09m`-YAf)0h21|W}b6=XaD}KO%}>NvUz9& z9c<9qprM37ezdnMI)`w-UyFQbT8Q7TW>nrEB)Nm5d`yTDQ%CIR@ zWYC_Q!WU@}P%T9zmoj8;Y0CM~QW$$SK6Ev+n}U2;@ds~^U88n}SGF5%l|@h@)vq!K z-F$6hW7R*H4N*~18q%*xpr@9fAAg(z`vN>7u--%_CiX&>3UR1_%usuGcW(EuaCj;o zV0mj?-*K<3w2v~GWp*>w*Z21K#{|iQdx{cz&Aa9N^MRa3?Eh4? zg87u>KR5JCFQQRA7ga7_%Wy6#Awo2*Q~xlrNi(vVap&aR10f~vx2CdT-_9)i9%Sy8 zM{+1TOHMHJJUlAy_D>XZIB<0OoSE`fdcPohW=UOon=FvJkjEJ}SWaAHT|JlF>~8eX@v zZBtY6u=pY_MP?>FK%29V6BVw^b4CeT+^Gn=U-oyu{M`*Dx-Fz1jO*~>1>Hm%MgL!3 z0C-uMg_7Q%XhdXSx-)YqMK9BcM`+w~jnL<-?Z!+NIS(ayJwqu#cY)nI8^OdB{^aQc zB3DFP^J)BjPOeJ$d#&JK4}0v7&PRrq+?6tV+zD zNpsOVKlL{D@j@-#p}?b+$VYbEX{k29jF69bkzQ32?)5U^KOjX;@7{%1kTF!Cv~Dn+_=yb8rDx_d+2hY4 z4|6L{7}Prei9#5i6t-FDc!;IR;^EITY{IvGf4of*6jN0MgzpvvWbXnLrF#hTeZo1&FAYf11(je*J7u&SNsX z{ZR&S45JsXL8a~~QH{v>ek=C0n0E6Mm%1PFf_m?*8s8%$oj};&(_51SsxvaLI*&Jd zI(q~@qzUtkdz(#PxA!NpM}9jBDxB??PVhRcY-p_+)gFh25x(`cAEC2H+C-+EY`#=z_IBr?aiGZj; zt_Xy)G*BUxm6gN7!Wtn`BLiUy(3TV^)f7`cffS~vr-vZ9eE#BR-XcK z^qIw6FN9`Efb|GGX+Y*afZ!~oT1?!U74p}&w}W9pgG180I4hoV1amp-i;|K-M|XDs zoX-)&OgeD{Hv#xH5y{CK>kd%hf)pYSB_BdbfyxCzDg~nah`2v14@l?@m-pSFdPP#j z80qfDf@AUZeyH0A=Sy$}bwX_eUFp9Cm2))g?4fWB8-jRAdnlEr$$vs=>cd2eJK_-x zsBz0vrg@~7bdmCFqH&ffX(c-PRvseMRYcID=)3aT9B-h7il0=6E7@21>0NKT@r;8s|9jvf5he9Psq2k(B)ClNi& zTylI7O_z?}b9lakcX{iV{1kAR)4ns{jd(gIp^Ha6wx!NBDe?#QMtDlf00hA%YVFyf zfj%)cH3Y>P1j!|!)X)963SX~rauSm6V?T|C8Q^(415&rqY)!fJ=S^2L_IXNDQV9t6 z!5!3x@C0b~CB~zVL1?0RsBEfNNl#M7-iC;aHAnyj|1x6uf66w2r>rLjTOzx zsHmubIE#B~bRR-CuQKI;jitCMTL&kfI$b*PA#pEfC#SKsEnrI_I2ec&9tPDH#PJG_ zcsdY{vF$H5>a31OS$9pLSz`#JL)9Xg`dvQUXr>j&(sQ_Jp)pJ=9zkUZA=z}WU5%O) zQmwf8`rf=ovg)tUUz?YC>h294x6iPPdX0=wRk>aPIJsYOO-90aKt{N(Iax@ztFP{& z?5B(KZJf~noQX-3342E>X6e^IpRdzZFt~IctVyM#^~hHx%A+ zC~(x}y=ucuaDDduZb+&$99jPE?&2=6_gJBu{qgzLjzt;`!sFuVY6oCY9M&^q;-?bD zJfZ4iCUVUEZ$KQX@xxPrZKbfw z@Tsh~gFh6~DB=2XiHTS0wI^=SClmoAqW=Q|m165vDprD?yV7QV2?tVbu+p+;9SWmDcv!};aIi0`{VEuP!t~Icw2dWxy7UufHSlW- zk5FbhE@QoiE4H7So&DAV0|ODYc@!n_kuoUN&M$1vHt%Pqyp#D7=B6euR_ZjWFwmywX*l(hdGEhlSP`0{45R0!l^8d$xT zPRzJOE>f4OSGAha3e?L)-*>K9Cpez^E?*|AxThNayhL~H_UCqMhN`2Tnb$yBmZj0*;Ym4fLLRM8UYp7sDvRI35h~>($OQi z@gxdO@rZWRagV4H7EN=9NJ1@acIC z8#=n3>Fhb@bVZ$n)xmJh$x2`OU1`HdPfczy%E|1_CGYz2Hjv4uCqJl``QF+R@@;6} zjwfxth(ky6-d!UGch@iF#kEhQ-K?9}Eu>?GSs#p`c{2V7`g1-tM`*6FE*j1K;)8a> z6ND~)ws7kcY>PlmYUp;Akr}v^(**}fb=`-F89g*=?Di-4F}Jc7uQSQ(z*S^cNUA|>Y4aw|p5BRaJ2s2zr6^X|Nr zRC^`StrSIgE$C81l<=%h+UDrCghUw%vX2jk&7*gTw_Pq?x{9;q$rP^K(8O3*G?J@r zzE~>1QB~R-PDQJs_%%9MU+_+g5{PSpAZF4SfOD^H}eehkxK6s$MFjZb8 zF7*-I*5^bu-)T(XEs9HVbNy&R)G@_#Ex!I~&b+V}si z0m(`};rFAbUqxO_nup%wkd4S_6CwO55xpGHv?{|p>wEW)=#UKub8GY2;}UF|7%6H8 z!Ek+?xHu>TSZKJoN?y9Xd?_|o?_X++^bM=DgO$31&?VZv@)IhmgnKyF9d1lWz>oa$VZgjJBeYY40+A)aKe# z^%U*qwp%pUq(F;6^Tg;w#hr@Q=i7f# zw4WUwwJM>4DI)d04NV{V+-uZ5oGK~}R>vDeAi@^?rXnKht+9=SBR(E!@EBilxwn$W zpii!&bBlM-op;k$I6cyZuZ(7Jy7W2eS!b(N`Ni@ah|eQ^T%Gl>1EU&0su*T^-|r|6 zsrt3y2@Bx+#TWm51S>!6Q3erR7aruv_I(L_RT_{jh{|jH$aoatN3VkBIJn8o^n{kv zikyr`nt^GZx;rNADgnH3Ly!I;Cw@h@hE7#(Nif@Rolg6 zuv90 zstLUS4z||P+gMKY8e6aY@9zjZ*cS6>=fi${ZW*)VwYe6l3|tIHd*$YdEU=>`rzdh& z!z&?4FYRXAyv$9+GOhM(h~y5!HnO)S2l=ZAI<PY<1U9) zWPHVEeMeqQa-GN~5rUNlQjWiB5BHZkf`)Bun4MzIo>4#C@Gd4E5}6PaIP zHbxC^A|W;+T(S}tI3@$~#TsPt-0`fzNB$v{eWAkjE!EaZw%glNP16=8uST(hM-cjD zgD8vMe6VDdTFC1iyr#Y(S?+{)#AO6N7S&!-(a6i_7!Q76k!#wt9`6=r^XHH*e?bSS zP6iJ7h{!dVF{I2S>L8*{52W?h*WsjW*_3bkULF1JEDa<_}!J6OZ_5rMhFQZ2@ zGR>%;Rov+aJsq;PF`riio4@m~BRLdpZ4*!-xgyYB`8Lgd7X=65nuVn(?=;iJ5-D>FS(~f8P_@3U+pOhz@iDAQNJQaQKvT<+G9~RHC^a z8ztX1#ZadgCq*X@*LPH_)}`#^c_=jfH${kUFBZZHFFw>w&GU5IV{WukQpDehb}Ejt>YmMmBr;&D%Fd zElT12dho!I0?*pIAa_d5!boBCe#w0YgVmTX_JSyx;!5w53}pXq^$|4wB=&UmdQUc5 z_DizT0y>iP??PdiIyMm`C0Xt-V30u~ieisV2v1=oJD!@dp-+mZ%H?G#SYq(<}Lz1zvu z@YI0l1~h7az>Vs_$s4|nrc0)jMMz*^Ixy^^Z?Lew-UZsUaqK@Mm zC*er`HX=g`7J-+w@^U#2FIZR4i|EATNj07yKXqjPeRq53x1tto89Sp?Lwhs5rz3Sd zPkBctdhVdfuy}jNK;DJw@+^z7tLx@XK|i`kG{I{aEq6SQ%cb8<8A9%OH*9Sj*KX(Q zVu$v`9mg*e7wD|@rcIi5y>wEply6pVKDXJU(ck)UG=r-t9j(HTnS4QjJ(4M0Dq-o+ zJ?^S@b#Bd3Zb-*Hl}YQdP_1i}pBE9~wLz`_P$P{q1& z38~Rfh7;3DDW8%fB3?pT92|@JzsI4b3Zckz;gCn<6P|Wbrn2<3MbOou*oY;xaOF}C z_o3DoX}_aUT{r1C2#%m5L8{1fQK0FuLJpHX=ZEfxV;Q$s?o7DTYLflWl9C}4XXp|j zIt9iY<;K0LHgA|2Fvi%%cbqBV0t-M>N?ano544}b=v%|z70K?AoN=0r{elWx66u=+ zNOf~=R8y6{BbOgOZCypsi`B1GytqTY^&|DW6LzEv`*4m`V{h54!8f z+gCvCWG<>ZAq9C2F~|-HTz@gpD8h%iN!xt~kZ#-C-`9pbCgPSr#RIl)#ItT`X_?JY z|D{k87JbA77#PNYAfF=vmc$>Cp9da}#P}wHg6vjMz`_ZU46sGUf%_Pq00b)->DRx% zfe_0*xH_FjOus-fH8TTMbm-2D1m4dy(EUT$$q}HK^6R_1LZJ|ssJ}dr1Van74*$R- z1)9(>yp^COIW7kCAQhD2*>1c9C?jNW1%a53wg8Dw0qEv3Ku3W|{)d)+tI7Q$}PK5Giod>Tve=+O86Tsa^Ls(f@(BR8ez0{2R2{dr+0`hOLRpuD_B_)YR(0%-- ze>Ofe;M0gYP!^+qmQN=h-dLIW$6B=U|Bh@SQ+1a7dJ{p%wLn|;7d^*aNR`BxNbAb0 z;!K0ww71&!%!q}2__5;{}~6{rodf`W3Tx?J?e{tx*$#bE2)|L^%Yth!60)G0D!T-;Es z3J`I%Oia|$x4{~L;I_iqPC~+ldwu^PcfKGU%8CD1GUA9RHc((^#}mQc@Gh3a1Mr&9 zugX@+9OUJaC6s@R8NMP>rBthh93$UBk`spn^*M@hC-f#Kn<@nM%N~Coa4dqlRC+1E+l&__?kS!PW?shU_L^o|9pwVji=Zg`spJZxdjM3?aaR zVAmZuv&pD*s+^rm=p$0!;3iPrZAGLi-n?4gqC>*W~9eyxgrB*3lpmk4^{gCpC z(Y%HFihFY)f3>0ECI+7*#8Se*&;5DkaINn#>b7uXMqm?+ov%qEB7NQAQNEzflVzR z(&|78#txSFNHk~`fWPpBdB)R~79G94`HCGdi0%I=L5@%PAQpfsc5Vn{>d=cDE1uV< z(}~m4i*t&SNu1QsiNC-xT3URUm6o3NmJB1uIQq4bVTK5GHYy(<1{@@)pc);qw&CQA zFV$+|0iokfg{foYUmf{m$6Ja8p4O|>HZPwr%dn>(D-}4dXEj7B%wTdgP>CDyP?l%t z9Puj)DXz3ko`-}O-H}&yosBT>nswM%%=(&6i+6kD^()`1_O>t>T-mIQEYl(WinRZHI$I{t5=w*NPpqe-1PXg)A_m;BbPTadge z?QgyX$6h^vcB$7nDU4Sb3{bMESEa@fjZIi{qo3B6av_^Nly+}GZEqxMWS~YV;BB%v zuGqm$^(w-sO;^=jaz;V*ed;>@K)j*h>(g=-lqT92(*4M6ns;fLO)52|?m#$I%&7ZMWwHR8Lq7~&=V>{%249SwDymWod070GW( zit@G!gQlunTfP&tOmCitfZQgWizS(7Ql&})zyKOB?85jlgu)0XZ+P$)fT04uh_4V` zdK}7{CxhVC1F{Z*g9H^;y~+|fyG~az!I~6YI#8s4`nUH7F?kLw5&(e?fF#w~nQf7( z)owg&C%`E~V5Gk>*_V={nBqO4_+MTCR8-q;ds|yO*wGM>IN-s(jG%*+VWP&C8Po(2 zT%J7920iVoj}JnQgUJ+4poRlpS~Q6~8dgZ4cfuJ*)tgkfzrP<5pO{(%xb7?PrpdtI zW`t+e(a{kxT^rzPoUWJuRHp}jBW}dU_?tRII5tr{@>^^sO`7;5yW8lhKObXG*93d-wTw_ zxA2(R2B@8yIG>$>G$to6uL4dx0sEcS@$ncSo+5mSSOSdP??>a|01sY;7cv@CK=*@` z4ip>+Ugg@7kCZ<0yCbp@y^(&Evg9nre`#{)HBsS5~5&;lLB!iR=WML8E@#f|Y z@?0V!B40XjSbVZxYQp>;6C1n#pQ39v_=Y!`ILIg6C5hwIibAj7Ml2x`pht#Yk}@&H zdhHm3!|delWEZF;T&3nWf6zS{y=P`<)$0WVA#mihZDgduqIrD}Mmj1bMGluT_9kLB zHHCfr))wDQNU`lMux)iGumm1jNQW#W)bqcnE=WfB(|X z&fhmV)sDlFV4923s8ZdX<1mRn8Aw3qIkO!2QqO-$a8|;kksH%xBIJ&S`YQQ3s+$VB z(DkDPsm(QrgjCh91Y8L0e7~Iy`X$Yy$B&1mn~)KRSBXry7!2BM3Z2uNKk3r_AuK)n zQ0zw2tuySUtM^re(TPhpk~OY4P5qk~uGPf7TV&$%eUcz3;p0kcO3eE2+0vZ8`;c`5 zNXO^11D2uT@%3^8J%^uP&ct4e`fMa7rcxI~4(AcgbT%}VX|9$o?cK-X=;*OR@diR& z#1LMCazW&x{W~{SQ~}hPtg6M6A7nlixHlEQ5VFk!C^+E8euFWOkQfG|B?e5>Mz}k{ z*2103`d>JWNNKX@!{g6T(wy>xbqxmg8h3!XSjSwWGU+Ow=Er~GEhi_Z^7~VwqM`)G zj6wk;dF{2z z(H+sG9{sRECwQ|p;oKD9G=fU`V5{z8@;ytcvMlnOCKMDbw6xm}#6Hy9uB))VVDDvp^8piAzvG;+bxbqRdu4w!OJ=z6qV$?g zvelxbM6tx_m{?AJzRCFxYti=f=E0a6?b$&Ob7$Xiq0U4W?un-2Q#{(=qd%H2p($NTw$`gVyLpRovUlxwq(1BxooI^^j*kConL(Unl9{kZO{wO zM29e|2r()Z0>+5&FF@Fz7cIktpP60H%Vt;yC6|%~VPXc~R`9!y!L>kc;|y=>*~zqpi=3p<;~fpSMdoJD6_<_eCnE?C z$b&9}Z{5PIQnJ%V&ee{QyfV04`~_tIk_wf``NIoxHtcN^aP0Muf{pQAD5Hdb{ID;8ndKubi|XRsr*8~bYW#(2?ct3 zzUGY}<$$oouei8ThtpYsv!mgJiMna$$1g%D=fZ}wa5FN9u=v=57~aSHEF8sC^m+aJ zRL!DOd}1|5@x9six5RNG!KEgKXNLE}Iop-)D1hk@F`h0(P)S?g=wS#PwJvJWQXZXj z7;yz6-A}TX#1bmRr4v}a>&p3^{CAfZ#@@6T`uO%!^`?Ar;lb6dLU?#GJ}fV1!a5Ce z;x5q6&T3C8fR_2G`RjBn?>^LkI!J3nZDdx`g7@UOIm;;HO;FH& zpLkS$8lPB07Vumts$T)|36Ecl7E^nZ-@6wckgBZR(fbT#9?1e(5-VOv{T6y9~@ zJSY+OBW^8RAu46#jF$h={Ci*4I^~UR?n$1+-<$h6Q+c`UzK>|yemd;`ZLz<9k7>_h zjw^u7?ru%cS8KNMURRct&&*{EsQunYV$>6_Y$8XuCZc6Vl?(3DFQ-_C6sQRsEO+12 z`*f|KHyuQ>3LR47u_6mBkw^v(r>BYblo`uAS|j!{2fYIWVabu=b$CghH)buii^I39b%nm?&0P4*+t3}mb6oTvAD>;Bk$Vp8FsM;ygwqS}XSrn-Oh z3hFNW<$o^5)$Y%2$-LY&)oM4<<=ZUGyZjj4`F^rkmylU$uCMT;bwJrb0#6vsy7yb| znMRf^N@v9N;hYt zeHVChVQffabrg+6aryD9-#0bMyW?q9+8xNTDg+A(3-7otLaleIo2QrOF>$eI=reIJ z`>xTbt!E9~n?t_Itgkl|TP@$NFiVijxGHL>IoQYx{b~4~9qI3)cI)k`6V*=K?uB(n z_JfJ7j*0m4sH!ksqgV%=O_TB|fk^zy^0mVcRO(5s@BKd*X|^f7!VkayH?aqe@Vxf! zJxq16Qc^VxEflTBeRrXVpEUnl>EbADh?rCs&m2CmhRn3_IS`{Jytwn7}i>8qCwa*T+M&xQ`~EbAQI_ z4unT!`S@chU0nh%4CV%=KAQMr=e9g4KHalFbS=9^p(Ow89%lWC+&}$(&KFaCs!&;& zPSKt4*C$EWeKX1WjX6F%89JYeP~`9aN+9nqw*4D>`B^Qu?8-kiHmTR;N;_Wgu&SZw zK413bCH7dMOMJNr6|JzanT4~eD$DLKt_bl+pYQ~-7lx0p$)GfO8T{`{`^}T&i~5F8 zf@vi@9R(x#GX}*n-rygazE-=jS4Ca#JE5Hs?v_`jot0y4-s16$cXcdYB{V%d=Oq`{ zvmHYz0#_93rw)VKCwTj~p^P!XWb@Q~j!*gcZW68Hk|?@b{ab)*C=H7jhnFOq$Hk6U z>+6mz$>+;%DVL!Q&u-8OUnJ~FDi3c6k`83I-cbIJpBEvY|I_+ss=T4|R9Zz(ns+%b zrUQk0tSDLMfUi~(@gx1O)**cf!aAe5;d=V4)6>Z*RK4Grl%AN+JgP7+Ky4&3fbCHv zPcft@+O3VR=qfZLSX_jI^_8@NTB)QFFJrWGvgg0PHz|xeLA>{OM!6A7lH8XzjZ_hd z0rwYK#SRiUp2nsO-@7bi=#(JpWH#b+$Yl&%`LXU^*Li5SA>P4E2_xHDcQ^u+ovj10e5!YRde2?q@S;&KNORE8|dfv z7W4fCQ@Wh>v@GhbZ)^5HZr4K5$GQ3W1o^7AxCzgs9u3v&yiwC|Ili~jM|PXIK(*=W zv?c7}-o=l3Uft$L&(+RJkVb`$bEuqIZO4umzB{L#JZH{T66TI>9mL5Qdhy@4k%)$G zGx~F0w(|>?`x=9Z_;k2fRIXEXD^E!&PekGuVKSb2A8SYFX&&=;OMN`M2JJz2EZO|N zq7e&`ven#->JqZtS5c;sbFQJOV`19aM~f! z7mw(Lm_UkZt&df|iT22(@)2L|N#Kt`FDbvB@Bgh5nRyeitKLG{MHoV8Hv<6J|5hP{JCv>OD157ed+aS$oKu0KEHL+#l=B? zxUX+)pK=Kdpi-gex=Z!*DRI(wQO4Oyqd&hzy)sd*r_WEr9Oo7o;r@4DuT;AwkB(9J zt@(~H^R1;7pC?8`9COYVXae?Q)Q`IbBCRjB!zd!UJ5_KG4?JVK`Uh^M&h8|a&3@rR zWmKBC_~Vhi*kW{|%&b$xv;_TWKMM+}i5yJ9klw zlxi{aj2+BBLTv>KqH0bB4S~sA8(TzH&9%3NH@YfXZIlpe(Y+hq_@9SNzsZ!}b7pqd zZzzT=O)q!IH=Ot?|MX29!9|Aa{e1O6T*@V7Y3T{94(uh{7rO(WwkDqBs|-i{mL-0M zEgIy$XRPM%}#|=8CH5amB;+$VokJ#_yj&{Tr&F9JQ$a_+Km;a*_ys4KvhRyvr zjbfkdQ1%4E)Ev@bD@8onf3IICYlYEIU!-=~9Mm@87Sh0`ldXO=FJ{7koc79a8`o`4kyfU{#P_ zK4dHJQ`FlZH?v+fI1$Ki=Q-}mPK3WYbg+U;9>Z-yIkjt3{wB}~ej+g;>xKf|((93l z#>G;q)u{cVtvZIRoeI?%!Bgp}Ydi9LlQ&<QY1akf-9IibS>)vAbo%1Oy85NrO14kuoncBTvFlkT zZdzLVsFHI`c*R7N;IoS-?brO#iI?O^@ur5YQl%DYqY=-(F5Tc;9e7fh)MgIuHdP#L z$F23G!Q13_X#zjA9eMRn(w}g-r%M5c|MdS7dy*DWbAG0mpZ^ltG_J9>Tatm@)i>LH ze#~C%dIf{0&Dl!K{xsMBI_wv^JU6kRp$ST`@DbQ?Px|A=u>n!Ly$&?Ne$=}mYPKvq zy}yzf@)C&n+IKAfU3^VSw2|RDKiydTA3y!U^x)Sd>IF6~GNj9P;X4nA7ZR;2Da=0q zRbb^$9Lb!`nVqQJn?13$K*16~QBh%5soXJoX8r{~l(F=`hb+#1zRp+pW=q=U>5L;I zHr0-D;<3@cqN`hy zoy8TEiG2Y&hFRpa)w$>JdU+Mm!?QQ@DA7-SRZ#6ex2HZ9oZYqYeAknR*eK63t39k} zYE*d>ZZ@R*R_2^DOjR%VQ-9*G2_~z<=~mQugSW!;jC{2u&{RgM0Fbxp9q^B&sHkl} zFRFP})4fSON_JLq!u<~MQRI{odTF<^fC;a&pT%?j= zO^gS2-RX&mAMCcz{gVU`0bd!&=wNR>7ir*tK`^~#MlrysL{hE5)}IJ=e7bYNI-lj* z%PRSt-uC@tv$3*28}v%Uy5hLT+xg}5pY2*3kFGf!@iN9c7eao^G8~hL5X}A*hqWI? zx%%3+Fs=<{0M!c#ckhX1pf%g#?Nc|Bs$0Z6iOv-xSgbFe6byXrpwEv@J7l)>rFTS69I|7vR)-IZQ0qrvZ_jJT6cZMf3<+UG=q z)k|D2=P@&9H|*5wH>~*Cci+8J>~-zv!t~~w{j(XVrD2dAAK685@7|1MvpCj&=hcVb zHh-f2!Wcn2N7Z&#`bI|9p+lx};f{-7lx+mGKfPj(!z#*(k4EUEVQfXjvsrMd-9ks>kcA;pF{MG(J4|UUzpQY59ou3u zqLh@Iri$Fv4Hg!^Z{H5c?TnG%j4j#rFUL(jyL*+h&qm$BclyPMP$@o_$N$qI{*|A_ zMqRO<>^Yi60qq0BhOnzIHvZryF{6S;8Vp)j9^5FtLk{1MF_ zSOGa<`q|%aRwJY~^?tJ|7O$4fH+a-q|I&ArnT9XKs4nd#JLogH2+%uHndUaJ+YV3I zonhy$DA4mW#y@sc@GBybd8vcKy)i;f=ggHB_^H@+4x0f5zt-Nswdd{yMWv$MvzU&y z&sR@6WQA#(E4`r8q6hfXAS&Vdx6`0zTzv@k^NZnAswnK^Ddp9=N$`45j#WkM(9Bm^ zSrq4uq|!LqUwtL5%T=o8!MLBiQ6Xm8w8-6GEs8ObB@_nGhu0S;7oX^EK2vs-UEI1q zcxr;QGQgK`6BN6)n!6-2#A!uxX+tJT(J(U2VZ^b`=8zEEkN$^`6(^d_o6oxQY@N|n zT57r0={R<#ocT~~CuP%1kW%_C*56#k0$y&m5ZRBRv^4r7z-L5EP!#cXkrp7jx9`u% zQ@WTqjbh5DF3gp1=L2`?iT9ky1El9&yQyr9+p`6{GK}iA^c<(t9 zKOMW$3eVpo&o_D69bc+ZpFoMDwBVzKtIZlKnmeA9s#CY|+3%61e0!gDb4s}4dW`kLKhNK2kB7bf44X$&XaHWTO zpZouE?$>)ho%JPop5$Hcnzd%u%=*o&na2+^e3!&C1||67i^NVeVVGCi0?wHZF;g_d(p zjiR43@#2KOd91e9iJetUy@t06DZ*dYI!`ggk_r49G`jOJ=(GtOg?i`fA}aH)(ABzx z9rz#%3K*sQW6(3_N2U<*_+BHk29*qcxo7z(#JmKrLUX^zv9Bdo&k3{cl^>|l{^6KW zciqhrDf3$B3wEPod!ivP39pevW5ecxA3+!26tL&jn@e~h-ehs93}$r3bp;r=8S=_14G8+q?VlLp zrv1u~iXo5beb|TmPo)q1{LHLtw$;D&k&Sczkyc%_{}`k!4#SR36yx%T=-ZYVb*v;P zJyZid#8m{@cdi{wf$3k2885dKpV;2}TJ1hU_2!NGo0?6o5KPhUJI%KCNufD!TTGsl zby{+Ve-`gD@gTfFl0YA`(8GByVd*PzrH!Pu@X5vn4|~*Mu8>se1;8kq$#6&%*9f&s z-u+fK&u8Bqr3o5sk+o>ueh``ZhXf~yRhrkbXRXMo+qu91rm(}ba)*tD9SfWD)nNyo z($;qV5=P?+wK*(ig2?s{8prNcqoMqN9rnMjN$q5axohrLBS{Z7!+1+$xUfP*pexH_kx zU{ld`Lt4pAdc1jR?rI)GQ<_|q@i}6djNr|?9{AnLi=i4VVFFjhzpx(Zmg)5H0QOW# zzrVc^qI$!p)JyI0`dpi5``k;6(5~~1g#--s7ODF>i(bCAX>%am9EM<$BF04SpNYSu zC+-=fSWlzX%M<(@chdWaH{!Z#bK7)dy-DlLj_PiXGXvv~B#Od~t9%L*2L-fkd3|U- zz08J@5mgP8;;}mVJE%=PA>rIwq|A$B=WaUHx%1wm;9G}dul)0CN;{+C z*r9)?td{Pl-MQH7Wnu%gXx2(ID>eDrF_KSM>H3P`0u|N7>Lw zmAV=MpLXD2!}pS(;d*SybK^&|LX&=5eP{lewh6s{VhY4lFU=qbYLoYfHg_Z1C%f%u zs%&qQDQR4t@y}vBeyN>H+fXMWcliWuxU1c^*3eFlTsIgPIDU{Sw6NG^D5sYqHqA8x z>gt9DFZ|#DvWQRfD|*~K@9hi+iTkhbO1ZC4R>*=2(fOS_WLaJ#6k z9cNKsa?H4w6zdoZMvTs!r$5uu1ZA59Z!6#2K8v37cI}K(krnwIH5q|X+b4@$xJs2S zcMeOPdzz$f-X@+&66YAU#rWTg??#q8$(*jPvwe|PrckyEQz`&XFmW)K` z(FD4_W1J2oS}&iC(@uA`f2!x|L7R07q@!kIkZ083(l<3=4Yvo%d5m~XP6Pr~_&k_f zUy9q?tzdfYOdlV}yRvSRXY8z+xFQv_$dA7Lrk<*i6>AOEsGB@fTI+LSwe*QZc^{&~ z4nW$P=d>fL6;4u`Oxtt3=qdZFS>93$icz%1m?js%*#??d7}SrPqoTGNo8}Y*57%r9 zF-8m7hNTD1Umn4kKbXYc5=45p@6_EuryNC{^-2gj&utowUEQ}+4P>JUjbCk6Ld&Z7 z^BGSPujIK6M5jFB@}tZW6|&2imSeD1vX4jSd(GIzw;2AeZiR-T5lO*gH+sXf(^L$` zLgXWV-`>JP=lk2!uTw01QcSwLzjjtCsPEG%`~Uj-&9FWC=BM3>pqx+Nk^(gyEE=Qk zy-Hlj9 z1bKoPd1PO1WAW)q?*K(LSO^0PW3h#qNQoGRx}0xicPlcJ@rS7FoV-YK#ubLPCuRP= z7qC3M6O?wtb80!al~;pX`*buEk7Cudy|8_e`dvh!SDL?VK9|RZREAm@&sfmGnpF#* zuY|=??=vO$-vmA-gSfbjK?BP4ec|B@l>AumS~xLuMU*>lSInAc5?s#B!CjNHrE#YF zs`NV9=a@!N&@vYAdJr86BN;gm^Wv^D>y4xJX#fnr7Iw@xJ2x`W()iA3Cjgbxo>rt(~s%L5r@ z?_-wjBW~!evqf}V5kj_(o^p?28pvWMx&Ks9lyC( zNdv7%^WB2o&t9h1<{oI0rQQ5_vCTUxgYpVB+wt6#l~ed`TR^bC&2y(ofyN6hoeb7;E#Ep7ait=03k{2*j+-V1xk3^Ow!7?s1_Xk}$sF+UeUn;}W0Asdu*$ zb6%7*HIu<+b2FH^zvQA(rkLSRoFs5;HxcH6j|%V+fN_6Z@b zEcxr2%}sl(UfVe>x^}^H9C&1Y^K0wJ8h<%KAJ|4Ra>$iob27s3pqKmZtmFgruM*#M z{ogVCtfB@EDVVmyl(LcZ0jWTCJ*`Ltojc2<8WdIKu)?b>koh{*Xie16kq;hDx)rZ$t+!B zH7>4wDO*78qcC($yHP1WsPt<9^wVJ2Zrb+Im8{_*7~4QNx8m7RJ}#~1`%+sJYVAf6 zTf|54jSC(XV2N5EiCSw?2|lWfW53*nx&}wTa7udU6WF&L+RP&HgW^YtGbk`0P3~6L zl1)TD*><^E`KtvjoBiXv($iM*rI3jBti`mHxXOHe{T0!;sR$zVY8*0P$I*z|z<49V zZV;sW6|JP6DpA~(YVKri{5HZ)rzW)#QpqrRBJJe>L3Mm=l{5XRa0p)~@8DiedJ{$+7SQG?wG6*1J0w48QcNg~q9rd~(zcp5 zabEc^R0pJ~n{j=WgqVh*LGYU9-TL&eT5a&P=hs-y6ww3(m##N)Vpj0} zpFVpM6?g*?;s_O%!6#g=slM=dDWX}0>l`Q8d~xLpXc=8+X7<3pS%i#%8pFwT{{^;) zg!2LWDncpZIGB{AgcB7VR8-p(`=G#)F!z)C z4YCv0`2EPkodviLa2Y85e#BnxpbrFs$=Ei$25P^6{6|TLHf(J9S4JS5z`i-xdb+3t zU2%bFAt=bebK}lSG*38>wR*6EDri|)x-0Aifk!;^9sd00{nA~(OLg;NAk%PKzM;>pldez=eK0U`zlIw1%U0|cA}Wc!17Rb6H5Dk zF%@UvpZ|yoQ+5HM{clJAUGV-hM`39 zQO0AJj|vxmQ((AL*-kmdwfGxz6%Q1>fatIy+gJgjR>9?dp$jzIH1=9QnPI~h_SyC! zWZKW*Z=hzw+5x|hg{P#CzW1g1g1#2|Cd64t|8*)`(10zwEDs`+Q4b&V2Xe>{VZDNI zMf@%!=aAoVjm?nSa>*&Tf5m#FXA5hr;)uyBFn6RQf}8kV&p{zn#^Cg^@ls!Eb_XIWgN|C00c;|3XoXj7wR-*GqR-PMMrUmIBXcbedk|+b&!G=S7(ih zbmYb^4cBDG5;)ex)JSsQmon|T zlFG>HU@3&-1e+AM{ejyz8uSm`#{=-uetNedw zO*z6o^-1?)BNWiarxhiNS!0oX9&K5_6wnsXqo3I91E40Q0=l^m>kKnFYUXy3M>oNC zE3!PVqJg-vKCJqFbH#uQ>@V1ERaUv=g)Kj5Glme5rU+em3UkODJB(Ui>O4n=e#0tr z9&3a-!;Fsax!+d**#NOWx&>*&4?+%GJYlsb)>}W+-;6Yw5;7o%le4{iH}sG7oJfE} zO_O+=XkQ>uMV|?SDIME9SXyS#Wbp?Z(_BMV_LaSH`1CtDN6b=o-E$%#p^2OaA=2*>(^(D0|E(qP%q8k}9IJ`A~FqOUn}$1Xcl$%${W7 zJB|c-)_N})cE0^45VLm@cDHi`id^g75J! zxc7(Sc76xRw7I|>KoYpdPmtR1^DaQJ0~UbHN2DN1ItFo#q+`=UfWcg0Bw?)d zc~_RZgu%s@?>_4NeGUN!dP7l_6UR0&-YxWZ199Py%=U!M|2ufy+-hITi)T7V;r{zQ)r~g1nqzD`L_!9}P18cHxrlnW zx*nphA9nc*fi~62S66MpITuIcyJV6NM!Xpow^8hX(QDeZN72iv*nCHFP zz`1BKXoCFd@}Ouy@vF95S;eE^a#_~YjwM+OGbh$UGpLK}q=B#!tIm;d!kihz6A}#L z25U05tfLI~g0zarf1E5W?GPY};c|?CS}G6Hssq^k-YaHVhZC&}+TpTKOrTuOf#UR; zB-8}l_w*9f{ng&LX7I&8>?(|CMhqjGw2XLZI>RnftIZ4iMXh-%+r@*G=GATHs*;rVoAb7YD>2q4?5U_vJACarX)+(z7=$cFo*g#I zI^2=i4=LDd;H0vBTVO7vdbQ(8fH7zmsT4Ck$Bq#1^C*fmp-%tX?OpPT+($Xjz;NVzz{?ba?aMVa`tM@iAk>qUD5Tw972=vG7dIT_SnZQ{suhs)3B5Xzk4NfRJVy7L>( zc9$*{85dUzjGK2%!0JGmER&4-RL&jgS}z85v+fXK;(Z=F1}T#|TD^RxQQyFu=g!H7cU zSdayxs2Gf0wIDjR2&Gz4nW&Mdmam_+F=}5(q{DTEjt|oj!yRA3W%2p7X`;{-rm%+_ zRU7!7hqy*5#>1E2LcL2$JER=}=VD`$q0GHlK9%W_aIT|vyjn}~FWk0K+T|4k`<3v+ z%4>!u2?n$U|1pb3{)a4`9>7R+g(aU>P^`cnLBOt%SeFgLJw9lr2TV1IP(THIsl=A$ zX30n|wgn(w#V(moVe_ESq^xjP*c8Om{SoXoOc{g4T`^_?RF_#`792-V0?rFC7@IB= zX>$D0YUsI*WVqK3+x8R#Y7TYOWcpBEo;|ojjdW0tmjj-8oCBl01O;zS035T5>Tdwc zfVSTyzwQ(A%)B2M1;bt7crnYfsD#B%%cB!%Jx6k~1Pa!9V1b9)o&v~&qt7v!fG%1U zgEkLfE2KX+8UP1}K;3w_7yNdjA%!kxfUeDqLF5Zv)z^+NCgef|anc3~k@^`VY3iAO zf|ng_uTnwylP0%lCzd(K>!@69eO7&l7Np7d?0kPbw|bNz$PuX2fYe6{{RFi=CPbDc ztr+KWGyj7sK&i6E`{0Ur+}vNNfIOk-1Oya`fe1KXrgb{kz!qE`jiG4Q$9Ln}A%I!% zT`dC!>qeL$918;9_DvxxAv%G$SF+pt7A@eCDrY1RAG0nnFL59A3cE_<_yX>AbdQOm z)_XMj0Itxnqi9TUN73+fz?T_F)FTpVekz8GKyls z^D|I*NQE)I7>JWn2S)uqtpBM8Kt1Jj2;ew>zWskN`v=abN&NDI`) are: +Besides the self energy the Wien2k files read by the transport converter (:meth:`convert_transport_input `) are: * :file:`.struct`: The lattice constants specified in the struct file are used to calculate the unit cell volume. * :file:`.outputs`: In this file the k-point symmetries are given. * :file:`.oubwin`: Contains the indices of the bands within the projected subspace (written by :program:`dmftproj`) for each k-point. * :file:`.pmat`: This file is the output of the Wien2k optics package and contains the velocity (momentum) matrix elements between all bands in the desired energy window for each k-point. How to use the optics package is described below. - * :file:`.h5`: The hdf5 archive has to be present and should contain the dft_input subgroup. Otherwise :meth:`convert_dft_input ` needs to be called before :meth:`convert_transport_input `. + * :file:`.h5`: The hdf5 archive has to be present and should contain the dft_input subgroup. Otherwise :meth:`convert_dft_input ` needs to be called before :meth:`convert_transport_input `. Wien2k optics package @@ -84,7 +84,7 @@ First we have to read the Wien2k files and store the relevant information in the SK = SumkDFTTools(hdf_file='case.h5', use_dft_blocks=True) -The converter :meth:`convert_transport_input ` +The converter :meth:`convert_transport_input ` reads the required data of the Wien2k output and stores it in the `dft_transp_input` subgroup of your hdf file. Additionally we need to read and set the self energy, the chemical potential and the double counting:: @@ -104,7 +104,7 @@ Here the transport distribution is calculated in :math:`xx` direction for the fr To use the previously obtained self energy we set with_Sigma to True and the broadening to :math:`0.0`. As we also want to calculate the Seebeck coefficient we have to include :math:`\Omega=0.0` in the mesh. Note that the current version of the code repines the :math:`\Omega` values to the closest values on the self energy mesh. -For complete description of the input parameters see the :meth:`transport_distribution reference `. +For complete description of the input parameters see the :meth:`transport_distribution reference `. The resulting transport distribution is not automatically saved, but this can be easily achieved with:: diff --git a/doc/index.rst b/doc/index.rst index 4849ba5f..3867ab87 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -1,11 +1,11 @@ -.. index:: DFT Tools +.. index:: DFTTools .. module:: pytriqs.applications.dft -.. _dfttools: +.. _dft: -DFT Tools -========= +DFTTools +======== This :ref:`TRIQS-based `-based application is aimed at ab-initio calculations for diff --git a/python/sumk_dft.py b/python/sumk_dft.py index 2b45b997..6729d2a4 100644 --- a/python/sumk_dft.py +++ b/python/sumk_dft.py @@ -1223,9 +1223,12 @@ class SumkDFT: therefore calculated separately for each `k`-point. Since in general n_orbitals depends on k, the calculation is done in the following order: - ..math:: n_{tot} = \sum_{k} n(k), - with - ..math:: n(k) = Tr G_{\nu\nu'}(k, i\omega_{n}). + + .. math:: n_{tot} = \sum_{k} n(k), + + with + + .. math:: n(k) = Tr G_{\nu\nu'}(k, i\omega_{n}). The calculation is done in the global coordinate system, if distinction is made between local/global.