3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-22 12:23:41 +01:00

[transport] Remove the storing of results hdf

This commit is contained in:
Manuel Zingl 2014-12-10 13:18:39 +01:00 committed by Priyanka Seth
parent 259fd64824
commit 14e200d0db
4 changed files with 40 additions and 37 deletions

View File

@ -525,7 +525,7 @@ class SumkDFTTools(SumkDFT):
return volumecc, volumepc return volumecc, volumepc
def transport_distribution(self, dir_list=[(0,0)], broadening=0.01, energywindow=None, Om_mesh=[0.0], beta=40, with_Sigma=False, n_om=None, save_hdf=True, res_subgrp='transp_output'): def transport_distribution(self, dir_list=[(0,0)], broadening=0.01, energywindow=None, Om_mesh=[0.0], beta=40, with_Sigma=False, n_om=None):
"""calculate Tr A(k,w) v(k) A(k, w+q) v(k) and optics. """calculate Tr A(k,w) v(k) A(k, w+q) v(k) and optics.
energywindow: regime for omega integral energywindow: regime for omega integral
Om_mesh: contains the frequencies of the optic conductivitity. Om_mesh is repinned to the self-energy mesh Om_mesh: contains the frequencies of the optic conductivitity. Om_mesh is repinned to the self-energy mesh
@ -554,7 +554,7 @@ class SumkDFTTools(SumkDFT):
assert self.k_dep_projection == 1, "Not implemented!" assert self.k_dep_projection == 1, "Not implemented!"
# Define mesh for Greens function and the used energy range # Define mesh for Greens function and the used energy range
if (with_Sigma == False): if (with_Sigma == True):
self.omega = numpy.array([round(x.real,12) for x in self.Sigma_imp_w[0].mesh]) self.omega = numpy.array([round(x.real,12) for x in self.Sigma_imp_w[0].mesh])
mu = self.chemical_potential mu = self.chemical_potential
n_om = len(self.omega) n_om = len(self.omega)
@ -640,7 +640,7 @@ class SumkDFTTools(SumkDFT):
MS[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb].real - mupat[ibl] MS[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb].real - mupat[ibl]
S -= MS S -= MS
if (with_Sigma == False): if (with_Sigma == True):
tmp = S.copy() # init temporary storage tmp = S.copy() # init temporary storage
# form self energy from impurity self energy and double counting term. # form self energy from impurity self energy and double counting term.
sigma_minus_dc = self.add_dc(iw_or_w="w") sigma_minus_dc = self.add_dc(iw_or_w="w")
@ -698,27 +698,28 @@ class SumkDFTTools(SumkDFT):
# put data to h5 # put data to h5
# If res_sugrp exists data will be overwritten! # If res_sugrp exists data will be overwritten!
if mpi.is_master_node(): # if mpi.is_master_node():
if save_hdf: # if save_hdf:
if not (res_subgrp in ar): ar.create_group(res_subgrp) # if not (res_subgrp in ar): ar.create_group(res_subgrp)
things_to_save = ['Pw_optic', 'Om_meshr', 'omega', 'dir_list'] # things_to_save = ['Pw_optic', 'Om_meshr', 'omega', 'dir_list']
for it in things_to_save: ar[res_subgrp][it] = getattr(self, it) # for it in things_to_save: ar[res_subgrp][it] = getattr(self, it)
del ar # del ar
def conductivity_and_seebeck(self, beta=40, read_hdf=True, res_subgrp='transp_output'): def conductivity_and_seebeck(self, beta=40):
""" #return 1/T*A0, that is Conductivity in unit 1/V """ #return 1/T*A0, that is Conductivity in unit 1/V
calculate, save and return Conductivity calculate, save and return Conductivity
""" """
if mpi.is_master_node(): if mpi.is_master_node():
if read_hdf: # if read_hdf:
things_to_read1 = ['Pw_optic','Om_meshr','omega','dir_list'] # things_to_read1 = ['Pw_optic','Om_meshr','omega','dir_list']
things_to_read2 = ['latticetype', 'latticeconstants', 'latticeangles'] # things_to_read2 = ['latticetype', 'latticeconstants', 'latticeangles']
read_value1 = self.read_input_from_hdf(subgrp = res_subgrp, things_to_read = things_to_read1) # read_value1 = self.read_input_from_hdf(subgrp = res_subgrp, things_to_read = things_to_read1)
read_value2 = self.read_input_from_hdf(subgrp = self.transp_data, things_to_read = things_to_read2) # read_value2 = self.read_input_from_hdf(subgrp = self.transp_data, things_to_read = things_to_read2)
if not read_value1 and read_value2: return read_value # if not read_value1 and read_value2: return read_value
else: # else:
assert hasattr(self,'Pw_optic'), "Run transport_distribution first or set read_hdf = True" assert hasattr(self,'Pw_optic'), "Run transport_distribution first or load data from h5!"
assert hasattr(self,'latticetype'), "Run convert_transp_input first!"
volcc, volpc = self.cellvolume(self.latticetype, self.latticeconstants, self.latticeangles) volcc, volpc = self.cellvolume(self.latticetype, self.latticeconstants, self.latticeangles)
@ -726,8 +727,8 @@ class SumkDFTTools(SumkDFT):
omegaT = self.omega * beta omegaT = self.omega * beta
A0 = numpy.empty((n_direction,n_q), dtype=numpy.float_) A0 = numpy.empty((n_direction,n_q), dtype=numpy.float_)
q_0 = False q_0 = False
seebeck = numpy.zeros((n_direction, 1), dtype=numpy.float_) self.seebeck = numpy.zeros((n_direction, 1), dtype=numpy.float_)
seebeck[:] = numpy.NAN self.seebeck[:] = numpy.NAN
d_omega = self.omega[1] - self.omega[0] d_omega = self.omega[1] - self.omega[0]
for iq in xrange(n_q): for iq in xrange(n_q):
@ -740,7 +741,7 @@ class SumkDFTTools(SumkDFT):
for iw in xrange(n_w): for iw in xrange(n_w):
A0[im, iq] += beta * self.Pw_optic[im, iq, iw] * self.fermi_dis(omegaT[iw]) * self.fermi_dis(-omegaT[iw]) A0[im, iq] += beta * self.Pw_optic[im, iq, iw] * self.fermi_dis(omegaT[iw]) * self.fermi_dis(-omegaT[iw])
A1[im] += beta * self.Pw_optic[im, iq, iw] * self.fermi_dis(omegaT[iw]) * self.fermi_dis(-omegaT[iw]) * numpy.float(omegaT[iw]) A1[im] += beta * self.Pw_optic[im, iq, iw] * self.fermi_dis(omegaT[iw]) * self.fermi_dis(-omegaT[iw]) * numpy.float(omegaT[iw])
seebeck[im] = -A1[im] / A0[im, iq] self.seebeck[im] = -A1[im] / A0[im, iq]
print "A0", A0[im, iq] *d_omega/beta print "A0", A0[im, iq] *d_omega/beta
print "A1", A1[im, iq] *d_omega/beta print "A1", A1[im, iq] *d_omega/beta
# treat q ~= 0, calculate optical conductivity # treat q ~= 0, calculate optical conductivity
@ -753,27 +754,27 @@ class SumkDFTTools(SumkDFT):
#cond = beta * self.tdintegral(beta, 0)[index] #cond = beta * self.tdintegral(beta, 0)[index]
print "V in bohr^3 ", volpc print "V in bohr^3 ", volpc
# transform to standard unit as in resistivity # transform to standard unit as in resistivity
optic_cond = A0 * 10700.0 / volpc self.optic_cond = A0 * 10700.0 / volpc
seebeck *= 86.17 self.seebeck *= 86.17
# print # print
for im in xrange(n_direction): for im in xrange(n_direction):
for iq in xrange(n_q): for iq in xrange(n_q):
print "Conductivity in direction %s for Om_mesh %d %.4f x 10^4 Ohm^-1 cm^-1" % (self.dir_list[im], iq, optic_cond[im, iq]) print "Conductivity in direction %s for Om_mesh %d %.4f x 10^4 Ohm^-1 cm^-1" % (self.dir_list[im], iq, self.optic_cond[im, iq])
print "Resistivity in direction %s for Om_mesh %d %.4f x 10^-4 Ohm cm" % (self.dir_list[im], iq, 1.0 / optic_cond[im, iq]) print "Resistivity in direction %s for Om_mesh %d %.4f x 10^-4 Ohm cm" % (self.dir_list[im], iq, 1.0 / self.optic_cond[im, iq])
if q_0: if q_0:
print "Seebeck in direction %s for q = 0 %.4f x 10^(-6) V/K" % (self.dir_list[im], seebeck[im]) print "Seebeck in direction %s for q = 0 %.4f x 10^(-6) V/K" % (self.dir_list[im], self.seebeck[im])
ar = HDFArchive(self.hdf_file, 'a') # ar = HDFArchive(self.hdf_file, 'a')
if not (res_subgrp in ar): ar.create_group(res_subgrp) # if not (res_subgrp in ar): ar.create_group(res_subgrp)
things_to_save = ['seebeck', 'optic_cond'] # things_to_save = ['seebeck', 'optic_cond']
for it in things_to_save: ar[res_subgrp][it] = locals()[it] # for it in things_to_save: ar[res_subgrp][it] = locals()[it]
ar[res_subgrp]['seebeck'] = seebeck # ar[res_subgrp]['seebeck'] = seebeck
ar[res_subgrp]['optic_cond'] = optic_cond # ar[res_subgrp]['optic_cond'] = optic_cond
del ar # del ar
return optic_cond, seebeck # return optic_cond, seebeck
def fermi_dis(self, x): def fermi_dis(self, x):

Binary file not shown.

Binary file not shown.

View File

@ -29,7 +29,6 @@ beta = 40
Converter = Wien2kConverter(filename='SrVO3', repacking=True) Converter = Wien2kConverter(filename='SrVO3', repacking=True)
Converter.convert_dft_input() Converter.convert_dft_input()
Converter.convert_transport_input() Converter.convert_transport_input()
Converter.convert_parproj_input()
SK = SumkDFTTools(hdf_file='SrVO3.h5', use_dft_blocks=True) SK = SumkDFTTools(hdf_file='SrVO3.h5', use_dft_blocks=True)
@ -38,6 +37,9 @@ Sigma = ar['dmft_transp_output']['Sigma']
SK.put_Sigma(Sigma_imp = [Sigma]) SK.put_Sigma(Sigma_imp = [Sigma])
del ar del ar
SK.transport_distribution(dir_list=[(0,0)], broadening=0.0, energywindow=[-0.3,0.3], Om_mesh=[0.00, 0.02] , beta=beta, with_Sigma=False, save_hdf=False) SK.transport_distribution(dir_list=[(0,0)], broadening=0.0, energywindow=[-0.3,0.3], Om_mesh=[0.00, 0.02] , beta=beta, with_Sigma=True)
#SK.save(['Pw_optic','Om_meshr','omega','dir_list'])
#SK.load(['Pw_optic','Om_meshr','omega','dir_list'])
SK.conductivity_and_seebeck(beta=beta)
SK.hdf_file = 'srvo3_transp.output.h5' SK.hdf_file = 'srvo3_transp.output.h5'
SK.conductivity_and_seebeck(beta=beta, read_hdf=False, res_subgrp='results') SK.save(['seebeck','optic_cond'])