mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 05:58:18 +01:00
Statistical tools documentation.
This commit is contained in:
parent
572053f40d
commit
14067abb34
@ -17,5 +17,6 @@ C++
|
|||||||
mctools/intro
|
mctools/intro
|
||||||
det_manip/contents
|
det_manip/contents
|
||||||
parameters/parameters
|
parameters/parameters
|
||||||
|
statistics/contents
|
||||||
utilities/contents
|
utilities/contents
|
||||||
using_the_lib/profiling
|
using_the_lib/profiling
|
||||||
|
10
doc/reference/c++/statistics/autocorrelation_time.rst
Normal file
10
doc/reference/c++/statistics/autocorrelation_time.rst
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
Autocorrelation time
|
||||||
|
=====================
|
||||||
|
|
||||||
|
Synopsis
|
||||||
|
---------
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Example
|
||||||
|
--------
|
26
doc/reference/c++/statistics/binning.rst
Normal file
26
doc/reference/c++/statistics/binning.rst
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
Binning
|
||||||
|
==========
|
||||||
|
|
||||||
|
Synopsis
|
||||||
|
----------
|
||||||
|
|
||||||
|
`make_binned_series(T series, int bin_size)`
|
||||||
|
- series: object with **TimeSeries** concept
|
||||||
|
- bin_size: size of the bin
|
||||||
|
|
||||||
|
returns the binned time series.
|
||||||
|
|
||||||
|
Example
|
||||||
|
--------
|
||||||
|
|
||||||
|
.. compileblock::
|
||||||
|
|
||||||
|
#include <triqs/statistics.hpp>
|
||||||
|
using namespace triqs::statistics;
|
||||||
|
int main(){
|
||||||
|
observable<double> A;
|
||||||
|
A<<1.;A<<1.5;A<<.2;A<<1.1;
|
||||||
|
auto A_b = make_binned_series(A,2);
|
||||||
|
std::cout << A_b << std::endl;
|
||||||
|
return 0;
|
||||||
|
}
|
99
doc/reference/c++/statistics/contents.rst
Normal file
99
doc/reference/c++/statistics/contents.rst
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
Tools for statistical analysis: binning and jackknife
|
||||||
|
======================================================
|
||||||
|
|
||||||
|
Introduction
|
||||||
|
-------------
|
||||||
|
Given the statistical samples :math:`\lbrace x_i\rbrace _{i=0\dots N-1}` and :math:`\lbrace y_i\rbrace _{i=0\dots N-1}` of random variables :math:`X` and :math:`Y`, one often wants to compute the estimate of the following observables:
|
||||||
|
|
||||||
|
:math:`\langle X \rangle`, :math:`\langle X\rangle/\langle Y \rangle`, :math:`\langle X \rangle^2`, or in general :math:`f(\langle X \rangle , \langle Y \rangle, \dots)`
|
||||||
|
|
||||||
|
as well as the estimate of the errors:
|
||||||
|
|
||||||
|
:math:`\Delta\langle X \rangle`, :math:`\Delta\langle X\rangle /\langle Y \rangle`, :math:`\Delta\langle X\rangle ^2` or :math:`\Delta f(\langle X \rangle , \langle Y \rangle, \dots)`
|
||||||
|
|
||||||
|
The estimate of the expectation values is the empirical average :
|
||||||
|
|
||||||
|
:math:`\langle X \rangle \approx \frac{1}{N} \sum_{i=0}^{N-1} x_i`
|
||||||
|
|
||||||
|
If the samples are independent from each other and :math:`f` is a linear function of its variables (e.g :math:`f=Id`):
|
||||||
|
|
||||||
|
:math:`(\Delta \langle X \rangle)^2 \approx \frac{\frac{N-1}{N} \sigma^2({x})}{N}`
|
||||||
|
|
||||||
|
where :math:`\sigma^2({x})` is the empirical variance of the sample.
|
||||||
|
|
||||||
|
|
||||||
|
In the general case, however,
|
||||||
|
|
||||||
|
- the samples are correlated (with a characteristic correlation time): one needs to :doc:`bin <binning>` the series to obtain a reliable estimate of the error bar
|
||||||
|
- :math:`f` is non-linear in its arguments: one needs to :doc:`jackknife <jackknife>` the series
|
||||||
|
|
||||||
|
|
||||||
|
This library allows one to reliably compute the estimates of :math:`f(\langle X \rangle , \langle Y \rangle, \dots)` and its error bar :math:`\Delta f(\langle X \rangle , \langle Y \rangle, \dots)` in the general case.
|
||||||
|
|
||||||
|
Synopsis
|
||||||
|
---------
|
||||||
|
`average_and_error` takes an object with the **Observable** concept (see below) and returns a struct with two members `val` and `error`:
|
||||||
|
- `val` is the estimate of the expectation value of the random variable for a given sample of it
|
||||||
|
- `error` is the estimate of the error on this expectation value for the given sample
|
||||||
|
|
||||||
|
Concepts
|
||||||
|
---------
|
||||||
|
|
||||||
|
TimeSeries
|
||||||
|
~~~~~~~~~~~
|
||||||
|
An object has the concept of a TimeSeries if it has the following member functions:
|
||||||
|
|
||||||
|
+-------------+-------------------+
|
||||||
|
| Return type | Name |
|
||||||
|
+=============+===================+
|
||||||
|
| value_type | operator[](int i) |
|
||||||
|
+-------------+-------------------+
|
||||||
|
| int | size() |
|
||||||
|
+-------------+-------------------+
|
||||||
|
|
||||||
|
and the following member type:
|
||||||
|
|
||||||
|
+-------------+------------------------------------------+
|
||||||
|
| Name | Property |
|
||||||
|
+=============+==========================================+
|
||||||
|
| value_type | belong to an algebra (has +,- operators) |
|
||||||
|
+-------------+------------------------------------------+
|
||||||
|
|
||||||
|
Observable
|
||||||
|
~~~~~~~~~~~
|
||||||
|
|
||||||
|
An object has the concept of an observable if it is a TimeSeries and has, additionally, the following member function:
|
||||||
|
|
||||||
|
+-------------+-----------------+
|
||||||
|
| Return type | Name |
|
||||||
|
+=============+=================+
|
||||||
|
| observable& | operator<<(T x) |
|
||||||
|
+-------------+-----------------+
|
||||||
|
|
||||||
|
where `T` belongs to an algebra.
|
||||||
|
|
||||||
|
Example
|
||||||
|
--------
|
||||||
|
|
||||||
|
.. compileblock::
|
||||||
|
|
||||||
|
#include <triqs/clef.hpp>
|
||||||
|
#include <triqs/statistics.hpp>
|
||||||
|
using namespace triqs::statistics;
|
||||||
|
int main(){
|
||||||
|
observable<double> X;
|
||||||
|
X<<1.0;
|
||||||
|
X<<-1.0;
|
||||||
|
X<<.5;
|
||||||
|
X<<.0;
|
||||||
|
std::cout << average_and_error(X) << std::endl;
|
||||||
|
std::cout << average_and_error(X*X) << std::endl;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
binning
|
||||||
|
jackknife
|
||||||
|
autocorrelation_time
|
||||||
|
ising2d
|
11
doc/reference/c++/statistics/ising2d.rst
Normal file
11
doc/reference/c++/statistics/ising2d.rst
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
.. highlight:: c
|
||||||
|
|
||||||
|
Full example: Monte-Carlo simulation of the 2D Ising model
|
||||||
|
===========================================================
|
||||||
|
|
||||||
|
|
||||||
|
.. literalinclude:: src/ising2d.cpp
|
||||||
|
|
||||||
|
The output is
|
||||||
|
|
||||||
|
.. literalinclude:: src/ising2d.output
|
33
doc/reference/c++/statistics/jackknife.rst
Normal file
33
doc/reference/c++/statistics/jackknife.rst
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
.. highlight:: c
|
||||||
|
|
||||||
|
Jackknife
|
||||||
|
============
|
||||||
|
|
||||||
|
Synopsis
|
||||||
|
---------
|
||||||
|
|
||||||
|
|
||||||
|
`make_jackknife(T series)`
|
||||||
|
- series: object with **TimeSeries** concept
|
||||||
|
|
||||||
|
returns the jackknifed time series.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Example
|
||||||
|
---------
|
||||||
|
|
||||||
|
.. compileblock::
|
||||||
|
|
||||||
|
#include <triqs/statistics.hpp>
|
||||||
|
using namespace triqs::statistics;
|
||||||
|
int main(){
|
||||||
|
observable<double> A;
|
||||||
|
A<<1.;A<<1.5;A<<.2;A<<1.1;
|
||||||
|
auto A_j = make_jackknife(A);
|
||||||
|
std::cout << A_j << std::endl;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
1
doc/reference/c++/statistics/src
Symbolic link
1
doc/reference/c++/statistics/src
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../../test/triqs/statistics
|
@ -19,5 +19,6 @@
|
|||||||
*
|
*
|
||||||
******************************************************************************/
|
******************************************************************************/
|
||||||
#pragma once
|
#pragma once
|
||||||
|
#include "./clef.hpp"
|
||||||
#include "./statistics/statistics.hpp"
|
#include "./statistics/statistics.hpp"
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user