mirror of
https://github.com/triqs/dft_tools
synced 2025-01-06 19:33:06 +01:00
First import. triqs 1.0 alpha1
This commit is contained in:
commit
0e585ad9b4
CMakeLists.txt
fortran
F90
dmftproj
python
CMakeLists.txtU_matrix.py__init__.py
converters
solver_multiband.pysumk_lda.pysumk_lda_tools.pysymmetry.pytest
23
CMakeLists.txt
Normal file
23
CMakeLists.txt
Normal file
@ -0,0 +1,23 @@
|
||||
# Append triqs installed files to the cmake load path
|
||||
list(APPEND CMAKE_MODULE_PATH ${TRIQS_PATH}/share/triqs/cmake)
|
||||
|
||||
# start configuration
|
||||
cmake_minimum_required(VERSION 2.8)
|
||||
project(ctseg CXX Fortran)
|
||||
set(CMAKE_BUILD_TYPE Release)
|
||||
enable_testing()
|
||||
|
||||
# Load TRIQS, including all predefined variables from TRIQS installation
|
||||
find_package(TRIQS)
|
||||
|
||||
if (NOT ${TRIQS_WITH_PYTHON_SUPPORT})
|
||||
MESSAGE(FATAL_ERROR "Wien2TRIQS require Python support in TRIQS")
|
||||
endif()
|
||||
|
||||
# We want to be installed in the TRIQS tree
|
||||
set(CMAKE_INSTALL_PREFIX ${TRIQS_PATH})
|
||||
|
||||
add_subdirectory(fortran/dmftproj)
|
||||
add_subdirectory(fortran/F90)
|
||||
add_subdirectory(python)
|
||||
add_subdirectory(test)
|
3
fortran/F90/CMakeLists.txt
Normal file
3
fortran/F90/CMakeLists.txt
Normal file
@ -0,0 +1,3 @@
|
||||
|
||||
triqs_build_f2py_module( triqs_DFT vertex vertex.pyf vertex.f90)
|
||||
install (FILES ${CMAKE_CURRENT_BINARY_DIR}/vertex.so DESTINATION ${TRIQS_PYTHON_LIB_DEST}/applications/dft)
|
226
fortran/F90/vertex.f90
Normal file
226
fortran/F90/vertex.f90
Normal file
@ -0,0 +1,226 @@
|
||||
SUBROUTINE u4ind(u_out,rcl,l,N,TM)
|
||||
|
||||
IMPLICIT NONE
|
||||
|
||||
INTEGER,INTENT(in) :: l,N
|
||||
COMPLEX*16, DIMENSION(N,N), INTENT(in) :: TM !Transformation Matrix
|
||||
DOUBLE PRECISION, DIMENSION(2*l+1,2*l+1,2*l+1,2*l+1) :: uc
|
||||
!double precision, dimension(N,N,N,N), intent(out) :: u_out
|
||||
COMPLEX*16, DIMENSION(N,N,N,N), INTENT(out) :: u_out
|
||||
DOUBLE PRECISION, DIMENSION(N,N,N,N) :: u_tmp
|
||||
DOUBLE PRECISION, DIMENSION(l+1), INTENT(in) :: rcl
|
||||
|
||||
INTEGER :: mmax,k,k2p1,ms1,ms2,ms3,ms4,ms5,ms6,ms7,ms8
|
||||
INTEGER :: sp,ms1sig,ms2sig,ms3sig,ms4sig
|
||||
INTEGER :: xk,xm1,xm2,xm3,xm,xm4
|
||||
DOUBLE PRECISION :: cgk0,cgk1,cgk2,yor(7,7),yoi(7,7)
|
||||
COMPLEX*16 :: am1,am2,am3,am4
|
||||
|
||||
!external cgk, ctormt
|
||||
|
||||
!WRITE(*,*)l,N
|
||||
mmax=2*l+1
|
||||
|
||||
IF ((N==mmax).OR.(N==2*mmax)) THEN
|
||||
! dimensions are fine:
|
||||
uc=0.d0
|
||||
|
||||
DO k = 0, 2*l, 2
|
||||
k2p1 = k/2 + 1
|
||||
cgk0 = cgk(l,0,k,0,l,0)
|
||||
DO ms1 = 1,mmax
|
||||
xm1 = (ms1-l-1)
|
||||
DO ms2 = 1,mmax
|
||||
xm2 = (ms2-l-1)
|
||||
DO ms3 = 1,mmax
|
||||
xm3 = (ms3-l-1)
|
||||
xm = xm1 - xm3
|
||||
DO ms4 = 1,mmax
|
||||
IF ((ms1+ms2-ms3-ms4).NE.0) CYCLE
|
||||
xm4 = (ms4-l-1)
|
||||
cgk1 = cgk(l,xm3,k,xm,l,xm1)
|
||||
cgk2 = cgk(l,xm2,k,xm,l,xm4)
|
||||
uc(ms1,ms2,ms3,ms4) = uc(ms1,ms2,ms3,ms4) + rcl(k2p1)*cgk0*cgk0*cgk1*cgk2
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
|
||||
u_tmp = 0.d0
|
||||
sp = (N/mmax)-1
|
||||
|
||||
! Now construct the big u matrix:
|
||||
! expand in spins:
|
||||
DO ms1=1,mmax
|
||||
DO ms1sig =0,sp
|
||||
DO ms2=1,mmax
|
||||
DO ms2sig=0,sp
|
||||
DO ms3 = 1,mmax
|
||||
DO ms3sig = 0,sp
|
||||
DO ms4 = 1,mmax
|
||||
DO ms4sig = 0,sp
|
||||
IF ((ms1sig==ms3sig).AND.(ms2sig==ms4sig)) THEN
|
||||
u_tmp(ms1sig*mmax+ms1,ms2sig*mmax+ms2,ms3sig*mmax+ms3,ms4sig*mmax+ms4) = uc(ms1,ms2,ms3,ms4)
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
|
||||
!call ctormt()
|
||||
! Transformation:
|
||||
!write(*,*)'TEST'
|
||||
u_out = 0.d0
|
||||
DO ms1=1,N
|
||||
DO ms2=1,N
|
||||
DO ms3=1,N
|
||||
DO ms4=1,N
|
||||
DO ms5=1,N
|
||||
am1 = CONJG(TM(ms1,ms5)) !cmplx(yor(ms1,ms5),-yoi(ms1,ms5))
|
||||
DO ms6=1,N
|
||||
am2 = CONJG(TM(ms2,ms6)) !cmplx(yor(ms2,ms6),-yoi(ms2,ms6))
|
||||
DO ms7=1,N
|
||||
am3 = TM(ms3,ms7) !cmplx(yor(ms3,ms7),yoi(ms3,ms7))
|
||||
DO ms8=1,N
|
||||
am4 = TM(ms4,ms8) !cmplx(yor(ms4,ms8),yoi(ms4,ms8))
|
||||
u_out(ms1,ms2,ms3,ms4) = u_out(ms1,ms2,ms3,ms4) + am1*am2*am3*am4 * u_tmp(ms5,ms6,ms7,ms8)
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
!if (abs(u_out(ms1,ms2,ms3,ms4))>0.0001d0) then
|
||||
! write(*,*)ms1,ms2,ms3,ms4, u_out(ms1,ms2,ms3,ms4)
|
||||
!endif
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
|
||||
ELSE
|
||||
|
||||
WRITE(*,*)"N and l does not fit together: N=2l+1 or 2*(2l+1)!"
|
||||
|
||||
ENDIF
|
||||
|
||||
|
||||
|
||||
|
||||
CONTAINS
|
||||
|
||||
|
||||
SUBROUTINE ctormt
|
||||
IMPLICIT NONE
|
||||
DOUBLE PRECISION :: sqtwo, sq54, sq34
|
||||
|
||||
yor=0.d0
|
||||
yoi=0.d0
|
||||
sqtwo=1.d0/SQRT(2.d0)
|
||||
sq54=SQRT(5.d0)/4d0
|
||||
sq34=SQRT(3.d0)/4d0
|
||||
IF (l.EQ.0) THEN
|
||||
yor(1,1)=1.d0
|
||||
ELSEIF (l.EQ.1) THEN
|
||||
yor(1,1)= sqtwo
|
||||
yor(1,3)=-sqtwo
|
||||
yor(2,2)=1.d0
|
||||
yoi(3,1)= sqtwo
|
||||
yoi(3,3)= sqtwo
|
||||
ELSEIF (l.EQ.2) THEN
|
||||
!yoi(1,1)= sqtwo
|
||||
!yoi(1,5)=-sqtwo
|
||||
!yoi(2,2)= sqtwo
|
||||
!yoi(2,4)= sqtwo
|
||||
!yor(3,3)=1.d0
|
||||
!yor(4,2)= sqtwo
|
||||
!yor(4,4)=-sqtwo
|
||||
!yor(5,1)= sqtwo
|
||||
!yor(5,5)= sqtwo
|
||||
! Wien2K matrix:
|
||||
yor(3,1) = -sqtwo
|
||||
yor(3,5) = sqtwo
|
||||
yor(5,2) = sqtwo
|
||||
yor(5,4) = sqtwo
|
||||
yor(1,3) = 1.d0
|
||||
yor(4,2) = sqtwo
|
||||
yor(4,4) = -sqtwo
|
||||
yor(2,1) = sqtwo
|
||||
yor(2,5) = sqtwo
|
||||
ELSEIF (l.EQ.3) THEN
|
||||
yoi(1,2)=sqtwo
|
||||
yoi(1,6)=-sqtwo
|
||||
yor(2,1)=-sq54
|
||||
yor(2,3)=sq34
|
||||
yor(2,5)=-sq34
|
||||
yor(2,7)=sq54
|
||||
yoi(3,1)=-sq54
|
||||
yoi(3,3)=-sq34
|
||||
yoi(3,5)=-sq34
|
||||
yoi(3,7)=-sq54
|
||||
yor(4,4)=1.d0
|
||||
yor(5,1)=-sq34
|
||||
yor(5,3)=-sq54
|
||||
yor(5,5)=sq54
|
||||
yor(5,7)=sq34
|
||||
yoi(6,1)=sq34
|
||||
yoi(6,3)=-sq54
|
||||
yoi(6,5)=-sq54
|
||||
yoi(6,7)=sq34
|
||||
yor(7,2)=sqtwo
|
||||
yor(7,6)=sqtwo
|
||||
ENDIF
|
||||
END SUBROUTINE ctormt
|
||||
|
||||
|
||||
DOUBLE PRECISION FUNCTION cgk(a,al,b,be,c,ga)
|
||||
IMPLICIT NONE
|
||||
|
||||
INTEGER :: a,al,b,be,c,ga
|
||||
|
||||
INTEGER :: z,zmin,zmax,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13
|
||||
DOUBLE PRECISION :: fa(0:20), fac
|
||||
|
||||
fa = (/1.d0, 1.d0, 2.d0, 6.d0, 24.d0, 12.d1, 72.d1, 504.d1,&
|
||||
4032.d1, 36288.d1, 36288.d2, 399168.d2, 4790016.d2,&
|
||||
62270208.d2, 871782912.d2, 1307674368.d3, 20922789888.d3,&
|
||||
355687428096.d3, 6402373705728.d3, 121645100408832.d3,243290200817664.d4/)
|
||||
|
||||
|
||||
i1=0
|
||||
i2=(a+b-c)
|
||||
i3=(a-al)
|
||||
i4=(b+be)
|
||||
i5=(c-b+al)
|
||||
i6=(c-a-be)
|
||||
zmin=MAX(i1,-i5,-i6)
|
||||
zmax=MIN(i2, i3, i4)
|
||||
cgk=0.d0
|
||||
IF (ABS(al).GT.a) RETURN
|
||||
IF (ABS(be).GT.b) RETURN
|
||||
IF (ABS(ga).GT.c) RETURN
|
||||
IF ( zmin.GT.zmax ) RETURN
|
||||
IF ( (al+be).NE.ga ) RETURN
|
||||
i7=(a-b+c)
|
||||
i8=(c+b-a)
|
||||
i9=(c+b+a)
|
||||
i10=(a+al)
|
||||
i11=(b-be)
|
||||
i12=(c+ga)
|
||||
i13=(c-ga)
|
||||
DO z=zmin,zmax
|
||||
IF (MOD(z,2)==0) THEN
|
||||
fac = 1.d0
|
||||
ELSE
|
||||
fac=-1.d0
|
||||
ENDIF
|
||||
cgk=cgk+fac/(fa(z)*fa(i2-z)*fa(i3-z)*fa(i4-z)*fa(i5+z)* fa(i6+z))
|
||||
ENDDO
|
||||
cgk=cgk*SQRT(fa(i2)*fa(i7)*fa(i8)*fa(i10)*fa(i3)*fa(i4)*fa(i11)*fa(i12)*fa(i13)*(2.d0*c+1.d0)/fa(i9+1))
|
||||
|
||||
END FUNCTION cgk
|
||||
|
||||
END SUBROUTINE u4ind
|
17
fortran/F90/vertex.pyf
Normal file
17
fortran/F90/vertex.pyf
Normal file
@ -0,0 +1,17 @@
|
||||
! -*- f90 -*-
|
||||
! Note: the context of this file is case sensitive.
|
||||
|
||||
python module vertex ! in
|
||||
interface ! in :vertex
|
||||
subroutine u4ind(u_out,rcl,l,n,tm) ! in :vertex:vertex.f90
|
||||
complex*16 dimension(n,n,n,n),intent(out),depend(n,n,n,n) :: u_out
|
||||
double precision dimension(l + 1),intent(in) :: rcl
|
||||
integer optional,intent(in),check((len(rcl)-1)>=l),depend(rcl) :: l=(len(rcl)-1)
|
||||
integer optional,intent(in),check(shape(tm,0)==n),depend(tm) :: n=shape(tm,0)
|
||||
complex*16 dimension(n,n),intent(in) :: tm
|
||||
end subroutine u4ind
|
||||
end interface
|
||||
end python module vertex
|
||||
|
||||
! This file was auto-generated with f2py (version:1).
|
||||
! See http://cens.ioc.ee/projects/f2py2e/
|
33
fortran/dmftproj/CMakeLists.txt
Normal file
33
fortran/dmftproj/CMakeLists.txt
Normal file
@ -0,0 +1,33 @@
|
||||
# List the sources
|
||||
set (SOURCES modules dmftproj readcomline set_ang_trans setsym
|
||||
set_rotloc timeinv read_k_list set_projections orthogonal
|
||||
rot_projectmat density symmetrize_mat rot_dens
|
||||
orthogonal_wannier outputqmc outbwin outband)
|
||||
|
||||
# add the extension and the path
|
||||
FOREACH(f ${SOURCES} )
|
||||
set(S "${CMAKE_CURRENT_SOURCE_DIR}/${f}.f;${S}")
|
||||
ENDFOREACH(f)
|
||||
|
||||
# The main target and what to link with...
|
||||
add_executable(dmftproj ${S})
|
||||
target_link_libraries(dmftproj ${TRIQS_LIBRARY_LAPACK} )
|
||||
|
||||
# where to install
|
||||
install (TARGETS dmftproj DESTINATION bin )
|
||||
|
||||
# that is it !
|
||||
|
||||
SET( D ${CMAKE_CURRENT_SOURCE_DIR}/SRC_templates/)
|
||||
SET(WIEN_SRC_TEMPL_FILES ${D}/case.cf_f_mm2 ${D}/case.cf_p_cubic ${D}/case.indmftpr ${D}/run_triqs ${D}/runsp_triqs)
|
||||
|
||||
# build the fortran stuff...
|
||||
message(STATUS "-----------------------------------------------------------------------------")
|
||||
message(STATUS " ******** WARNING ******** ")
|
||||
message(STATUS " Wien2k users : after installation of TRIQS, copy the files from ")
|
||||
message(STATUS " ${CMAKE_INSTALL_PREFIX}/share/triqs/Wien2k_SRC_files/SRC_templates ")
|
||||
message(STATUS " to your Wien2k installation WIENROOT/SRC_templates (Cf documentation). ")
|
||||
message(STATUS " This is not handled automatically by the installation process. ")
|
||||
message(STATUS "-----------------------------------------------------------------------------")
|
||||
install (FILES ${WIEN_SRC_TEMPL_FILES} DESTINATION share/triqs/Wien2k_SRC_files/SRC_templates )
|
||||
|
14
fortran/dmftproj/SRC_templates/case.cf_f_mm2
Normal file
14
fortran/dmftproj/SRC_templates/case.cf_f_mm2
Normal file
@ -0,0 +1,14 @@
|
||||
0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
*0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. A1
|
||||
*0. 0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. -.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. A2
|
||||
0. 0.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
*0. 0. 0. 0. 0. 0.70710678 0. 0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. B1
|
||||
0.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
*0. 0. 0. 0. 0.70710678 0. 0. 0. -.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. B2
|
||||
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.
|
||||
*0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. A1
|
||||
*0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. -.70710678 0. 0. A2
|
||||
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.70710678
|
||||
*0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. 0.70710678 0. 0. 0. 0. B1
|
||||
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -.70710678 0.
|
||||
*0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.70710678 0. 0. 0. -.70710678 0. 0. 0. 0. 0. B2
|
7
fortran/dmftproj/SRC_templates/case.cf_p_cubic
Normal file
7
fortran/dmftproj/SRC_templates/case.cf_p_cubic
Normal file
@ -0,0 +1,7 @@
|
||||
0.707106781 0. 0. 0. -0.707106781 0. 0. 0. 0. 0. 0. 0.
|
||||
0. 0.707106781 0. 0. 0. 0.707106781 0. 0. 0. 0. 0. 0.
|
||||
*0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
0. 0. 0. 0. 0. 0. 0.707106781 0. 0. 0. -0.707106781 0.
|
||||
0. 0. 0. 0. 0. 0. 0. 0.707106781 0. 0. 0. 0.707106781
|
||||
*0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
|
||||
|
16
fortran/dmftproj/SRC_templates/case.indmftpr
Normal file
16
fortran/dmftproj/SRC_templates/case.indmftpr
Normal file
@ -0,0 +1,16 @@
|
||||
3 ! Nsort
|
||||
1 1 3 ! Mult(Nsort)
|
||||
3 ! lmax
|
||||
complex ! choice of angular harmonics
|
||||
1 1 0 0 ! l included for each sort
|
||||
0 0 0 0 ! If split into ireps, gives number of ireps. for a given orbital (otherwise 0)
|
||||
cubic ! choice of angular harmonics
|
||||
1 1 2 0 ! l included for each sort
|
||||
0 0 2 0 ! If split into ireps, gives number of ireps. for a given orbital (otherwise 0)
|
||||
01 !
|
||||
0 ! SO flag
|
||||
complex ! choice of angular harmonics
|
||||
1 1 0 0 ! l included for each sort
|
||||
0 0 0 0 ! If split into ireps, gives number of ireps. for a given orbital (otherwise 0)
|
||||
-0.6 0.14 ! t2g + eg + Op
|
||||
|
784
fortran/dmftproj/SRC_templates/run_triqs
Executable file
784
fortran/dmftproj/SRC_templates/run_triqs
Executable file
@ -0,0 +1,784 @@
|
||||
#!/bin/csh -f
|
||||
hup
|
||||
unalias rm
|
||||
unalias mv
|
||||
|
||||
set name = $0
|
||||
set bin = $name:h #directory of WIEN-executables
|
||||
if !(-d $bin) set bin = .
|
||||
set name = $name:t #name of this script-file
|
||||
set logfile = :log
|
||||
set tmp = (:$name) #temporary files
|
||||
|
||||
set scratch = # set directory for vectors and help files
|
||||
if ($?SCRATCH) then #if envronment SCRATCH is set
|
||||
set scratch=`echo $SCRATCH | sed -e 's/\/$//'`/ #set $scratch to that value
|
||||
endif
|
||||
|
||||
|
||||
|
||||
#---> functions & subroutines
|
||||
alias testinput 'set errin="\!:1";if (! -e \!:1 || -z \!:1) goto \!:2'
|
||||
|
||||
alias teststatus 'if ($status) goto error'
|
||||
alias testerror 'if (! -z \!:1.error) goto error'
|
||||
alias teststop 'if (\!:1 == $stopafter ) goto stop'
|
||||
alias cleandayfile 'grep -v "\[" $dayfile >.tmp;'\
|
||||
'mv .tmp $dayfile'
|
||||
alias output 'set date = `date +"(%T)"`;'\
|
||||
'printf "> %s\t%s " "\!:*" "$date" >> $dayfile'
|
||||
|
||||
alias exec '($bin/x \!:*) >> $dayfile;'\
|
||||
'teststatus'
|
||||
|
||||
alias total_exec 'output \!:*;'\
|
||||
'exec \!:*;'\
|
||||
'cleandayfile;'\
|
||||
'testerror \!:1;'\
|
||||
'teststop \!:1'
|
||||
alias TOTtoFOR 'sed "s/TOT/FOR/" \!:1 > $tmp;'\
|
||||
'mv $tmp \!:1'
|
||||
alias FORtoTOT 'sed "s/FOR/TOT/" \!:1 > $tmp;'\
|
||||
'mv $tmp \!:1'
|
||||
alias IPRINT_inc 'sed "s/0 NUMBER/1 NUMBER/g" \!:1 > .case.inc;'\
|
||||
'mv .case.inc \!:1'
|
||||
|
||||
|
||||
#---> default parameters
|
||||
set ccut = 0.0000 #upper limit for charge convergence
|
||||
set fcut = 0 #upper limit for force convergence
|
||||
set ecut = 0.0001 #upper limit for energy convergence
|
||||
unset ec_conv
|
||||
set cc_conv
|
||||
set fc_conv
|
||||
set ec_test
|
||||
unset ec_test1
|
||||
unset cc_test
|
||||
unset fc_test
|
||||
set iter = 40 #maximum number of iterations
|
||||
set riter = 99 #restart after $riter iterations
|
||||
set stopafter #stop after $stopafter
|
||||
set next #set -> start cycle with $next
|
||||
set qlimit = 0.05 #set -> writes E-L in new in1 when qlimit is fulfilled
|
||||
set in1new = 999
|
||||
set write_all = -ef # new default: -in1ef is activated (version 10.1)
|
||||
set para
|
||||
set nohns
|
||||
set nohns1 = 0
|
||||
set it
|
||||
set readHinv
|
||||
set it0
|
||||
unset vec2pratt
|
||||
set itnum=0
|
||||
set itnum1=0
|
||||
set so
|
||||
set complex
|
||||
set complex2
|
||||
set cmplx
|
||||
set cmplx2
|
||||
set broyd
|
||||
set ctest=(0 0 0)
|
||||
set etest=(0 0 0)
|
||||
set msrcount=0
|
||||
# QDMFT
|
||||
set qdmft
|
||||
set hf
|
||||
set diaghf
|
||||
set nonself
|
||||
set noibz
|
||||
set newklist
|
||||
set redklist
|
||||
set NSLOTS = 1
|
||||
# END QDMFT
|
||||
|
||||
#---> default flags
|
||||
unset renorm
|
||||
set in1orig
|
||||
unset force #set -> force-calculation after self-consistency
|
||||
unset f_not_conv
|
||||
unset help #set -> help output
|
||||
unset init #set -> switches initially set to total energy calc.
|
||||
|
||||
#---> handling of input options
|
||||
echo "> ($name) options: $argv" >> $logfile
|
||||
alias sb 'shift; breaksw' #definition used in switch
|
||||
while ($#argv)
|
||||
switch ($1)
|
||||
case -[H|h]:
|
||||
set help; sb
|
||||
case -so:
|
||||
set complex2 = c
|
||||
set cmplx2 = -c
|
||||
set so = -so; sb
|
||||
case -nohns:
|
||||
set nohns = -nohns; shift; set nohns1 = $1;sb
|
||||
case -it:
|
||||
set itnum = 99; set it = -it; set it0 = -it; sb
|
||||
case -it1:
|
||||
set itnum = 99; set it = -it; set it0 = -it; touch .noHinv; sb
|
||||
case -it2:
|
||||
set itnum = 99; set it = -it; set it0 = -it; touch .fulldiag; sb
|
||||
case -noHinv:
|
||||
set itnum = 99; set it = -it; set it0 = -it; set readHinv = -noHinv; sb
|
||||
case -vec2pratt:
|
||||
set vec2pratt; sb
|
||||
case -p:
|
||||
set para = -p; sb
|
||||
case -I:
|
||||
set init; sb
|
||||
case -NI:
|
||||
unset broyd; sb
|
||||
case -e:
|
||||
shift; set stopafter = $1; sb
|
||||
case -cc:
|
||||
shift; set ccut = $1; set cc_test;unset cc_conv; sb
|
||||
case -ec:
|
||||
shift; set ecut = $1; set ec_test1;unset ec_conv; sb
|
||||
case -fc:
|
||||
shift; set f_not_conv; set fcut = $1; set fc_test;unset fc_conv; sb
|
||||
case -ql:
|
||||
shift; set qlimit = $1; sb
|
||||
case -in1ef:
|
||||
set in1new = -1;set write_all = -ef; sb
|
||||
case -in1new:
|
||||
shift; set in1new = $1;set write_all; sb
|
||||
case -in1orig:
|
||||
set in1orig = -in1orig; set in1new = 999; sb
|
||||
case -renorm:
|
||||
set renorm; set next=scf1; sb
|
||||
case -i:
|
||||
shift; set iter = $1; sb
|
||||
case -r:
|
||||
shift; set riter = $1; sb
|
||||
case -s:
|
||||
shift; set next = $1; sb
|
||||
# QDMFT
|
||||
case -qdmft:
|
||||
set qdmft=-qdmft; set NSLOTS = $1; sb
|
||||
# END QDMFT
|
||||
case -hf:
|
||||
set hf = -hf; sb
|
||||
case -diaghf:
|
||||
set diaghf = -diaghf; set hf = -hf; set iter = 1; sb
|
||||
case -nonself:
|
||||
set nonself = -nonself; set hf = -hf; set iter = 1; sb
|
||||
case -noibz:
|
||||
set noibz = -noibz; sb
|
||||
case -newklist:
|
||||
set newklist = -newklist; set hf = -hf; sb
|
||||
case -redklist:
|
||||
set redklist = -redklist; set hf = -hf; sb
|
||||
default:
|
||||
echo "ERROR: option $1 does not exist \!"; sb
|
||||
endsw
|
||||
end
|
||||
if ($?help) goto help
|
||||
|
||||
if($?cc_test) then
|
||||
unset ec_test;set ec_conv
|
||||
endif
|
||||
if($?fc_test) then
|
||||
unset ec_test;set ec_conv
|
||||
endif
|
||||
if($?ec_test1) then
|
||||
set ec_test;unset ec_conv
|
||||
endif
|
||||
if(! $?ec_test) then
|
||||
set ecut=0
|
||||
endif
|
||||
|
||||
#---> path- and file-names
|
||||
set file = `pwd`
|
||||
set file = $file:t #tail of file-names
|
||||
set dayfile = $file.dayfile #main output-file
|
||||
|
||||
#---> starting out
|
||||
printf "\nCalculating $file in `pwd`\non `hostname` with PID $$\n" > $dayfile
|
||||
echo "using `cat $WIENROOT/VERSION` in $WIENROOT" >> $dayfile
|
||||
printf "\n:LABEL1: Calculations in `pwd`\n:LABEL2: on `hostname` at `date`\n" >> $file.scf
|
||||
echo ":LABEL3: using `cat $WIENROOT/VERSION` in $WIENROOT" >> $file.scf
|
||||
|
||||
if ( "$so" == "-so" && "$hf" == "-hf") then
|
||||
echo "Hartree-Fock and spin-orbit coupling not supported yet. STOP"
|
||||
echo "Hartree-Fock and spin-orbit coupling not supported yet. STOP" >> $file.dayfile
|
||||
exit 9
|
||||
endif
|
||||
|
||||
if ( "$hf" == "-hf") then
|
||||
if (-e $file.corewf) rm $file.corewf
|
||||
IPRINT_inc $file.inc #modify IPRINT switch in case.inc
|
||||
endif
|
||||
|
||||
#---> complex
|
||||
if ((-e $file.in1c) && !(-z $file.in1c)) then
|
||||
set complex = c
|
||||
set complex2 = c
|
||||
set cmplx = -c
|
||||
set cmplx2 = -c
|
||||
endif
|
||||
|
||||
set vresp
|
||||
testinput $file.inm_vresp no_vresp
|
||||
set vresp=-vresp
|
||||
no_vresp:
|
||||
|
||||
# set iter/riter to 999 when MSR1a/MSECa is used
|
||||
set testmsr=`head -1 $file.inm | grep "MSR[12]a" | cut -c1-3`
|
||||
set testmsr1=`head -1 $file.inm | grep "MSECa" | cut -c1-5`
|
||||
if($testmsr1 == 'MSECa') set testmsr=MSR
|
||||
if ($testmsr == 'MSR') then
|
||||
if($riter == "99") set riter=999
|
||||
if($iter == "40") set iter=999
|
||||
foreach i ($file.in2*)
|
||||
TOTtoFOR $i #switch FOR-label
|
||||
echo changing TOT to FOR in $i
|
||||
end
|
||||
if (! -e $file.inM && ! -z $file.inM ) then
|
||||
x pairhess
|
||||
echo $file.inM and .minrestart have been created by pairhess >>$dayfile
|
||||
endif
|
||||
endif
|
||||
|
||||
if ($next != "") goto start #start with optional program
|
||||
set next = lapw0 #default start with lstart
|
||||
|
||||
if !(-e $file.clmsum) then
|
||||
if (-e $file.clmsum_old) then
|
||||
cp $file.clmsum_old $file.clmsum
|
||||
else
|
||||
echo 'no' $file'.clmsum(_old) file found, which is necessary for lapw0 \!'
|
||||
echo 'no' $file'.clmsum(_old) file found, which is necessary for lapw0 \!'\
|
||||
>>$dayfile
|
||||
goto error
|
||||
endif
|
||||
endif
|
||||
|
||||
if ($?broyd) then
|
||||
if (-e $file.broyd1) then
|
||||
echo "$file.broyd* files present \! You did not save_lapw a previous clculation."
|
||||
echo "You have 60 seconds to kill this job ( ^C or kill $$ )"
|
||||
echo "or the script will rm *.broyd* and continue (use -NI to avoid automatic rm)"
|
||||
sleep 60
|
||||
rm *.broyd*
|
||||
echo "$file.broyd* files removed \!" >> $dayfile
|
||||
endif
|
||||
endif
|
||||
|
||||
start: #initalization of in2-files
|
||||
if ($?init && $testmsr != 'MSR' ) then
|
||||
foreach i ($file.in2*)
|
||||
sed "1s/[A-Z]..../TOT /" $i > $tmp
|
||||
mv $tmp $i
|
||||
end
|
||||
endif
|
||||
|
||||
set icycle=1
|
||||
|
||||
set riter_save=$riter
|
||||
printf "\n\n start \t(%s) " "`date`" >> $dayfile
|
||||
|
||||
#goto mixer only if clmval file is present
|
||||
if ($next == "scf1") then
|
||||
if !(-e $file.clmval) then
|
||||
set next = lapw0
|
||||
endif
|
||||
endif
|
||||
|
||||
echo "with $next ($iter/$riter to go)" >> $dayfile
|
||||
goto $next
|
||||
|
||||
|
||||
cycle: #begin of sc-cycle
|
||||
nohup echo in cycle $icycle " ETEST: $etest[3] CTEST: $ctest[3]"
|
||||
hup
|
||||
|
||||
if ($it == '-it' ) then
|
||||
set ittest=`echo "$icycle / $itnum * $itnum "| bc`
|
||||
if ( $ittest == $icycle ) touch .fulldiag
|
||||
endif
|
||||
|
||||
lapw0:
|
||||
printf "\n cycle $icycle \t(%s) \t(%s)\n\n" "`date`" "$iter/$riter to go" >> $dayfile
|
||||
|
||||
testinput $file.in0_grr cont_lapw0
|
||||
total_exec lapw0 -grr $para
|
||||
|
||||
cont_lapw0:
|
||||
testinput $file.in0 error_input
|
||||
total_exec lapw0 $para
|
||||
|
||||
if ($fcut == "0") goto lapw1
|
||||
set f_exist=`grep :FHF $file.scf0`
|
||||
if ($#f_exist == 0 ) then
|
||||
set fcut=0
|
||||
set fc_conv
|
||||
echo Force-convergence not possible. Forces not present.
|
||||
echo Force-convergence not possible. Forces not present.>> $dayfile
|
||||
if($?ec_test) goto lapw1
|
||||
if($?cc_test) goto lapw1
|
||||
goto error
|
||||
endif
|
||||
#---> test of force-convergence for all forces
|
||||
if !(-e $file.scf) goto lapw1
|
||||
if(! $?ec_conv) goto lapw1
|
||||
if(! $?cc_conv) goto lapw1
|
||||
set natom=`head -2 $file.struct |tail -1 |cut -c28-30`
|
||||
#set natom = `grep UNITCELL $file.output0 |awk '{print $NF}'`
|
||||
set iatom = 1
|
||||
set ftest = (1 0)
|
||||
grep :FOR $file.scf >test_forces.scf
|
||||
while ($iatom <= $natom) #cycle over all atoms
|
||||
set itest=$iatom
|
||||
@ itest ++
|
||||
testinput $file.inM cont_force_test
|
||||
set atest=`head -$itest $file.inM |tail -1`
|
||||
set itest=`echo " $atest[1] + $atest[2] + $atest[3]"|bc`
|
||||
if ( $itest == '0' ) goto skipforce
|
||||
cont_force_test:
|
||||
if ($iatom <= 9) then
|
||||
set test = (`$bin/testconv -p :FOR00$iatom -c $fcut -f test_forces`)
|
||||
else if ($iatom <= 99) then
|
||||
set test = (`$bin/testconv -p :FOR0$iatom -c $fcut -f test_forces`)
|
||||
else
|
||||
set test = (`$bin/testconv -p :FOR$iatom -c $fcut -f test_forces`)
|
||||
endif
|
||||
if !($test[1]) set ftest[1] = 0
|
||||
set ftest[2] = $test[2]
|
||||
set ftest = ($ftest $test[3] $test[4])
|
||||
skipforce:
|
||||
@ iatom ++
|
||||
end
|
||||
rm test_forces.scf
|
||||
echo ":FORCE convergence:" $ftest[1-] >> $dayfile
|
||||
|
||||
if ($ftest[1]) then #force convergenced
|
||||
if ($nohns == '-nohns') then
|
||||
set nohns
|
||||
echo "NOHNS deactivated by FORCE convergence" >> $dayfile
|
||||
else
|
||||
# set iter = 1
|
||||
if(! $?ec_conv) goto lapw1
|
||||
if(! $?cc_conv) goto lapw1
|
||||
set fc_conv
|
||||
unset f_not_conv
|
||||
foreach i ($file.in2*)
|
||||
TOTtoFOR $i #switch FOR-label
|
||||
end
|
||||
endif
|
||||
else
|
||||
unset fc_conv
|
||||
endif
|
||||
|
||||
lapw1:
|
||||
testinput $file.in1$complex error_input
|
||||
#generates in1-file from :EPL/EPH in case.scf2
|
||||
# if ($icycle == $in1new) rm $file.broyd1 $file.broyd2
|
||||
if ($icycle >= $in1new ) then
|
||||
if (! -e $file.in1${complex}_orig ) cp $file.in1${complex} $file.in1${complex}_orig
|
||||
write_in1_lapw $write_all -ql $qlimit $cmplx >> $dayfile
|
||||
if($status == 0 ) cp $file.in1${complex}new $file.in1${complex}
|
||||
endif
|
||||
if($in1orig == '-in1orig') then
|
||||
if ( -e $file.in1${complex}_orig ) mv $file.in1${complex}_orig $file.in1${complex}
|
||||
# unset in1orig
|
||||
endif
|
||||
|
||||
set readHinv0 = $readHinv
|
||||
if (-e .noHinv) then
|
||||
echo " case.storeHinv files removed"
|
||||
set readHinv0 = -noHinv0
|
||||
rm .noHinv
|
||||
endif
|
||||
if (-e .fulldiag) then
|
||||
echo " full diagonalization forced"
|
||||
set it0
|
||||
set readHinv0
|
||||
rm .fulldiag
|
||||
endif
|
||||
if ( $it0 == "-it" ) then
|
||||
touch ${scratch}$file.vector.old
|
||||
if( ! $?vec2pratt ) then
|
||||
foreach i (${scratch}$file.vector*.old)
|
||||
rm $i
|
||||
end
|
||||
vec2old_lapw $para >> $dayfile
|
||||
else
|
||||
vec2pratt_lapw $para >> $dayfile
|
||||
endif
|
||||
endif
|
||||
|
||||
if ( $hf == "-hf" ) then
|
||||
if ((-e $file.vectorhf) && !(-z $file.vectorhf)) then
|
||||
mv $file.vectorhf $file.vectorhf_old
|
||||
if (!(-e $file.weighhf) || (-z $file.weighhf)) mv $file.energyhf $file.tmp_energyhf
|
||||
else if ((-e $file.vectorhf_old) && !(-z $file.vectorhf_old)) then
|
||||
if (!(-e $file.weighhf) || (-z $file.weighhf)) mv $file.energyhf $file.tmp_energyhf
|
||||
else
|
||||
cp $file.kgen_fbz $file.kgen
|
||||
cp $file.klist_fbz $file.klist
|
||||
total_exec lapw1 $it0 $nohns $readHinv0 $cmplx
|
||||
mv $file.vector $file.vectorhf_old
|
||||
mv $file.energy $file.tmp_energyhf
|
||||
if (-e $file.weighhf) rm $file.weighhf
|
||||
endif
|
||||
cp $file.kgen_ibz $file.kgen
|
||||
cp $file.klist_ibz $file.klist
|
||||
if (!(-e $file.vsp_old) || (-z $file.vsp_old)) then
|
||||
cp $file.vsp $file.vsp_old
|
||||
endif
|
||||
endif
|
||||
|
||||
total_exec lapw1 $it0 $para $nohns $readHinv0 $cmplx
|
||||
set it0 = $it
|
||||
set readHinv0 = $readHinv
|
||||
|
||||
lapwso:
|
||||
if ( -e $file.scfso ) rm $file.scfso
|
||||
if ( "$so" == "-so" ) then
|
||||
testinput $file.inso error_input
|
||||
total_exec lapwso $para $cmplx
|
||||
endif
|
||||
|
||||
lapw2:
|
||||
testinput $file.in2$complex2 error_input
|
||||
if ( $hf == "-hf" ) then
|
||||
if (!(-e $file.weighhf) || (-z $file.weighhf)) then
|
||||
cp $file.kgen_fbz $file.kgen
|
||||
cp $file.klist_fbz $file.klist
|
||||
if (-e $file.vector) mv $file.vector $file.vector_save
|
||||
mv $file.vectorhf_old $file.vector
|
||||
if (-e $file.energy) mv $file.energy $file.energy_save
|
||||
mv $file.tmp_energyhf $file.energy
|
||||
total_exec lapw2 $vresp $in1orig $cmplx2
|
||||
mv $file.weigh $file.weighhf
|
||||
mv $file.vector $file.vectorhf_old
|
||||
if (-e $file.vector_save) mv $file.vector_save $file.vector
|
||||
mv $file.energy $file.energyhf
|
||||
if (-e $file.energy_save) mv $file.energy_save $file.energy
|
||||
cp $file.kgen_ibz $file.kgen
|
||||
cp $file.klist_ibz $file.klist
|
||||
endif
|
||||
endif
|
||||
#QDMFT
|
||||
if ( "$qdmft" == "-qdmft" ) then
|
||||
total_exec lapw2 $para $vresp -almd $cmplx2 $so
|
||||
dmftproj $so # please check: $so can't be here
|
||||
# pytriqs call
|
||||
printf "\n> ERROR: Insert a correct call of pytriqs (with mpi wrapper, if needed) in run_triqs Wien2k script\n" >> $dayfile
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> ERROR: Insert a correct call of pytriqs (with mpi wrapper, if needed) in run_triqs Wien2k script\n"
|
||||
exit 0
|
||||
# to call pytriqs uncomment and modify the line below to adapt it to your system
|
||||
# the number of core is in NSLOTS variable
|
||||
#mpprun --force-mpi=openmpi/1.3.2-i110074 /home/x_leopo/TRIQS_segment/triqs_install/bin/pytriqs $file.py
|
||||
total_exec lapw2 $para $vresp -qdmft $cmplx2 $so
|
||||
else
|
||||
total_exec lapw2 $para $vresp $in1orig $cmplx2 $so
|
||||
if ( $hf == "-hf" ) then
|
||||
sed 's/:SUM/:SLSUM/g' < $file.scf2 > $file.scf2_tmp
|
||||
mv $file.scf2_tmp $file.scf2
|
||||
mv $file.clmval $file.clmvalsl
|
||||
if ( -e $file.scfhf_1 ) rm $file.scfhf_*
|
||||
endif
|
||||
endif
|
||||
# END QDMFT
|
||||
|
||||
rm -f $file.clmsc
|
||||
|
||||
if ( $hf == "-hf" ) goto hf
|
||||
|
||||
lapw1s:
|
||||
testinput $file.in1${complex}s lcore
|
||||
total_exec lapw1 -sc $para $nohns $readHinv $cmplx
|
||||
|
||||
lapw2s:
|
||||
testinput $file.in2${complex2}s error_input
|
||||
total_exec lapw2 -sc $para $vresp $in1orig $cmplx2
|
||||
goto lcore
|
||||
|
||||
hf:
|
||||
testinput $file.inhf error_input
|
||||
if (!(-e $file.corewf) || (-z $file.corewf)) then
|
||||
total_exec lcore
|
||||
endif
|
||||
total_exec hf $diaghf $nonself $noibz $newklist $redklist $para $cmplx
|
||||
|
||||
lapw2hf:
|
||||
testinput $file.in2$complex2 error_input
|
||||
cp $file.kgen_fbz $file.kgen
|
||||
cp $file.klist_fbz $file.klist
|
||||
total_exec lapw2 -hf $vresp $in1orig $cmplx2
|
||||
cp $file.kgen_ibz $file.kgen
|
||||
cp $file.klist_ibz $file.klist
|
||||
|
||||
lcore:
|
||||
testinput $file.inc scf
|
||||
total_exec lcore
|
||||
|
||||
coresuper:
|
||||
if ( ! -e .lcore) goto scf
|
||||
total_exec dstart -lcore
|
||||
rm -f $file.clmcor
|
||||
endif
|
||||
|
||||
scf:
|
||||
if ( $hf == "-hf" ) then
|
||||
foreach i ( 0 0_grr 1 so 2 1s 2s c hf 2hf )
|
||||
if (-e $file.scf$i) cat $file.scf$i >> $file.scf
|
||||
end
|
||||
else
|
||||
foreach i ( 0 1 so 2 1s 2s c )
|
||||
if (-e $file.scf$i) cat $file.scf$i >> $file.scf
|
||||
end
|
||||
endif
|
||||
scf1:
|
||||
foreach i (clmsum vsp vns vrespsum )
|
||||
if (-e $file.$i ) \
|
||||
cp $file.$i $file.${i}_old #save last cycle
|
||||
end
|
||||
|
||||
|
||||
mixer:
|
||||
testinput $file.inm error_input
|
||||
total_exec mixer
|
||||
cat $file.scfm >> $file.scf
|
||||
|
||||
if($?renorm) then
|
||||
unset renorm
|
||||
rm $file.broy*
|
||||
endif
|
||||
|
||||
mixer_vresp:
|
||||
testinput $file.inm_vresp energytest
|
||||
total_exec mixer_vresp
|
||||
grep -e "CTO " -e NEC $file.outputm_vresp | sed 's/:/:VRESP/' >> $file.scf
|
||||
#total_exec int16
|
||||
|
||||
energytest:
|
||||
#---> output energies
|
||||
#set EF = `grep 'F E R' $file.scf2 |awk '{printf("%.5f", $NF)}'`
|
||||
#set ET = `grep 'AL EN' $file.outputm |awk '{printf("%.5f", $NF)}'`
|
||||
#cat << theend >> $dayfile
|
||||
#EF $EF
|
||||
#ET $ET
|
||||
#theend
|
||||
#echo $ET > $file.finM
|
||||
|
||||
#---> test of energy convergence
|
||||
#if ($ecut == "0") goto chargetest
|
||||
set etest = (`$bin/testconv -p :ENE -c $ecut`)
|
||||
teststatus
|
||||
echo ":ENERGY convergence: $etest[1-3]" >> $dayfile
|
||||
if (! $?ec_test) goto chargetest
|
||||
if ($etest[1]) then
|
||||
if ($nohns == '-nohns') then
|
||||
set nohns
|
||||
echo "NOHNS deactivated by ENERGY convergence" >> $dayfile
|
||||
else
|
||||
# set iter = 1
|
||||
set ec_conv
|
||||
endif
|
||||
else
|
||||
unset ec_conv
|
||||
endif
|
||||
|
||||
chargetest:
|
||||
#if ($ccut == "0.0000") goto nextiter
|
||||
set ctest = (`$bin/testconv -p :DIS -c $ccut`)
|
||||
teststatus
|
||||
echo ":CHARGE convergence: $ctest[1-3]" >> $dayfile
|
||||
if (! $?cc_test) goto nextiter
|
||||
if ($ctest[1]) then
|
||||
if ($nohns == '-nohns') then
|
||||
set nohns
|
||||
echo "NOHNS deactivated by CHARGE convergence" >> $dayfile
|
||||
else
|
||||
# set iter = 1
|
||||
set cc_conv
|
||||
endif
|
||||
else
|
||||
unset cc_conv
|
||||
endif
|
||||
|
||||
# check F-condition for MSR1a mode
|
||||
if ($testmsr == 'MSR') then
|
||||
set msrtest =(`grep :FRMS $file.scf |tail -1` )
|
||||
if ($#msrtest >= 13 ) then
|
||||
echo msrcount $msrcount msrtest $msrtest[13]
|
||||
# Trap silly early convergene with "minimum-requests"
|
||||
set etest2 = (`$bin/testconv -p :ENE -c 0.001`)
|
||||
if ( $etest2[1] == '0')set msrtest[13]='F'
|
||||
set ctest2 = (`$bin/testconv -p :DIS -c 0.01`)
|
||||
if ( $ctest2[1] == '0')set msrtest[13]='F'
|
||||
#
|
||||
if ($msrtest[13] == 'T') then
|
||||
#change in case.inm MSR1a/MSECa to MSR1/MSEC3, rm *.bro*, unset testmsr
|
||||
@ msrcount ++
|
||||
if($msrcount == 3) then
|
||||
sed "1s/MSR1a/MSR1 /" $file.inm >$file.inm_tmp
|
||||
sed "1s/MSECa/MSEC3/" $file.inm_tmp >$file.inm
|
||||
rm *.broy* $file.inm_tmp
|
||||
set a=`grep -e GREED *scfm | tail -1 | cut -c 50-55`
|
||||
set b=`echo "scale=5; if( $a/2 > 0.05) $a/2 else 0.05 " |bc -l`
|
||||
echo $b > .msec
|
||||
echo "MSR1a/MSECa changed to MSR1/MSEC3 in $file.inm, relaxing only electrons" >> $dayfile
|
||||
set testmsr
|
||||
endif
|
||||
else
|
||||
set msrcount=0
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
#---> output forces
|
||||
#grep 'FTOT' $file.outputm|awk '{print "FT ",$2,$4,$5,$6}'\
|
||||
# >> $dayfile
|
||||
#grep 'FTOT' $file.outputm|awk '{print $4,$5,$6}' \
|
||||
# >> $file.finM
|
||||
|
||||
nextiter:
|
||||
@ iter --
|
||||
@ riter --
|
||||
@ nohns1 --
|
||||
@ icycle ++
|
||||
|
||||
if ($icycle == 2) set newklist
|
||||
|
||||
#---> nohns
|
||||
if (! $nohns1 ) then
|
||||
set nohns
|
||||
echo "NOHNS deactivated" >> $dayfile
|
||||
endif
|
||||
|
||||
#---> restart
|
||||
if (! $riter && -e $file.broyd1) then
|
||||
echo " restart" >> $dayfile
|
||||
rm $file.broyd1 $file.broyd2
|
||||
set riter=$riter_save
|
||||
endif
|
||||
|
||||
foreach i ($tmp) #delete temporary files
|
||||
if (-e $i) rm $i
|
||||
end
|
||||
|
||||
#output cycle
|
||||
#printf "%s\n\n" "$iter/$riter to go" >> $dayfile
|
||||
if (-e .stop) goto stop1
|
||||
if ($testmsr == 'MSR' && -e .minstop) then
|
||||
sed "1s/MSR1a/MSR1 /" $file.inm >$file.inm_tmp
|
||||
sed "1s/MSECa/MSEC3/" $file.inm_tmp >$file.inm
|
||||
rm *.broy* $file.inm_tmp
|
||||
set a=`grep -e GREED *scfm | tail -1 | cut -c 50-55`
|
||||
set b=`echo "scale=5; if( $a/2 > 0.05) $a/2 else 0.05 " |bc -l`
|
||||
echo $b > .msec
|
||||
echo "MSR1a/MSECa changed to MSR1/MSEC3 in $file.inm, relaxing only electrons" >> $dayfile
|
||||
set testmsr
|
||||
endif
|
||||
|
||||
echo ec cc and fc_conv $?ec_conv $?cc_conv $?fc_conv
|
||||
echo ec cc and fc_conv $?ec_conv $?cc_conv $?fc_conv >> $dayfile
|
||||
if($?ec_conv && $?cc_conv && $?fc_conv && ($testmsr == '') ) goto stop
|
||||
|
||||
if ($iter) goto cycle #end of sc-cycle
|
||||
|
||||
if ( $?f_not_conv ) then
|
||||
printf "\n> FORCES NOT CONVERGED\n" >> $dayfile
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> FORCES NOT CONVERGED\n"
|
||||
exit 3
|
||||
endif
|
||||
if ( ! $?ec_conv ) then
|
||||
printf "\n> energy in SCF NOT CONVERGED\n" >> $dayfile
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> energy in SCF NOT CONVERGED\n"
|
||||
exit 0
|
||||
endif
|
||||
if ( ! $?cc_conv ) then
|
||||
printf "\n> charge in SCF NOT CONVERGED\n" >> $dayfile
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> charge in SCF NOT CONVERGED\n"
|
||||
exit 0
|
||||
endif
|
||||
|
||||
stop: #normal exit
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> stop\n"
|
||||
exit 0
|
||||
|
||||
stop1: #normal exit
|
||||
printf "\n> stop due to .stop file\n" >> $dayfile
|
||||
rm .stop
|
||||
printf "\n> stop due to .stop file\n"
|
||||
exit 1
|
||||
|
||||
error_input: #error exit
|
||||
printf "\n> stop error: the required input file $errin for the next step could not be found\n" >> $dayfile
|
||||
printf "\n> stop error: the required input file $errin for the next step could not be found\n"
|
||||
exit 9
|
||||
|
||||
error: #error exit
|
||||
printf "\n> stop error\n" >> $dayfile
|
||||
printf "\n> stop error\n"
|
||||
exit 9
|
||||
|
||||
help: #help exit
|
||||
cat << theend
|
||||
|
||||
PROGRAM: $0
|
||||
|
||||
PURPOSE: running the nonmagnetic scf-cycle in WIEN
|
||||
to be called within the case-subdirectory
|
||||
has to be located in WIEN-executable directory
|
||||
|
||||
USAGE: $name [OPTIONS] [FLAGS]
|
||||
|
||||
OPTIONS:
|
||||
-cc LIMIT -> charge convergence LIMIT (0.0001 e)
|
||||
-ec LIMIT -> energy convergence LIMIT ($ecut Ry)
|
||||
-fc LIMIT -> force convergence LIMIT (1.0 mRy/a.u.)
|
||||
default is -ec 0.0001; multiple convergence tests possible
|
||||
-e PROGRAM -> exit after PROGRAM ($stopafter)
|
||||
-i NUMBER -> max. NUMBER ($iter) of iterations
|
||||
-s PROGRAM -> start with PROGRAM ($next)
|
||||
-r NUMBER -> restart after NUMBER ($riter) iterations (rm *.broyd*)
|
||||
-nohns NUMBER ->do not use HNS for NUMBER iterations
|
||||
-in1new N -> create "new" in1 file after N iter (write_in1 using scf2 info)
|
||||
-ql LIMIT -> select LIMIT ($qlimit) as min.charge for E-L setting in new in1
|
||||
-qdmft NP -> including DMFT from Aichhorn/Georges/Biermann running on NP proc
|
||||
|
||||
FLAGS:
|
||||
-h/-H -> help
|
||||
-I -> with initialization of in2-files to "TOT"
|
||||
-NI -> does NOT remove case.broyd* (default: rm *.broyd* after 60 sec)
|
||||
-p -> run k-points in parallel (needs .machine file [speed:name])
|
||||
-it -> use iterative diagonalization
|
||||
-it1 -> use iterative diag. with recreating H_inv (after basis change)
|
||||
-it2 -> use iterative diag. with reinitialization (after basis change)
|
||||
-noHinv -> use iterative diag. without H_inv
|
||||
-vec2pratt -> use vec2pratt instead of vec2old for iterative diag.
|
||||
-so -> run SCF including spin-orbit coupling
|
||||
-renorm-> start with mixer and renormalize density
|
||||
-in1orig-> if present, use case.in1_orig file; do not modify case.in1
|
||||
-hf -> HF/hybrid-DFT calculation
|
||||
-diaghf -> non-selfconsistent HF with diagonal HF only (only e_i)
|
||||
-nonself -> non-selfconsistent HF/hybrid-DFT calculation (only E_x(HF))
|
||||
-newklist -> HF/hybrid-DFT calculation starting from a different k-mesh
|
||||
-redklist -> HF/hybrid-DFT calculation with a reduced k-mesh for the potential
|
||||
|
||||
CONTROL FILES:
|
||||
.lcore runs core density superposition producing case.clmsc
|
||||
.stop stop after SCF cycle
|
||||
.minstop stops MSR1a minimization and changes to MSR1
|
||||
.fulldiag force full diagonalization
|
||||
.noHinv remove case.storeHinv files
|
||||
case.inm_vresp activates calculation of vresp files for meta-GGAs
|
||||
case.in0_grr activates a second call of lapw0 (mBJ pot., or E_xc analysis)
|
||||
|
||||
ENVIRONMENT VARIBLES:
|
||||
SCRATCH directory where vectors and help files should go
|
||||
|
||||
theend
|
||||
|
||||
exit 1
|
||||
|
||||
|
975
fortran/dmftproj/SRC_templates/runsp_triqs
Executable file
975
fortran/dmftproj/SRC_templates/runsp_triqs
Executable file
@ -0,0 +1,975 @@
|
||||
#!/bin/csh -f
|
||||
hup
|
||||
unalias rm
|
||||
|
||||
set name = $0
|
||||
set bin = $name:h #directory of WIEN-executables
|
||||
if !(-d $bin) set bin = .
|
||||
set name = $name:t #name of this script-file
|
||||
set logfile = :log
|
||||
set tmp = (:$name) #temporary files
|
||||
|
||||
set scratch = # set directory for vectors and help files
|
||||
if ($?SCRATCH) then #if envronment SCRATCH is set
|
||||
set scratch=`echo $SCRATCH | sed -e 's/\/$//'`/ #set $scratch to that value
|
||||
endif
|
||||
|
||||
#---> functions & subroutines
|
||||
alias testinput 'set errin="\!:1";if (! -e \!:1 || -z \!:1) goto \!:2'
|
||||
alias teststatus 'if ($status) goto error'
|
||||
alias testerror 'if ( -e \!:1.error && ! -z \!:1.error) goto error'
|
||||
alias teststop 'if (\!:1 == $stopafter ) goto stop'
|
||||
alias cleandayfile 'grep -v "\[" $dayfile >.tmp;'\
|
||||
'mv .tmp $dayfile'
|
||||
alias output 'set date = `date +"(%T)"`;'\
|
||||
'printf "> %s\t%s " "\!:*" "$date" >> $dayfile'
|
||||
|
||||
alias exec '($bin/x \!:*) >> $dayfile;'\
|
||||
'teststatus'
|
||||
|
||||
alias total_exec 'output \!:*;'\
|
||||
'exec \!:*;'\
|
||||
'cleandayfile;'\
|
||||
'testerror \!:1;'\
|
||||
'testerror up\!:1;'\
|
||||
'testerror dn\!:1;'\
|
||||
'teststop \!:1'
|
||||
alias TOTtoFOR 'sed "s/TOT/FOR/" \!:1 > $tmp;'\
|
||||
'mv $tmp \!:1'
|
||||
alias FORtoTOT 'sed "s/FOR/TOT/" \!:1 > $tmp;'\
|
||||
'mv $tmp \!:1'
|
||||
alias IPRINT_inc 'sed "s/0 NUMBER/1 NUMBER/g" \!:1 > $tmp;'\
|
||||
'mv $tmp \!:1'
|
||||
|
||||
#---> default parameters
|
||||
set ccut = 0.0000 #upper limit for charge convergence
|
||||
set fcut = 0 #upper limit for force convergence
|
||||
set ecut = 0.0001 #upper limit for energy convergence
|
||||
unset ec_conv
|
||||
set cc_conv
|
||||
set fc_conv
|
||||
set ec_test
|
||||
unset ec_test1
|
||||
unset cc_test
|
||||
unset fc_test
|
||||
set iter = 40 #maximum number of iterations
|
||||
set riter = 99 #restart after $riter iterations
|
||||
set stopafter #stop after $stopafter
|
||||
set next #set -> start cycle with $next
|
||||
set qlimit = 0.05 #set -> writes E-L in new in1 when qlimit is fulfilled
|
||||
set in1new = 999
|
||||
set write_all = -ef # new default: -in1ef is activated (version 10.1)
|
||||
set para
|
||||
set nohns
|
||||
set nohns1 = 0
|
||||
set it
|
||||
set readHinv
|
||||
unset vec2pratt
|
||||
set it0
|
||||
set itnum=0
|
||||
set itnum1=0
|
||||
set complex
|
||||
set complex2
|
||||
set cmplx
|
||||
set cmplx2
|
||||
set so
|
||||
set orb
|
||||
set broyd
|
||||
set eece1
|
||||
unset eece
|
||||
unset orbc
|
||||
unset orbdu
|
||||
unset dm
|
||||
set ctest=(0 0 0)
|
||||
set etest=(0 0 0)
|
||||
set msrcount=0
|
||||
# QDMFT
|
||||
set qdmft
|
||||
set hf
|
||||
set diaghf
|
||||
set nonself
|
||||
set noibz
|
||||
set newklist
|
||||
set redklist
|
||||
set NSLOTS = 1
|
||||
# END QDMFT
|
||||
|
||||
#---> default flags
|
||||
unset renorm
|
||||
set in1orig
|
||||
unset force #set -> force-calculation after self-consistency
|
||||
unset f_not_conv
|
||||
unset help #set -> help output
|
||||
#unset complex #set -> complex calculation
|
||||
unset init #set -> switches initially set to total energy calc.
|
||||
unset lcore #set -> core density superposition
|
||||
|
||||
#---> handling of input options
|
||||
echo "> ($name) options: $argv" >> $logfile
|
||||
alias sb 'shift; breaksw' #definition used in switch
|
||||
while ($#argv)
|
||||
switch ($1)
|
||||
case -[H|h]:
|
||||
set help; sb
|
||||
case -so:
|
||||
set complex2 = c
|
||||
set cmplx2 = -c
|
||||
set so = -so; sb
|
||||
case -nohns:
|
||||
set nohns = -nohns; shift; set nohns1 = $1;sb
|
||||
case -dm:
|
||||
set dm; sb
|
||||
case -orb:
|
||||
set orb = -orb; sb
|
||||
case -orbc:
|
||||
set orbc
|
||||
set orb = -orb; sb
|
||||
case -eece:
|
||||
set eece
|
||||
set eece1 = -eece
|
||||
set orbc
|
||||
set orb = -orb; sb
|
||||
case -orbdu:
|
||||
set orbdu
|
||||
set orb = -orb; sb
|
||||
case -it:
|
||||
set itnum = 99; set it = -it; set it0 = -it; sb
|
||||
case -it1:
|
||||
set itnum = 99; set it = -it; set it0 = -it; touch .noHinv; sb
|
||||
case -it2:
|
||||
set itnum = 99; set it = -it; set it0 = -it; touch .fulldiag; sb
|
||||
case -noHinv:
|
||||
set itnum = 99; set it = -it; set it0 = -it; set readHinv = -noHinv; sb
|
||||
case -vec2pratt:
|
||||
set vec2pratt; sb
|
||||
case -p:
|
||||
set para = -p; sb
|
||||
case -I:
|
||||
set init; sb
|
||||
case -NI:
|
||||
unset broyd; sb
|
||||
case -e:
|
||||
shift; set stopafter = $1; sb
|
||||
case -cc:
|
||||
shift; set ccut = $1; set cc_test;unset cc_conv; sb
|
||||
case -ec:
|
||||
shift; set ecut = $1; set ec_test1;unset ec_conv; sb
|
||||
case -fc:
|
||||
shift; set f_not_conv; set fcut = $1; set fc_test;unset fc_conv; sb
|
||||
case -ql:
|
||||
shift; set qlimit = $1; sb
|
||||
case -in1ef:
|
||||
set in1new = -1;set write_all = -ef; sb
|
||||
case -in1new:
|
||||
shift; set in1new = $1;set write_all; sb
|
||||
case -in1orig:
|
||||
set in1orig = -in1orig; set in1new = 999; sb
|
||||
case -renorm:
|
||||
set renorm; set next=scf1; sb
|
||||
case -i:
|
||||
shift; set iter = $1; sb
|
||||
case -r:
|
||||
shift; set riter = $1; sb
|
||||
case -s:
|
||||
shift; set next = $1; sb
|
||||
# QDMFT
|
||||
case -qdmft:
|
||||
set qdmft=-qdmft; shift; set NSLOTS = $1; sb
|
||||
# END QDMFT
|
||||
case -hf:
|
||||
set hf = -hf; sb
|
||||
case -diaghf:
|
||||
set diaghf = -diaghf; set hf = -hf; set iter = 1; sb
|
||||
case -nonself:
|
||||
set nonself = -nonself; set hf = -hf; set iter = 1; sb
|
||||
case -noibz:
|
||||
set noibz = -noibz; sb
|
||||
case -newklist:
|
||||
set newklist = -newklist; set hf = -hf; sb
|
||||
case -redklist:
|
||||
set redklist = -redklist; set hf = -hf; sb
|
||||
default:
|
||||
echo "ERROR: option $1 does not exist\!"; sb
|
||||
endsw
|
||||
end
|
||||
if ($?help) goto help
|
||||
|
||||
if($?cc_test) then
|
||||
unset ec_test;set ec_conv
|
||||
endif
|
||||
if($?fc_test) then
|
||||
unset ec_test;set ec_conv
|
||||
endif
|
||||
if($?ec_test1) then
|
||||
set ec_test;unset ec_conv
|
||||
endif
|
||||
if(! $?ec_test) then
|
||||
set ecut=0
|
||||
endif
|
||||
|
||||
#---> path- and file-names
|
||||
set file = `pwd`
|
||||
set file = $file:t #tail of file-names
|
||||
set dayfile = $file.dayfile #main output-file
|
||||
|
||||
#---> starting out
|
||||
printf "\nCalculating $file in `pwd`\non `hostname` with PID $$\n" > $dayfile
|
||||
echo "using `cat $WIENROOT/VERSION` in $WIENROOT" >> $dayfile
|
||||
printf "\n:LABEL1: Calculations in `pwd`\n:LABEL2: on `hostname` at `date`\n" >> $file.scf
|
||||
echo ":LABEL3: using `cat $WIENROOT/VERSION` in $WIENROOT" >> $file.scf
|
||||
|
||||
if ( "$so" == "-so" && "$hf" == "-hf") then
|
||||
echo "Hartree-Fock and spin-orbit coupling not supported yet. STOP"
|
||||
echo "Hartree-Fock and spin-orbit coupling not supported yet. STOP" >> $file.dayfile
|
||||
exit 9
|
||||
endif
|
||||
|
||||
if ( "$hf" == "-hf") then
|
||||
if (-e $file.corewfup) rm $file.corewfup
|
||||
if (-e $file.corewfdn) rm $file.corewfdn
|
||||
IPRINT_inc $file.inc # modify IPRINT switch in case.inc
|
||||
if ( ! -z $file.incup && -e $file.incup ) then
|
||||
IPRINT_inc $file.incup
|
||||
IPRINT_inc $file.incdn
|
||||
endif
|
||||
endif
|
||||
|
||||
#---> complex
|
||||
if ((-e $file.in1c) && !(-z $file.in1c)) then
|
||||
set complex = c
|
||||
set complex2 = c
|
||||
set cmplx = -c
|
||||
set cmplx2 = -c
|
||||
endif
|
||||
|
||||
set vresp
|
||||
testinput $file.inm_vresp no_vresp
|
||||
set vresp=-vresp
|
||||
no_vresp:
|
||||
|
||||
# set iter/riter to 999 when MSR1a/MSECa is used
|
||||
set testmsr=`head -1 $file.inm | grep "MSR[12]a" | cut -c1-3`
|
||||
set testmsr1=`head -1 $file.inm | grep "MSECa" | cut -c1-5`
|
||||
if($testmsr1 == 'MSECa') set testmsr=MSR
|
||||
if ($testmsr == 'MSR') then
|
||||
if($riter == "99") set riter=999
|
||||
if($iter == "40") set iter=999
|
||||
foreach i ($file.in2*)
|
||||
TOTtoFOR $i #switch FOR-label
|
||||
echo changing $i
|
||||
end
|
||||
if (! -e $file.inM && ! -z $file.inM ) then
|
||||
x pairhess
|
||||
echo $file.inM and .minrestart have been created by pairhess >>$dayfile
|
||||
endif
|
||||
endif
|
||||
|
||||
if ($next != "") goto start #start with optional program
|
||||
set next = lapw0 #default start with lstart
|
||||
|
||||
if !(-e $file.clmsum) then
|
||||
if (-e $file.clmsum_old) then
|
||||
cp $file.clmsum_old $file.clmsum
|
||||
else
|
||||
echo 'no' $file'.clmsum(_old) file found, which is necessary for lapw0 \!'
|
||||
echo 'no' $file'.clmsum(_old) file found, which is necessary for lapw0 \!'\
|
||||
>>$dayfile
|
||||
goto error
|
||||
endif
|
||||
endif
|
||||
|
||||
if ($?broyd) then
|
||||
if (-e $file.broyd1) then
|
||||
echo "$file.broyd* files present \! You did not save_lapw a previous clculation."
|
||||
echo "You have 60 seconds to kill this job ( ^C or kill $$ )"
|
||||
echo "or the script will rm *.broyd* and continue (use -NI to avoid automatic rm)"
|
||||
sleep 60
|
||||
rm *.broyd*
|
||||
echo "$file.broyd* files removed \!" >> $dayfile
|
||||
endif
|
||||
endif
|
||||
|
||||
start: #initalization of in2-files
|
||||
if ($?init && $testmsr != 'MSR') then
|
||||
foreach i ($file.in2*)
|
||||
sed "1s/[A-Z]..../TOT /" $i > $tmp
|
||||
mv $tmp $i
|
||||
end
|
||||
endif
|
||||
|
||||
set icycle=1
|
||||
|
||||
set riter_save=$riter
|
||||
printf "\n\n start \t(%s) " "`date`" >> $dayfile
|
||||
|
||||
#goto mixer only if clmval file is present
|
||||
if ($next == "scf1") then
|
||||
if !(-e $file.clmvalup) then
|
||||
set next = lapw0
|
||||
endif
|
||||
endif
|
||||
|
||||
echo "with $next ($iter/$riter to go)" >> $dayfile
|
||||
goto $next
|
||||
|
||||
cycle: #begin of sc-cycle
|
||||
nohup echo in cycle $icycle " ETEST: $etest[3] CTEST: $ctest[3]"
|
||||
hup
|
||||
|
||||
if ($it == '-it' ) then
|
||||
set ittest=`echo "$icycle / $itnum * $itnum "| bc`
|
||||
if ( $ittest == $icycle ) touch .fulldiag
|
||||
endif
|
||||
|
||||
lapw0:
|
||||
printf "\n cycle $icycle \t(%s) \t(%s)\n\n" "`date`" "$iter/$riter to go" >> $dayfile
|
||||
|
||||
testinput $file.in0_grr cont_lapw0
|
||||
total_exec lapw0 -grr $para
|
||||
|
||||
cont_lapw0:
|
||||
testinput $file.in0 error_input
|
||||
|
||||
#fix for NFS bug
|
||||
touch $file.vspup $file.vspdn $file.vnsup $file.vnsdn
|
||||
rm $file.vspup $file.vspdn $file.vnsup $file.vnsdn
|
||||
|
||||
total_exec lapw0 $para
|
||||
|
||||
if ($fcut == "0") goto orb
|
||||
set f_exist=`grep :FHF $file.scf0`
|
||||
if ($#f_exist == 0 ) then
|
||||
set fcut=0
|
||||
set fc_conv
|
||||
echo Force-convergence not possible. Forces not present.
|
||||
echo Force-convergence not possible. Forces not present.>> $dayfile
|
||||
if($?ec_test) goto orb
|
||||
if($?cc_test) goto orb
|
||||
goto error
|
||||
endif
|
||||
|
||||
#---> test of force-convergence for all forces
|
||||
if !(-e $file.scf) goto orb
|
||||
if(! $?ec_conv) goto orb
|
||||
if(! $?cc_conv) goto orb
|
||||
set natom=`head -2 $file.struct |tail -1 |cut -c28-30`
|
||||
#set natom = `grep UNITCELL $file.output0 |awk '{print $NF}'`
|
||||
set iatom = 1
|
||||
set ftest = (1 0)
|
||||
grep :FOR $file.scf >test_forces.scf
|
||||
while ($iatom <= $natom) #cycle over all atoms
|
||||
set itest=$iatom
|
||||
@ itest ++
|
||||
testinput $file.inM cont_force_test
|
||||
set atest=`head -$itest $file.inM |tail -1`
|
||||
set itest=`echo " $atest[1] + $atest[2] + $atest[3]"|bc`
|
||||
if ( $itest == '0' ) goto skipforce
|
||||
cont_force_test:
|
||||
if ($iatom <= 9) then
|
||||
set test = (`$bin/testconv -p :FOR00$iatom -c $fcut -f test_forces`)
|
||||
else if ($iatom <= 99) then
|
||||
set test = (`$bin/testconv -p :FOR0$iatom -c $fcut -f test_forces`)
|
||||
else
|
||||
set test = (`$bin/testconv -p :FOR$iatom -c $fcut -f test_forces`)
|
||||
endif
|
||||
if !($test[1]) set ftest[1] = 0
|
||||
set ftest[2] = $test[2]
|
||||
set ftest = ($ftest $test[3] $test[4])
|
||||
skipforce:
|
||||
@ iatom ++
|
||||
end
|
||||
rm test_forces.scf
|
||||
echo ":FORCE convergence:" $ftest[1-] >> $dayfile
|
||||
|
||||
if ($ftest[1]) then #force convergenced
|
||||
if ($nohns == '-nohns') then #force convergenced
|
||||
set nohns
|
||||
echo "NOHNS deactivated by FORCE convergence" >> $dayfile
|
||||
else
|
||||
# set iter = 1
|
||||
if(! $?ec_conv) goto orb
|
||||
if(! $?cc_conv) goto orb
|
||||
set fc_conv
|
||||
unset f_not_conv
|
||||
foreach i ($file.in2*)
|
||||
TOTtoFOR $i #switch FOR-label
|
||||
end
|
||||
endif
|
||||
else
|
||||
unset fc_conv
|
||||
endif
|
||||
|
||||
orb:
|
||||
foreach i (dmatup dmatdn dmatud )
|
||||
if (-e $file.$i"_old" ) rm $file.$i"_old"
|
||||
if (-e $file.$i ) cp $file.$i $file.$i"_old" #save this cycle for next
|
||||
end
|
||||
|
||||
if ( -e $file.scforbup ) rm $file.scforbup
|
||||
if ( -e $file.scforbdn ) rm $file.scforbdn
|
||||
if ( -e $file.scforbdu ) rm $file.scforbdu
|
||||
if ( -e $file.vorbdu ) rm $file.vorbdu
|
||||
|
||||
if ( "$orb" != "-orb" ) goto lapw1
|
||||
if ( $?orbc ) goto lapw1
|
||||
if (! -e $file.dmatup || -z $file.dmatup ) then
|
||||
set renorm
|
||||
goto lapw1
|
||||
endif
|
||||
testinput $file.inorb error_input
|
||||
total_exec orb -up $para
|
||||
total_exec orb -dn $para
|
||||
if ( "$so" == "-so" && ! -z $file.dmatud && -e $file.dmatud ) then
|
||||
if( $?orbdu ) then
|
||||
total_exec orb -du $para
|
||||
# vorbdu seems unphysical large, so we use it only with -orbdu switch)
|
||||
endif
|
||||
endif
|
||||
|
||||
lapw1:
|
||||
testinput $file.in1$complex error_input
|
||||
set readHinv0 = $readHinv
|
||||
if (-e .noHinv) then
|
||||
echo " case.storeHinv files removed"
|
||||
set readHinv0 = -noHinv0
|
||||
rm .noHinv
|
||||
endif
|
||||
if (-e .fulldiag) then
|
||||
echo " full diagonalization forced"
|
||||
set it0
|
||||
set readHinv0
|
||||
rm .fulldiag
|
||||
touch ${scratch}$file.vector.old
|
||||
rm ${scratch}$file.vector*.old
|
||||
endif
|
||||
if ( $it0 == "-it" ) then
|
||||
touch ${scratch}$file.vector.old
|
||||
if( ! $?vec2pratt ) then
|
||||
foreach i (${scratch}$file.vector*.old)
|
||||
rm $i
|
||||
end
|
||||
vec2old_lapw $para -up >> $dayfile
|
||||
vec2old_lapw $para -dn >> $dayfile
|
||||
else
|
||||
vec2pratt_lapw $para -up >> $dayfile
|
||||
vec2pratt_lapw $para -dn >> $dayfile
|
||||
endif
|
||||
endif
|
||||
|
||||
if ( -e dnlapw1.error ) rm dnlapw1.error
|
||||
|
||||
if ( $hf == "-hf" ) then
|
||||
if ((-e $file.vectorhfup) && !(-z $file.vectorhfup) && \
|
||||
(-e $file.vectorhfdn) && !(-z $file.vectorhfdn)) then
|
||||
mv $file.vectorhfup $file.vectorhfup_old
|
||||
mv $file.vectorhfdn $file.vectorhfdn_old
|
||||
if (!(-e $file.weighhfup) || (-z $file.weighhfup) || \
|
||||
!(-e $file.weighhfdn) || (-z $file.weighhfdn)) then
|
||||
mv $file.energyhfup $file.tmp_energyhfup
|
||||
mv $file.energyhfdn $file.tmp_energyhfdn
|
||||
endif
|
||||
else if ((-e $file.vectorhfup_old) && !(-z $file.vectorhfup_old) && \
|
||||
(-e $file.vectorhfdn_old) && !(-z $file.vectorhfdn_old)) then
|
||||
if (!(-e $file.weighhfup) || (-z $file.weighhfup) || \
|
||||
!(-e $file.weighhfdn) || (-z $file.weighhfdn)) then
|
||||
mv $file.energyhfup $file.tmp_energyhfup
|
||||
mv $file.energyhfdn $file.tmp_energyhfdn
|
||||
endif
|
||||
else
|
||||
cp $file.kgen_fbz $file.kgen
|
||||
cp $file.klist_fbz $file.klist
|
||||
total_exec lapw1 $it0 -up $nohns $readHinv0 $cmplx
|
||||
total_exec lapw1 $it0 -dn $nohns $readHinv0 $cmplx
|
||||
mv $file.vectorup $file.vectorhfup_old
|
||||
mv $file.vectordn $file.vectorhfdn_old
|
||||
mv $file.energyup $file.tmp_energyhfup
|
||||
mv $file.energydn $file.tmp_energyhfdn
|
||||
if (-e $file.weighhfup) rm $file.weighhfup
|
||||
if (-e $file.weighhfdn) rm $file.weighhfdn
|
||||
endif
|
||||
cp $file.kgen_ibz $file.kgen
|
||||
cp $file.klist_ibz $file.klist
|
||||
if (!(-e $file.vspup_old) || (-z $file.vspup_old) || \
|
||||
!(-e $file.vspdn_old) || (-z $file.vspdn_old)) then
|
||||
cp $file.vspup $file.vspup_old
|
||||
cp $file.vspdn $file.vspdn_old
|
||||
endif
|
||||
endif
|
||||
|
||||
#generates in1-file from :EPL/EPH in case.scf2
|
||||
# if ($icycle == $in1new) rm $file.broyd1 $file.broyd2
|
||||
if ($icycle >= $in1new ) then
|
||||
if (! -e $file.in1${complex}_orig ) cp $file.in1${complex} $file.in1${complex}_orig
|
||||
write_in1_lapw $write_all -up -ql $qlimit ${cmplx} >> $dayfile
|
||||
if($status == 0 ) cp $file.in1${complex}new $file.in1${complex}
|
||||
endif
|
||||
if($?in1orig == '-in1orig') then
|
||||
if ( -e $file.in1${complex}_orig ) mv $file.in1${complex}_orig $file.in1${complex}
|
||||
# unset in1orig
|
||||
endif
|
||||
if ( "$so" == "-so" ) then
|
||||
total_exec lapw1 $it0 -up $para $nohns $readHinv0 $cmplx
|
||||
else
|
||||
total_exec lapw1 $it0 -up $para $nohns $orb $readHinv0 $cmplx
|
||||
endif
|
||||
if ($icycle >= $in1new ) then
|
||||
write_in1_lapw $write_all -dn -ql $qlimit ${cmplx}>> $dayfile
|
||||
if($status == 0 ) cp $file.in1${complex}new $file.in1${complex}
|
||||
endif
|
||||
if ( "$so" == "-so" ) then
|
||||
total_exec lapw1 $it0 -dn $para $nohns $readHinv0 $cmplx
|
||||
else
|
||||
total_exec lapw1 $it0 -dn $para $nohns $orb $readHinv0 $cmplx
|
||||
endif
|
||||
set it0 = $it
|
||||
set readHinv0 = $readHinv
|
||||
|
||||
lapwso:
|
||||
if ( -e $file.scfso ) rm $file.scfso
|
||||
if ( "$so" == "-so" ) then
|
||||
testinput $file.inso error_input
|
||||
total_exec lapwso -up $orb $para $cmplx
|
||||
endif
|
||||
|
||||
lapw2:
|
||||
testinput $file.in2$complex2 error_input
|
||||
if ( -e dnlapw2.error ) rm dnlapw2.error
|
||||
if ( $hf == "-hf" ) then
|
||||
if (!(-e $file.weighhfup) || (-z $file.weighhfup) || \
|
||||
!(-e $file.weighhfdn) || (-z $file.weighhfdn)) then
|
||||
cp $file.kgen_fbz $file.kgen
|
||||
cp $file.klist_fbz $file.klist
|
||||
if (-e $file.vectorup) mv $file.vectorup $file.vectorup_save
|
||||
if (-e $file.vectordn) mv $file.vectordn $file.vectordn_save
|
||||
mv $file.vectorhfup_old $file.vectorup
|
||||
mv $file.vectorhfdn_old $file.vectordn
|
||||
if (-e $file.energyup) mv $file.energyup $file.energyup_save
|
||||
if (-e $file.energydn) mv $file.energydn $file.energydn_save
|
||||
mv $file.tmp_energyhfup $file.energyup
|
||||
mv $file.tmp_energyhfdn $file.energydn
|
||||
total_exec lapw2 -up $vresp $in1orig $cmplx2
|
||||
total_exec lapw2 -dn $vresp $in1orig $cmplx2
|
||||
mv $file.weighup $file.weighhfup
|
||||
mv $file.weighdn $file.weighhfdn
|
||||
mv $file.vectorup $file.vectorhfup_old
|
||||
mv $file.vectordn $file.vectorhfdn_old
|
||||
if (-e $file.vectorup_save) mv $file.vectorup_save $file.vectorup
|
||||
if (-e $file.vectordn_save) mv $file.vectordn_save $file.vectordn
|
||||
mv $file.energyup $file.energyhfup
|
||||
mv $file.energydn $file.energyhfdn
|
||||
if (-e $file.energyup_save) mv $file.energyup_save $file.energyup
|
||||
if (-e $file.energydn_save) mv $file.energydn_save $file.energydn
|
||||
cp $file.kgen_ibz $file.kgen
|
||||
cp $file.klist_ibz $file.klist
|
||||
endif
|
||||
endif
|
||||
#QDMFT
|
||||
if ( "$qdmft" == "-qdmft" ) then
|
||||
total_exec lapw2 -up $para $vresp -almd $cmplx2 $so
|
||||
total_exec lapw2 -dn $para $vresp -almd $cmplx2 $so
|
||||
dmftproj $so -sp
|
||||
# pytriqs call
|
||||
printf "\n> ERROR: Insert a correct call of pytriqs (with mpi wrapper, if needed) in runsp_triqs Wien2k script\n" >> $dayfile
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> ERROR: Insert a correct call of pytriqs (with mpi wrapper, if needed) in runsp_triqs Wien2k script\n"
|
||||
exit 0
|
||||
# to call pytriqs uncomment and modify the line below to adapt it to your system
|
||||
# the number of core is in NSLOTS variable
|
||||
#mpprun --force-mpi=openmpi/1.3.2-i110074 /home/x_leopo/TRIQS_segment/triqs_install/bin/pytriqs $file.py
|
||||
total_exec lapw2 -up $para $vresp -qdmft $cmplx2 $so
|
||||
total_exec lapw2 -dn $para $vresp -qdmft $cmplx2 $so
|
||||
else
|
||||
total_exec lapw2 -up $para $vresp $in1orig $cmplx2 $so
|
||||
total_exec lapw2 -dn $para $vresp $in1orig $cmplx2 $so
|
||||
if ( $hf == "-hf" ) then
|
||||
sed 's/:SUM/:SLSUM/g' < $file.scf2up > $file.scf2up_tmp
|
||||
mv $file.scf2up_tmp $file.scf2up
|
||||
mv $file.clmvalup $file.clmvalslup
|
||||
if ( -e $file.scfhfup_1 ) rm $file.scfhfup_*
|
||||
sed 's/:SUM/:SLSUM/g' < $file.scf2dn > $file.scf2dn_tmp
|
||||
mv $file.scf2dn_tmp $file.scf2dn
|
||||
mv $file.clmvaldn $file.clmvalsldn
|
||||
if ( -e $file.scfhfdn_1 ) rm $file.scfhfdn_*
|
||||
endif
|
||||
endif
|
||||
# END QDMFT
|
||||
|
||||
rm -f $file.clmscup $file.clmscdn
|
||||
|
||||
if ( $hf == "-hf" ) goto hf
|
||||
|
||||
lapwdm:
|
||||
if ( -e $file.scfdmup ) rm $file.scfdmup
|
||||
if ( -e $file.scfdmdn ) rm $file.scfdmdn
|
||||
if ( ! $?dm ) then
|
||||
if ( "$orb" != "-orb" ) goto lapw1s
|
||||
if ( $?orbc ) goto lapw1s
|
||||
endif
|
||||
#if ( "$so" == "-so" ) goto lapwdmc
|
||||
testinput $file.indm$complex2 error_input
|
||||
if ( -e dnlapwdm.error ) rm dnlapwdm.error
|
||||
total_exec lapwdm -up $para $cmplx2 $so
|
||||
if ( "$so" != "-so" ) then
|
||||
total_exec lapwdm -dn $para $cmplx2 $so
|
||||
endif
|
||||
lapw1s:
|
||||
testinput $file.in1${complex}s lcore
|
||||
total_exec lapw1 -sc -up $para $nohns $orb $readHinv0 $cmplx
|
||||
total_exec lapw1 -sc -dn $para $nohns $orb $readHinv0 $cmplx
|
||||
|
||||
lapw2s:
|
||||
testinput $file.in2${complex2}s error_input
|
||||
total_exec lapw2 -sc -up $para $vresp $in1orig $cmplx2
|
||||
total_exec lapw2 -sc -dn $para $vresp $in1orig $cmplx2
|
||||
goto lcore
|
||||
|
||||
hf:
|
||||
testinput $file.inhf error_input
|
||||
if (-e dnhf.error) rm dnhf.error
|
||||
if (!(-e $file.corewfup) || (-z $file.corewfup)) then
|
||||
total_exec lcore -up
|
||||
total_exec lcore -dn
|
||||
endif
|
||||
total_exec hf -up $diaghf $nonself $noibz $newklist $redklist $para $cmplx
|
||||
total_exec hf -dn $diaghf $nonself $noibz $newklist $redklist $para $cmplx
|
||||
|
||||
lapw2hf:
|
||||
testinput $file.in2$complex2 error_input
|
||||
cp $file.kgen_fbz $file.kgen
|
||||
cp $file.klist_fbz $file.klist
|
||||
total_exec lapw2 -up -hf $vresp $in1orig $cmplx2
|
||||
total_exec lapw2 -dn -hf $vresp $in1orig $cmplx2
|
||||
cp $file.kgen_ibz $file.kgen
|
||||
cp $file.klist_ibz $file.klist
|
||||
|
||||
lcore:
|
||||
testinput $file.inc scf
|
||||
if ( ! -z $file.incup && -e $file.incup ) then
|
||||
cp $file.incup $file.inc
|
||||
echo "spinpolarized $file.incup/dn used" >> $dayfile
|
||||
endif
|
||||
if ( -e dnlcore.error ) rm dnlcore.error
|
||||
total_exec lcore -up
|
||||
if ( ! -z $file.incdn && -e $file.incdn ) then
|
||||
cp $file.incdn $file.inc
|
||||
endif
|
||||
total_exec lcore -dn
|
||||
|
||||
coresuper:
|
||||
if ( ! -e .lcore) goto scf
|
||||
total_exec dstart -lcore -up
|
||||
total_exec dstart -lcore -dn
|
||||
rm $file.clmcorup $file.clmcordn
|
||||
|
||||
scf:
|
||||
if ( $hf == "-hf" ) then
|
||||
foreach i ( 0 0_grr orbup orbdn orbdu 1up 1dn so 2up 2dn dmup dmdn 1sup 1sdn 2sup 2sdn cup cdn hfup hfdn 2hfup 2hfdn )
|
||||
if (-e $file.scf$i) then
|
||||
if ("$i" != "dmdn" || "$so" != "-so") cat $file.scf$i >> $file.scf
|
||||
endif
|
||||
end
|
||||
else
|
||||
foreach i ( 0 orbup orbdn orbdu 1up 1dn so 2up 2dn dmup dmdn 1sup 1sdn 2sup 2sdn cup cdn )
|
||||
if (-e $file.scf$i) then
|
||||
if ("$i" != "dmdn" || "$so" != "-so") cat $file.scf$i >> $file.scf
|
||||
endif
|
||||
end
|
||||
endif
|
||||
|
||||
if ( $?eece ) then
|
||||
mv $file.scf2up $file.scf2up-tmp
|
||||
mv $file.scf2dn $file.scf2dn-tmp
|
||||
if( $vresp == '-vresp' ) then
|
||||
mv $file.vrespvalup $file.vrespvalup-tmp
|
||||
mv $file.vrespvaldn $file.vrespvaldn-tmp
|
||||
mv $file.vrespcorup $file.vrespcorup-tmp
|
||||
mv $file.vrespcordn $file.vrespcordn-tmp
|
||||
endif
|
||||
foreach i ( vorbup vorbdn vorbdu )
|
||||
if (-e $file.$i"_old" ) rm $file.$i"_old"
|
||||
if (-e $file.$i ) cp $file.$i $file.$i"_old" #save last cycle
|
||||
end
|
||||
runeece_lapw $so $para $vresp
|
||||
teststatus
|
||||
foreach i (vorbup vorbdn vorbud )
|
||||
if (-e $file.$i"_unmixed" ) rm $file.$i"_unmixed"
|
||||
if (-e $file.$i ) cp $file.$i $file.$i"_unmixed" #save unmixed dmat
|
||||
end
|
||||
mv $file.scf2up $file.scf2upeece
|
||||
mv $file.scf2dn $file.scf2dneece
|
||||
mv $file.scf2up-tmp $file.scf2up
|
||||
mv $file.scf2dn-tmp $file.scf2dn
|
||||
if( $vresp == '-vresp' ) then
|
||||
mv $file.vrespvalup $file.vrespvaleeceup
|
||||
mv $file.vrespvaldn $file.vrespvaleecedn
|
||||
mv $file.vrespvalup-tmp $file.vrespvalup
|
||||
mv $file.vrespvaldn-tmp $file.vrespvaldn
|
||||
mv $file.vrespcorup-tmp $file.vrespcorup
|
||||
mv $file.vrespcordn-tmp $file.vrespcordn
|
||||
endif
|
||||
goto scf1
|
||||
endif
|
||||
|
||||
foreach i (dmatup dmatdn dmatud )
|
||||
if (-e $file.$i"_unmixed" ) rm $file.$i"_unmixed"
|
||||
if (-e $file.$i ) cp $file.$i $file.$i"_unmixed" #save the unmixed dmat
|
||||
end
|
||||
|
||||
scf1:
|
||||
foreach i (clmsum clmup clmdn vspup vspdn vnsup vnsdn )
|
||||
if (-e $file.$i ) cp $file.$i $file.$i"_old" #save last cycle
|
||||
end
|
||||
|
||||
|
||||
mixer:
|
||||
testinput $file.inm error_input
|
||||
if ( $?orbc ) then
|
||||
total_exec mixer
|
||||
else
|
||||
total_exec mixer $eece1 $orb
|
||||
endif
|
||||
cat $file.scfm >> $file.scf
|
||||
|
||||
if($?renorm) then
|
||||
unset renorm
|
||||
rm $file.broy*
|
||||
endif
|
||||
|
||||
mixer_vresp:
|
||||
testinput $file.inm_vresp energytest
|
||||
total_exec mixer_vresp
|
||||
grep -e "CTO " -e NEC $file.outputm_vresp | sed 's/:/:VRESP/' >> $file.scf
|
||||
#total_exec int16
|
||||
|
||||
energytest:
|
||||
#---> output energies
|
||||
#set EF = `grep 'F E R' $file.scf2 |awk '{printf("%.5f", $NF)}'`
|
||||
#set ET = `grep 'AL EN' $file.outputm |awk '{printf("%.5f", $NF)}'`
|
||||
#cat << theend >> $dayfile
|
||||
#EF $EF
|
||||
#ET $ET
|
||||
#theend
|
||||
#echo $ET > $file.finM
|
||||
|
||||
#---> test of energy convergence
|
||||
#if ($ecut == "0") goto chargetest
|
||||
set etest = (`$bin/testconv -p :ENE -c $ecut`)
|
||||
teststatus
|
||||
echo ":ENERGY convergence: $etest[1-3]" >> $dayfile
|
||||
if (! $?ec_test) goto chargetest
|
||||
if ($etest[1]) then
|
||||
if ($nohns == '-nohns') then
|
||||
set nohns
|
||||
echo "NOHNS deactivated by ENERGY convergence" >> $dayfile
|
||||
else
|
||||
# set iter = 1
|
||||
set ec_conv
|
||||
endif
|
||||
else
|
||||
unset ec_conv
|
||||
endif
|
||||
|
||||
chargetest:
|
||||
#if ($ccut == "0") goto nextiter
|
||||
set ctest = (`$bin/testconv -p :DIS -c $ccut`)
|
||||
teststatus
|
||||
echo ":CHARGE convergence: $ctest[1-3]" >> $dayfile
|
||||
if (! $?cc_test) goto nextiter
|
||||
if ($ctest[1]) then
|
||||
if ($nohns == '-nohns') then
|
||||
set nohns
|
||||
echo "NOHNS deactivated by CHARGE convergence" >> $dayfile
|
||||
else
|
||||
# set iter = 1
|
||||
set cc_conv
|
||||
endif
|
||||
else
|
||||
unset cc_conv
|
||||
endif
|
||||
|
||||
# check F-condition for MSR1a mode
|
||||
if ($testmsr == 'MSR') then
|
||||
set msrtest =(`grep :FRMS $file.scf |tail -1` )
|
||||
if ($#msrtest >= 13 ) then
|
||||
echo msrcount $msrcount msrtest $msrtest[13]
|
||||
# Trap silly early convergene with "minimum-requests"
|
||||
set etest2 = (`$bin/testconv -p :ENE -c 0.001`)
|
||||
if ( $etest2[1] == '0')set msrtest[13]='F'
|
||||
set ctest2 = (`$bin/testconv -p :DIS -c 0.01`)
|
||||
if ( $ctest2[1] == '0')set msrtest[13]='F'
|
||||
#
|
||||
if ($msrtest[13] == 'T') then
|
||||
#change in case.inm MSR1a/MSECa to MSR1/MSEC3, rm *.bro*, unset testmsr
|
||||
@ msrcount ++
|
||||
if($msrcount == 3) then
|
||||
sed "1s/MSR1a/MSR1 /" $file.inm >$file.inm_tmp
|
||||
sed "1s/MSECa/MSEC3/" $file.inm_tmp >$file.inm
|
||||
rm *.broy* $file.inm_tmp
|
||||
set a=`grep -e GREED *scfm | tail -1 | cut -c 50-55`
|
||||
set b=`echo "scale=5; if( $a/2 > 0.05) $a/2 else 0.05 " |bc -l`
|
||||
echo $b > .msec
|
||||
echo "MSR1a/MSECa changed to MSR1/MSEC3 in $file.inm, relaxing only electrons" >> $dayfile
|
||||
set testmsr
|
||||
endif
|
||||
else
|
||||
set msrcount=0
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
#---> output forces
|
||||
#grep 'FTOT' $file.outputm|awk '{print "FT ",$2,$4,$5,$6}'\
|
||||
# >> $dayfile
|
||||
#grep 'FTOT' $file.outputm|awk '{print $4,$5,$6}' \
|
||||
# >> $file.finM
|
||||
|
||||
nextiter:
|
||||
@ iter --
|
||||
@ riter --
|
||||
@ nohns1 --
|
||||
@ icycle ++
|
||||
|
||||
if ($icycle == 2) set newklist
|
||||
|
||||
#---> nohns
|
||||
if (! $nohns1 ) then
|
||||
set nohns
|
||||
echo "NOHNS deactivated" >> $dayfile
|
||||
endif
|
||||
|
||||
#---> restart
|
||||
if (! $riter && -e $file.broyd1) then
|
||||
echo " restart" >> $dayfile
|
||||
rm $file.broyd1 $file.broyd2
|
||||
set riter=$riter_save
|
||||
endif
|
||||
|
||||
foreach i ($tmp) #delete temporary files
|
||||
if (-e $i) rm $i
|
||||
end
|
||||
|
||||
#output cycle
|
||||
#printf "%s\n\n" "$iter/$riter to go" >> $dayfile
|
||||
if (-e .stop) goto stop1
|
||||
if ($testmsr == 'MSR' && -e .minstop) then
|
||||
sed "1s/MSR1a/MSR1 /" $file.inm >$file.inm_tmp
|
||||
sed "1s/MSECa/MSEC3/" $file.inm_tmp >$file.inm
|
||||
rm *.broy* $file.inm_tmp
|
||||
set a=`grep -e GREED *scfm | tail -1 | cut -c 50-55`
|
||||
set b=`echo "scale=5; if( $a/2 > 0.05) $a/2 else 0.05 " |bc -l`
|
||||
echo $b > .msec
|
||||
echo "MSR1a/MSECa changed to MSR1/MSEC3 in $file.inm, relaxing only electrons" >> $dayfile
|
||||
set testmsr
|
||||
endif
|
||||
|
||||
|
||||
if($?ec_conv && $?cc_conv && $?fc_conv && ($testmsr == '')) goto stop
|
||||
|
||||
if ($iter) goto cycle #end of sc-cycle
|
||||
|
||||
if ( $?f_not_conv ) then
|
||||
printf "\n> FORCES NOT CONVERGED\n" >> $dayfile
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> FORCES NOT CONVERGED\n"
|
||||
exit 3
|
||||
endif
|
||||
if ( ! $?ec_conv ) then
|
||||
printf "\n> energy in SCF NOT CONVERGED\n" >> $dayfile
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> energy in SCF NOT CONVERGED\n"
|
||||
exit 0
|
||||
endif
|
||||
if ( ! $?cc_conv ) then
|
||||
printf "\n> charge in SCF NOT CONVERGED\n" >> $dayfile
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> charge in SCF NOT CONVERGED\n"
|
||||
exit 0
|
||||
endif
|
||||
|
||||
stop: #normal exit
|
||||
printf "\n> stop\n" >> $dayfile
|
||||
printf "\n> stop\n"
|
||||
exit 0
|
||||
|
||||
stop1: #normal exit
|
||||
printf "\n> stop due to .stop file\n" >> $dayfile
|
||||
if (-e .stop) rm .stop
|
||||
printf "\n> stop due to .stop file\n"
|
||||
exit 1
|
||||
|
||||
error_input: #error exit
|
||||
printf "\n> stop error: the required input file $errin for the next step could not be found\n" >> $dayfile
|
||||
printf "\n> stop error: the required input file $errin for the next step could not be found\n"
|
||||
exit 9
|
||||
|
||||
error: #error exit
|
||||
printf "\n> stop error\n" >> $dayfile
|
||||
printf "\n> stop error\n"
|
||||
exit 9
|
||||
|
||||
help: #help exit
|
||||
cat << theend
|
||||
|
||||
PROGRAM: $0
|
||||
|
||||
PURPOSE: running the spinpolarized scf-cycle in WIEN
|
||||
to be called within the case-directory
|
||||
has to be located in '$WIENROOT' directory
|
||||
|
||||
USAGE: $name [OPTIONS] [FLAGS]
|
||||
|
||||
OPTIONS:
|
||||
-cc LIMIT -> charge convergence LIMIT (0.0001 e)
|
||||
-ec LIMIT -> energy convergence LIMIT ($ecut Ry)
|
||||
-fc LIMIT -> force convergence LIMIT (1.0 mRy/a.u.)
|
||||
default is -ec 0.0001; multiple convergence tests possible
|
||||
-e PROGRAM -> exit after PROGRAM ($stopafter)
|
||||
-i NUMBER -> max. NUMBER ($iter) of iterations
|
||||
-s PROGRAM -> start with PROGRAM ($next)
|
||||
-r NUMBER -> restart after NUMBER ($riter) iterations (rm *.broyd*)
|
||||
-nohns NUMBER ->do not use HNS for NUMBER iterations
|
||||
-in1new N -> create "new" in1 file after N iter (write_in1 using scf2 info)
|
||||
-ql LIMIT -> select LIMIT ($qlimit) as min.charge for E-L setting in new in1
|
||||
-qdmft NP -> including DMFT from Aichhorn/Georges/Biermann running on NP proc
|
||||
|
||||
FLAGS:
|
||||
-h/-H -> help
|
||||
-I -> with initialization of in2-files to "TOT"
|
||||
-NI -> does NOT remove case.broyd* (default: rm *.broyd* after 60 sec)
|
||||
-p -> run k-points in parallel (needs .machine file [speed:name])
|
||||
-it -> use iterative diagonalization
|
||||
-it1 -> use iterative diag. with recreating H_inv (after basis change)
|
||||
-it2 -> use iterative diag. with reinitialization (after basis change)
|
||||
-noHinv -> use iterative diag. without H_inv
|
||||
-vec2pratt -> use vec2pratt instead of vec2old for iterative diag.
|
||||
-so -> run SCF including spin-orbit coupling
|
||||
-dm -> calculate the density matrix (when -so is set, but -orb is not)
|
||||
-eece -> use "ecact exchange+hybrid" methods
|
||||
-orb -> use LDA+U, OP or B-ext correction
|
||||
-orbc -> use LDA+U correction, but with constant V-matrix
|
||||
-orbdu -> use LDA+U with crossterms up-dn (needs also -so)
|
||||
-renorm-> start with mixer and renormalize density
|
||||
-in1orig-> if present, use case.in1_orig file; do not modify case.in1
|
||||
-hf -> HF/hybrid-DFT calculation
|
||||
-diaghf -> non-selfconsistent HF with diagonal HF only (only e_i)
|
||||
-nonself -> non-selfconsistent HF/hybrid-DFT calculation (only E_x(HF))
|
||||
-newklist -> HF/hybrid-DFT calculation starting from a different k-mesh
|
||||
-redklist -> HF/hybrid-DFT calculation with a reduced k-mesh for the potential
|
||||
|
||||
CONTROL FILES:
|
||||
.lcore runs core density superposition producing case.clmsc
|
||||
.stop stop after SCF cycle
|
||||
.minstop stops MSR1a minimization and changes to MSR1
|
||||
.fulldiag force full diagonalization
|
||||
.noHinv remove case.storeHinv files
|
||||
case.inm_vresp activates calculation of vresp files for meta-GGAs
|
||||
case.in0_grr activates a second call of lapw0 (mBJ pot., or E_xc analysis)
|
||||
|
||||
ENVIRONMENT VARIBLES:
|
||||
SCRATCH directory where vectors and help files should go
|
||||
|
||||
theend
|
||||
|
||||
exit 1
|
||||
|
||||
|
1109
fortran/dmftproj/density.f
Normal file
1109
fortran/dmftproj/density.f
Normal file
File diff suppressed because it is too large
Load Diff
764
fortran/dmftproj/dmftproj.f
Normal file
764
fortran/dmftproj/dmftproj.f
Normal file
@ -0,0 +1,764 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
PROGRAM dmftproj
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This prgm computes projections to a local (correlated) set of %%
|
||||
C %% orbitals from the set of eigenfunctions obtained with Wien2k. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE almblm_data
|
||||
USE common_data
|
||||
USE file_names
|
||||
USE prnt
|
||||
USE symm
|
||||
USE reps
|
||||
IMPLICIT NONE
|
||||
C
|
||||
REAL(KIND=8) :: e_win, e_sum, elecn, qtot, qdum
|
||||
REAL(KIND=8), DIMENSION(:,:), ALLOCATABLE :: Alm_sum, Qlm_sum
|
||||
COMPLEX(KIND=8), DIMENSION(:,:,:,:), ALLOCATABLE :: occ_mat
|
||||
COMPLEX(KIND=8), DIMENSION(:,:,:,:), ALLOCATABLE :: occ_mat_sym
|
||||
C
|
||||
COMPLEX(KIND=8) :: coff
|
||||
COMPLEX(KIND=8),DIMENSION(-3:3,-3:3) :: tmpmat
|
||||
INTEGER, DIMENSION(:,:), ALLOCATABLE :: lnreps
|
||||
INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: correps
|
||||
INTEGER :: isrt, ie, l, m, isym, jatom
|
||||
INTEGER :: lm, ik, ilo, ib, iatom, imu
|
||||
INTEGER :: idum, i1, i2
|
||||
INTEGER :: m1, m2, lm1, lm2
|
||||
INTEGER :: is, irep, nbrep
|
||||
INTEGER :: iorb, icrorb, nmaxrep
|
||||
INTEGER :: paramflag, lcorr
|
||||
LOGICAL :: ifcorr
|
||||
REAL(KIND=8) :: fdum, rtetr
|
||||
REAL(KIND=8),PARAMETER :: Elarge=1d6
|
||||
C ================================
|
||||
C Processing of the command line :
|
||||
C ================================
|
||||
CALL readcomline
|
||||
C ====================================================
|
||||
C Initialization of the variable ns (number of spin) :
|
||||
C ====================================================
|
||||
C If the computation uses spin-polarized input files, ns=2
|
||||
ns=1
|
||||
IF(ifSP) ns=2
|
||||
C ===================================
|
||||
C Opening of the input/output files :
|
||||
C ===================================
|
||||
CALL openfiles
|
||||
C =========================================
|
||||
C Reading of the input file case.indmftpr :
|
||||
C =========================================
|
||||
READ(iuinp,*)nsort
|
||||
C nsort = number of sorts of atom
|
||||
ALLOCATE(nmult(0:nsort))
|
||||
nmult(0)=0
|
||||
READ(iuinp,*)nmult(1:nsort)
|
||||
C nmult = multiplicity for each sort of atom, table from 1 to nsort
|
||||
natom=SUM(nmult(1:nsort))
|
||||
C natom = total number of atoms in the unit cell
|
||||
ALLOCATE(isort(natom))
|
||||
iatom=0
|
||||
DO isrt=1,nsort
|
||||
DO imu=1,nmult(isrt)
|
||||
iatom=iatom+1
|
||||
isort(iatom)=isrt
|
||||
ENDDO
|
||||
ENDDO
|
||||
C isort = table of correspondance iatom -> isort (from 1 to natom)
|
||||
READ(iuinp,*)lmax
|
||||
C lmax = maximal orbital number l for all the atoms
|
||||
IF(ifSO) THEN
|
||||
nlm=(lmax+1)*(lmax+1)*2
|
||||
ELSE
|
||||
nlm=(lmax+1)*(lmax+1)
|
||||
ENDIF
|
||||
C nlm = maximal number of matrix elements for an l-orbital
|
||||
C only doubled when SO because of the up and down independent parts...
|
||||
ALLOCATE(lsort(0:lmax,nsort))
|
||||
ALLOCATE(defbasis(nsort))
|
||||
ALLOCATE(lnreps(0:lmax,nsort))
|
||||
IF(.not.ifSO) THEN
|
||||
C Spin is a good quantum number and ireps are considered in orbital space only.
|
||||
ALLOCATE(correps(2*lmax+1,0:lmax,nsort))
|
||||
ELSE
|
||||
C Spin is not a good quantum number anymore (possibility of basis which mixes up and dn states)
|
||||
C the ireps are considered in spin+orbital space.
|
||||
ALLOCATE(correps(2*(2*lmax+1),0:lmax,nsort))
|
||||
ENDIF
|
||||
ALLOCATE(ifSOflag(nsort))
|
||||
DO isrt=1,nsort
|
||||
READ(iuinp,*) defbasis(isrt)%typebasis
|
||||
IF (defbasis(isrt)%typebasis(1:8)=='fromfile') THEN
|
||||
READ(iuinp,*) defbasis(isrt)%sourcefile
|
||||
ELSE
|
||||
defbasis(isrt)%sourcefile = 'null'
|
||||
ENDIF
|
||||
C defbasis = table of correspondance isort -> "basistrans" element, table from 1 to nsort
|
||||
C defbasis(isrt)%typebasis = "cubic", "complex" or "fromfile"
|
||||
C defbasis(isrt)%sourcefile = the name of the file to read if typebasis="fromfile"
|
||||
READ(iuinp,*)lsort(0:lmax,isrt)
|
||||
READ(iuinp,*)lnreps(0:lmax,isrt)
|
||||
C ifcorr is a flag who states if the atomic sort isrt has correlated orbitals.
|
||||
ifcorr=.FALSE.
|
||||
DO l=0,lmax
|
||||
IF (lsort(l,isrt)==2) THEN
|
||||
ifcorr=.TRUE.
|
||||
C If lnreps(l,isrt)=1, the treatment is the same as a 0 value.
|
||||
C because if the number of irep is 1, this irep will be the correlated one.
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if the number of irep is not correct.
|
||||
C -------------------------
|
||||
C
|
||||
IF (ifSO) THEN
|
||||
C With SO, the number of ireps must not exceed 2*(2*l+1).
|
||||
IF(lnreps(l,isrt).gt.(2*(2*l+1))) THEN
|
||||
WRITE(buf,'(a,a,i2,a,i2,a)')' The number of ireps ',
|
||||
& 'considered for l=',l,' and isrt=',isrt,
|
||||
& ' is not possible.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
END IF
|
||||
ELSE
|
||||
C Without SO, the number of ireps must not exceed (2*l+1).
|
||||
IF(lnreps(l,isrt).gt.(2*l+1)) THEN
|
||||
WRITE(buf,'(a,a,i2,a,i2,a)')' The number of ireps ',
|
||||
& 'considered for l=',l,' and isrt=',isrt,
|
||||
& ' is not possible.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
END IF
|
||||
ENDIF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C The description of the different ireps is considered only if there are more than 1 irep.
|
||||
C that is to say if lnreps(l,isrt)=2, 3,...
|
||||
IF(lnreps(l,isrt)>0) THEN
|
||||
READ(iuinp,'(14i1)') correps(1:lnreps(l,isrt),l,isrt)
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
C The ifSO_flag is read only if there is a correlated orbital for the sort isrt.
|
||||
IF (ifcorr) THEN
|
||||
READ(iuinp,'(i1)') ifSOflag(isrt)
|
||||
ENDIF
|
||||
ENDDO
|
||||
C lsort = index for each orbital (0 : not include / 1 : include / 2 : correlated), table from 0 to lmax, from 1 to nsort
|
||||
C lnreps = number of irreducible representations for each orbital, table from 0 to lmax, from 1 to nsort (temporary variables)
|
||||
C correps = index for each irreducible representations of the correlated orbital, table from 1 to lnreps(l,isrt), from 0 to lmax, from 1 to nsort (temporary variable)
|
||||
C ifSOflag = table of correspondance isort -> optionSO (1 or 0). Only used for isort with correlated orbitals
|
||||
READ(iuinp,*) e_bot,e_top
|
||||
C e_bot, e_top : lower and upper limits of the energy window
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if the energy window is not well-defined.
|
||||
C -------------------------
|
||||
C
|
||||
IF(e_bot.gt.e_top) THEN
|
||||
WRITE(buf,'(a,a)')' The energy window ',
|
||||
& ' is ill-defined.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
END IF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C =====================================================================
|
||||
C Writing in the output file case.outdmftpr the previous informations :
|
||||
C =====================================================================
|
||||
WRITE(buf,'(a,a)')'Welcome in DMFTPROJ: ',
|
||||
& 'PROJECTION TO LOCALIZED BASIS'
|
||||
CALL printout(1)
|
||||
WRITE(buf,'(a,a)')'This prgm will build',
|
||||
& ' the Wannier projectors to the'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'localized orbitals of an atom',
|
||||
& ' onto which DMFT will be applied.'
|
||||
CALL printout(1)
|
||||
WRITE(buf,'(a)')'You are performing a computation'
|
||||
CALL printout(0)
|
||||
C Spin orbit option
|
||||
IF(ifSO) THEN
|
||||
WRITE(buf,'(a)')'in which Spin-Orbit is included.'
|
||||
ELSE
|
||||
WRITE(buf,'(a)')'without Spin-Orbit.'
|
||||
ENDIF
|
||||
CALL printout(0)
|
||||
C Spin polarized option
|
||||
IF(ifSP) THEN
|
||||
WRITE(buf,'(a)')'using Spin-Polarized Wien2k input files.'
|
||||
ELSE
|
||||
WRITE(buf,'(a)')'using Paramagnetic Wien2k input files.'
|
||||
ENDIF
|
||||
CALL printout(0)
|
||||
IF (ifSO.AND.(.not.ifSP)) THEN
|
||||
WRITE(buf,'(a,a)')'You must use Spin-Polarized input files',
|
||||
& ' to perform Spin-Orbit computation, with this version.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
C Printing nsort, nmult
|
||||
WRITE(buf,'(a)')'======================================='
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,i3)')'Sorts of atoms = ',nsort
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,50i2)')'Equivalent sites per each sort:',
|
||||
& nmult(1:nsort)
|
||||
CALL printout(1)
|
||||
C
|
||||
norb=0
|
||||
ncrorb=0
|
||||
ALLOCATE(notinclude(1:nsort))
|
||||
DO isrt=1,nsort
|
||||
WRITE(buf,'(a)')'-------------------------------------'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,i2,a)')'For the sort ',isrt,' :'
|
||||
CALL printout(0)
|
||||
notinclude(isrt)=.TRUE.
|
||||
C Printing the name of the included orbitals for each sort
|
||||
DO l=0,lmax
|
||||
IF(lsort(l,isrt).NE.0) THEN
|
||||
WRITE(buf,'(a,i2,a)')'The orbital l=',l,' is included.'
|
||||
CALL printout(0)
|
||||
norb=norb+nmult(isrt)
|
||||
notinclude(isrt)=.FALSE.
|
||||
ENDIF
|
||||
ENDDO
|
||||
C The variable notinclude(isrt) is a boolean which precises whether the sort isrt
|
||||
C is considered in the pbm. (whether there is at least one lsort(l,isrt) not 0.)
|
||||
IF (notinclude(isrt)) THEN
|
||||
WRITE(buf,'(a)')'No orbital is included.'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
cycle
|
||||
C If no orbital of isrt is included, they can't be correlated orbitals.
|
||||
END IF
|
||||
CALL printout(0)
|
||||
C Determination of the total number of correlated orbitals for each sort
|
||||
DO l=0,lmax
|
||||
IF(lsort(l,isrt)==2) THEN
|
||||
ncrorb=ncrorb+nmult(isrt)
|
||||
ENDIF ! End of the lsort=2 if-then-else
|
||||
ENDDO ! End of the l loop
|
||||
ENDDO ! End of the isrt loop
|
||||
C norb = total number of included orbitals in the system
|
||||
C ncrorb = total number of correlated orbitals in the system
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if no orbital is included.
|
||||
C -------------------------
|
||||
C
|
||||
IF (norb==0) THEN
|
||||
WRITE(buf,'(a,a)')'You must include at least one orbital.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C ===========================================================================================
|
||||
C Initialization of the "orbital-type" tables orb and crorb, tables of size norb and ncrorb :
|
||||
C ===========================================================================================
|
||||
ALLOCATE(orb(norb),crorb(ncrorb))
|
||||
iorb=0
|
||||
icrorb=0
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
DO l=0,lmax
|
||||
IF(lsort(l,isrt).NE.0) THEN
|
||||
C -------------------------------
|
||||
C For all the included orbitals :
|
||||
C -------------------------------
|
||||
DO imu=1,nmult(isrt)
|
||||
iatom=SUM(nmult(0:isrt-1))+imu
|
||||
iorb=iorb+1
|
||||
orb(iorb)%atom=iatom
|
||||
C the field orb%atom = number of the atom when classified in the order (isort,imult)
|
||||
orb(iorb)%sort=isrt
|
||||
C the field orb%sort = sort of the associated atom
|
||||
orb(iorb)%l=l
|
||||
C the field orb%l = the orbital number l
|
||||
IF(imu==1) THEN
|
||||
orb(iorb)%first=.TRUE.
|
||||
ELSE
|
||||
orb(iorb)%first=.FALSE.
|
||||
ENDIF
|
||||
C the field orb%first = boolean (if first_atom of the sort isort or not)
|
||||
IF(lnreps(l,isrt).NE.0) THEN
|
||||
orb(iorb)%ifsplit=.TRUE.
|
||||
ELSE
|
||||
orb(iorb)%ifsplit=.FALSE.
|
||||
ENDIF
|
||||
C the field orb%ifsplit = boolean (if ireps are used or not)
|
||||
ENDDO
|
||||
C
|
||||
IF(lsort(l,isrt)==2) THEN
|
||||
C ---------------------------------
|
||||
C For all the correlated orbitals :
|
||||
C ---------------------------------
|
||||
DO imu=1,nmult(isrt)
|
||||
iatom=SUM(nmult(0:isrt-1))+imu
|
||||
icrorb=icrorb+1
|
||||
crorb(icrorb)%atom=iatom
|
||||
C the field crorb%atom = number of the atom when classified in the order (isort,imult)
|
||||
crorb(icrorb)%sort=isrt
|
||||
C the field crorb%sort = sort of the associated atom
|
||||
crorb(icrorb)%l=l
|
||||
C the field crorb%l = the orbital number l
|
||||
IF(imu==1) THEN
|
||||
crorb(icrorb)%first=.TRUE.
|
||||
ELSE
|
||||
crorb(icrorb)%first=.FALSE.
|
||||
ENDIF
|
||||
C the field orb%first = boolean (if first_atom of the sort isort or not)
|
||||
IF(lnreps(l,isrt).NE.0) THEN
|
||||
crorb(icrorb)%ifsplit=.TRUE.
|
||||
ALLOCATE(crorb(icrorb)%correp(lnreps(l,isrt)))
|
||||
crorb(icrorb)%correp=.FALSE.
|
||||
DO irep=1,lnreps(l,isrt)
|
||||
IF(correps(irep,l,isrt)==1)
|
||||
& crorb(icrorb)%correp(irep)=.TRUE.
|
||||
ENDDO
|
||||
C the field crorb%correp is defined only when crorb%ifsplit= true
|
||||
C the field orb%correp = boolean table of size lnreps(l,isrt) : True if the ireps is correlated, False otherwise
|
||||
ELSE
|
||||
crorb(icrorb)%ifsplit=.FALSE.
|
||||
ENDIF
|
||||
C the field orb%ifsplit = boolean (if ireps are used or not)
|
||||
IF (ifSOflag(isrt)==1) THEN
|
||||
crorb(icrorb)%ifSOat=1
|
||||
ELSE
|
||||
crorb(icrorb)%ifSOat=0
|
||||
ENDIF
|
||||
C the field crorb%ifSOflag = boolean (if SO are used or not)
|
||||
ENDDO
|
||||
ENDIF ! End of the lsort=2 if-then-else
|
||||
ENDIF ! End of the lsort>0 if-then-else
|
||||
ENDDO ! End of the l loop
|
||||
ENDDO ! End of the isrt loop
|
||||
C
|
||||
C Printing the size of the Energy window
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(2(a,f10.5),a)')
|
||||
& 'The Eigenstates are projected in an energy window from ',
|
||||
& e_bot,' Ry to ',e_top,' Ry around the Fermi level.'
|
||||
CALL printout(1)
|
||||
C
|
||||
C =======================================================================================
|
||||
C Reading of the transformation matrices from the complex to the required angular basis :
|
||||
C =======================================================================================
|
||||
CALL set_ang_trans
|
||||
C
|
||||
C ======================================================================================
|
||||
C Comparing data about correlated ireps and the description of transformation matrices :
|
||||
C ======================================================================================
|
||||
C
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'======================================='
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'Precisions about correlated orbitals.'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
WRITE(buf,'(a)')'-------------------------------------'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,i2,a)')'For the sort ',isrt,' :'
|
||||
CALL printout(0)
|
||||
lcorr=0
|
||||
DO l=0,lmax
|
||||
C Only correlated orbital l of isrt are considered here.
|
||||
IF (lsort(l,isrt)==2) THEN
|
||||
lcorr=lcorr+1
|
||||
C If the whole orbital is correlated (lnreps=0 in this case)
|
||||
IF (lnreps(l,isrt)==0) THEN
|
||||
WRITE(buf,'(a,i2,a)')'The whole orbital l=',l,
|
||||
& ' is included as correlated.'
|
||||
CALL printout(0)
|
||||
C If only one particular irep of the orbital is correlated
|
||||
ELSE
|
||||
C
|
||||
C For a computation without spin-orbit or a computation with SO and with a basis which mixes up and dn states.
|
||||
C ------------------------------------------------------------------------------------------------------------
|
||||
IF ((.not.ifSO).OR.
|
||||
& (ifSO.AND.(l.NE.0).AND.reptrans(l,isrt)%ifmixing))
|
||||
& THEN
|
||||
C without SO, the case l=0 can not occur since lnreps(0,isrt)=0.
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if the data about ireps are conflicting.
|
||||
C -------------------------
|
||||
C
|
||||
IF (lnreps(l,isrt).NE.reptrans(l,isrt)%nreps) THEN
|
||||
WRITE(buf,'(a,a,i2,a)')
|
||||
& 'The number of ireps considered ',
|
||||
& 'for the orbital l= ', l ,' is wrong.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C Writing in the output file case.outdmftpr the irep considered as correlated.
|
||||
ELSE
|
||||
nbrep=0
|
||||
DO irep=1,lnreps(l,isrt)
|
||||
IF (correps(irep,l,isrt)==1) THEN
|
||||
WRITE(buf,'(a,i2,a,i2,a)')
|
||||
& 'The irep ',irep,' of orbital l= ', l,
|
||||
& ' is considered as correlated.'
|
||||
CALL printout(0)
|
||||
nbrep=nbrep+1
|
||||
ENDIF
|
||||
ENDDO
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Printing a Warning if more than one irep for one value of l is considered.
|
||||
C -------------------
|
||||
C
|
||||
IF (nbrep.gt.1) THEN
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)') 'WARNING : ',
|
||||
& 'more than 1 irep is included as correlated.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a,a)') ' ',
|
||||
& 'The calculation may not be correct ',
|
||||
& 'in this case.'
|
||||
CALL printout(1)
|
||||
ENDIF
|
||||
ENDIF ! End of the data-conflict if-then-else
|
||||
C
|
||||
C For a computation with spin-orbit with basis which doesn't mix up and dn states.
|
||||
C --------------------------------------------------------------------------------
|
||||
ELSE
|
||||
WRITE(buf,'(a,i2,a)')'The whole orbital l=',l,
|
||||
& ' is included as correlated.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'because this computation ',
|
||||
& 'includes Spin-Orbit coupling.'
|
||||
CALL printout(0)
|
||||
ENDIF ! End of the ifSo if-then-else
|
||||
ENDIF ! End of the lnreps=0 if-then-else
|
||||
ENDIF ! End of the lsort=2 if-then-else
|
||||
C In the case of no correlated orbitals are considered for the atomic sort isrt :
|
||||
ENDDO ! End of the l loop
|
||||
IF (lcorr==0) THEN
|
||||
WRITE(buf,'(a,a)')'No orbital is included as correlated.'
|
||||
CALL printout(0)
|
||||
ENDIF ! End of the lcorr=0 if-then-else
|
||||
ENDDO ! End of the isrt loop
|
||||
CALL printout(0)
|
||||
DEALLOCATE(lnreps,correps)
|
||||
C lnreps and correps can not be used anymore...
|
||||
C
|
||||
C ==================================
|
||||
C Setting of the symmetry matrices :
|
||||
C ==================================
|
||||
CALL setsym
|
||||
C
|
||||
C =========================================================================================
|
||||
C Reading of the Wien2k informations in the case.almblm file (generated by x lapw2 -almd) :
|
||||
C =========================================================================================
|
||||
C
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'======================================='
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'Reading of the file ',almblm_file
|
||||
CALL printout(0)
|
||||
C Reading of the klist_band file if the computation if band oriented (option -band)
|
||||
IF(ifBAND) CALL read_k_list
|
||||
DO is=1,ns
|
||||
C If the computation is spin-polarized, there are two differents file (up and down)
|
||||
IF(is==2) THEN
|
||||
CLOSE(iualmblm)
|
||||
OPEN(iualmblm,file=almblm_file_sp2,status='old')
|
||||
WRITE(buf,'(a,a)')'Reading of the file ',almblm_file_sp2
|
||||
CALL printout(0)
|
||||
ENDIF
|
||||
C -------------------------------------------------------------
|
||||
C Reading of the general informations in the case.almblm file :
|
||||
C -------------------------------------------------------------
|
||||
READ(iualmblm,*)elecn
|
||||
READ(iualmblm,*)nk
|
||||
READ(iualmblm,*)nloat
|
||||
C elecn = total number of semicore+valence electrons in the system
|
||||
C nk = total number of k_points
|
||||
C nloat = maximal number of LO (local orbitals in LAPW expansion)
|
||||
IF(ifBAND) THEN
|
||||
IF (is==1) READ(iuinp,*)eferm
|
||||
READ(iualmblm,*)
|
||||
ELSE
|
||||
READ(iualmblm,*)eferm
|
||||
ENDIF
|
||||
C eferm = fermi level (if the computation is band-oriented, it is read in case.indmftpr)
|
||||
IF(is==1) THEN
|
||||
ALLOCATE(kp(nk,ns),u_dot_norm(0:lmax,nsort,ns))
|
||||
ALLOCATE(ovl_LO_u(nloat,0:lmax,nsort,ns))
|
||||
ALLOCATE(ovl_LO_udot(nloat,0:lmax,nsort,ns))
|
||||
ALLOCATE(nLO(0:lmax,nsort))
|
||||
ENDIF
|
||||
nLO=0
|
||||
DO isrt=1,nsort
|
||||
C Beginning of the loop on the sort of atoms (isort)
|
||||
|
||||
DO l=0,lmax
|
||||
READ(iualmblm,*)u_dot_norm(l,isrt,is)
|
||||
READ(iualmblm,*)nLO(l,isrt)
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if nLO is more than 1.
|
||||
C -------------------------
|
||||
C
|
||||
IF (nLO(l,isrt) > 1) THEN
|
||||
WRITE(buf,'(a,a)')'The current version of DMFTproj ',
|
||||
& ' cannot be used with more than 1 LO orbital by atom. '
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,i2,a,i2)')
|
||||
& ' This is not the case for the orbital l= ',l,
|
||||
& ' of the atomic sort ',isrt
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
END IF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C It is assumed in the following that nLO is 0 or 1.
|
||||
DO ilo=1,nLO(l,isrt)
|
||||
READ(iualmblm,*)ovl_LO_u(ilo,l,isrt,is),
|
||||
& ovl_LO_udot(ilo,l,isrt,is)
|
||||
ENDDO
|
||||
ENDDO
|
||||
C kp = table of "kp_data" elements. It ranges from 1 to nk and from 1 to ns.
|
||||
C u_dot_norm(isort,l) = norm <u_dotl1|u_dotl1> for the orbital
|
||||
C nLO(isort,l) = number of LO (local orbitals) for each orbital of each sort (its value is assumed to be 0 or 1)
|
||||
C ovl_LO_u(isort, l) = overlap element <ul2|ul1> for the LO orbitals
|
||||
C ovl_LO_udot(isort, l) = overlap element <ul2|u-dotl1> for the LO orbitals
|
||||
C These informations are relative to the basis set for the atomic eigenstates (LAPW-APW expansion)
|
||||
C
|
||||
C --------------------------------------------------------------
|
||||
C For each kpoints and isrt, the "kp_data" elements are filled :
|
||||
C --------------------------------------------------------------
|
||||
DO ik=1,nk
|
||||
READ(iualmblm,'()')
|
||||
READ(iualmblm,'()')
|
||||
READ(iualmblm,*)idum,kp(ik,is)%nbmin,kp(ik,is)%nbmax
|
||||
C idum = useless variable in case.almblm
|
||||
C kp(ik,is)%nbmin = index of the lowest band
|
||||
C kp(ik,is)%nbmzx = index of the uppest band
|
||||
IF(.NOT.ALLOCATED(kp(ik,is)%Alm)) THEN
|
||||
ALLOCATE(kp(ik,is)%eband(kp(ik,is)
|
||||
& %nbmin:kp(ik,is)%nbmax))
|
||||
ALLOCATE(kp(ik,is)%Alm(nlm,natom,
|
||||
& kp(ik,is)%nbmin:kp(ik,is)%nbmax))
|
||||
ALLOCATE(kp(ik,is)%Blm(nlm,natom,
|
||||
& kp(ik,is)%nbmin:kp(ik,is)%nbmax))
|
||||
ALLOCATE(kp(ik,is)%Clm(nloat,nlm,natom,
|
||||
& kp(ik,is)%nbmin:kp(ik,is)%nbmax))
|
||||
ALLOCATE(kp(ik,is)%tetrweight(kp(ik,is)%nbmin:
|
||||
& kp(ik,is)%nbmax))
|
||||
ENDIF
|
||||
DO ib=kp(ik,is)%nbmin,kp(ik,is)%nbmax
|
||||
READ(iualmblm,*)rtetr,kp(ik,is)%eband(ib)
|
||||
kp(ik,is)%tetrweight(ib)=CMPLX(rtetr,0d0)
|
||||
ENDDO
|
||||
C rtetr = tetrahedron weights of the band ib at this kpoint
|
||||
C the field kp(ik,is)%eband(ib) = eigenvalues of the ib band at this kpoint
|
||||
C the field kp(ik,is)%tetrweight(ib) = the tetrahedron weights are set as complex number to avoid problems with SQRT(tetrweight)
|
||||
kp(ik,is)%weight=REAL(kp(ik,is)%tetrweight
|
||||
& (kp(ik,is)%nbmin))
|
||||
C the field kp(ik,is)%weight = value of the tetrahedron weight of the lowest band (fully occupied) at this kpoint -> "a geometric factor"
|
||||
kp(ik,is)%eband=kp(ik,is)%eband-eferm
|
||||
C the eigenvalues kp(ik,is)%eband are shifted with respect to the fermi level.
|
||||
C
|
||||
C Reading of the Alm, Blm and Clm coefficient
|
||||
DO imu=1,nmult(isrt)
|
||||
iatom=SUM(nmult(0:isrt-1))+imu
|
||||
READ(iualmblm,'()')
|
||||
READ(iualmblm,*)idum
|
||||
DO ib=kp(ik,is)%nbmin,kp(ik,is)%nbmax
|
||||
lm=0
|
||||
DO l=0,lmax
|
||||
DO m=-l,l
|
||||
lm=lm+1
|
||||
READ(iualmblm,*)kp(ik,is)%Alm(lm,iatom,ib),
|
||||
& kp(ik,is)%Blm(lm,iatom,ib)
|
||||
DO ilo=1,nLO(l,isrt)
|
||||
READ(iualmblm,*)kp(ik,is)%Clm(ilo,lm,iatom,ib)
|
||||
ENDDO
|
||||
ENDDO ! End of the m loop
|
||||
ENDDO ! End of the l loop
|
||||
ENDDO ! End of the ib loop
|
||||
ENDDO ! End of the imu loop
|
||||
C the field kp(ik,is)%Alm = coefficient A_(lm,ib,iatom)(ik,is) as defined in equation (2.34) of my thesis (equation (??) of the tutorial)
|
||||
C the field kp(ik,is)%Blm = coefficient B_(lm,ib,iatom)(ik,is) as defined in equation (2.34) of my thesis (equation (??) of the tutorial)
|
||||
C the field kp(ik,is)%Clm = coefficient C_(ilo,lm,ib,iatom)(ik,is) as defined in equation (2.34) of my thesis (equation (??) of the tutorial)
|
||||
C Their explicit expression depends of the representation (LAPW or APW). They enable to compute the projectors.
|
||||
C These values are given for all the orbitals (even those which are not included in the study)
|
||||
ENDDO ! End of the loop on kp
|
||||
ENDDO ! End of the loop on isort
|
||||
ENDDO ! End of the loop on ns (spin)
|
||||
C End of reading the case.almblm.file
|
||||
C Printing in the file case.outdmftpr the fermi level (in Rydberg)
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,f10.5,a)')'The value of the Fermi Energy is ',
|
||||
& eferm,' Ry.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'All the considered energies are now given ',
|
||||
& 'with respect to this value. (E_Fermi is now 0 Ry)'
|
||||
CALL printout(1)
|
||||
C
|
||||
C
|
||||
C ==============================================================
|
||||
C Computation of the density matrices up to the Fermi level Ef :
|
||||
C ==============================================================
|
||||
C
|
||||
WRITE(buf,'(a)')'======================================='
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'Computation of the Occupancies ',
|
||||
& 'and Density Matrices up to E_Fermi'
|
||||
CALL printout(1)
|
||||
C ----------------------------------------
|
||||
C Setting up the projections for all bands
|
||||
C ----------------------------------------
|
||||
CALL set_projections(-Elarge,Elarge)
|
||||
|
||||
|
||||
C Elarge is an energy variable equal to 1.d6 Rydberg (very large !!!)
|
||||
C
|
||||
C ---------------------------------------------------------
|
||||
C Computation of the density matrices and the total charges
|
||||
C ---------------------------------------------------------
|
||||
C
|
||||
IF(.NOT.ifBAND) CALL density(.TRUE.,.FALSE.,qdum,.TRUE.)
|
||||
C For the integration, tetrahedron weights are used.
|
||||
C The computation is performed for all the included orbitals
|
||||
C and the density matrices are printed in the file case.outdmftpr
|
||||
C qdum is the total charge density. (unused variable)
|
||||
C
|
||||
C The calculation of Wannier projectors is performed only if correlated orbitals are included.
|
||||
IF(ncrorb.NE.0) THEN
|
||||
C
|
||||
C =====================================================================
|
||||
C Computation of the charge below the lower limit e_bot of the window :
|
||||
C =====================================================================
|
||||
C
|
||||
WRITE(buf,'(a)')'======================================='
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a,f10.5,a)')'Computation of the total ',
|
||||
& 'Charge below the lower limit of the energy window :',
|
||||
& e_bot,' Ry'
|
||||
CALL printout(1)
|
||||
C
|
||||
C ----------------------------------------
|
||||
C Setting up the projections for all bands
|
||||
C ----------------------------------------
|
||||
CALL set_projections(-Elarge,e_bot)
|
||||
C
|
||||
C ---------------------------------------------------------
|
||||
C Computation of the density matrices and the total charges
|
||||
C ---------------------------------------------------------
|
||||
C
|
||||
IF(.NOT.ifBAND) CALL density(.FAlSE.,.FALSE.,qtot,.FALSE.)
|
||||
C A simple point integration is used.
|
||||
C The computation is performed for all the included orbitals.
|
||||
C qtot is the total charge density below e_bot.
|
||||
C Nothing will be printed in the file case.outdmftpr apart from the total charge qtot.
|
||||
C
|
||||
C
|
||||
C ============================================================
|
||||
C Computation of the Wannier projectors in the energy window :
|
||||
C ============================================================
|
||||
C
|
||||
WRITE(buf,'(a)')'======================================='
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a,a,f10.5,a,f10.5,a)')'Computation of the ',
|
||||
& 'Occupancies and Density Matrices in the desired ',
|
||||
& 'energy window [ ',e_bot,'; ',e_top,']'
|
||||
CALL printout(1)
|
||||
C
|
||||
C ----------------------------------------
|
||||
C Setting up the projections for all bands
|
||||
C ----------------------------------------
|
||||
CALL set_projections(e_bot,e_top)
|
||||
C
|
||||
C ------------------------------------------------------------------------------
|
||||
C Orthonormalization of the projectors for correlated orbitals P(icrorb,ik,is) :
|
||||
C ------------------------------------------------------------------------------
|
||||
IF(ifSO) THEN
|
||||
C In this case, up and dn states must be orthogonalized together
|
||||
C because the spin is not a good quantum number anymore.
|
||||
CALL orthogonal_wannier_SO
|
||||
ELSE
|
||||
C In this case, up and dn states can be orthogonalized separately
|
||||
CALL orthogonal_wannier
|
||||
ENDIF
|
||||
C
|
||||
C ---------------------------------------------------------
|
||||
C Computation of the density matrices and the total charges
|
||||
C ---------------------------------------------------------
|
||||
C Tetrahedron weights are used, the computation are done for correlated orbitals only and are printed in the outputfile.
|
||||
IF(.NOT.ifBAND) CALL density(.TRUE.,.TRUE.,qdum,.TRUE.)
|
||||
C For the integration, tetrahedron weights are used.
|
||||
C The computation is performed for the correlated orbitals only
|
||||
C and the density matrices are printed in the file case.outdmftpr
|
||||
C qdum is the total charge density in the energy window. (unused variable)
|
||||
C
|
||||
C
|
||||
C Writing the output files for DMFT computations :
|
||||
C ------------------------------------------------
|
||||
IF(.NOT.ifBAND) THEN
|
||||
CALL outqmc(elecn,qtot)
|
||||
ELSE
|
||||
CALL outband
|
||||
ENDIF
|
||||
CALL outbwin
|
||||
ENDIF
|
||||
C End of the prgm
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
C
|
||||
END
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
410
fortran/dmftproj/modules.f
Normal file
410
fortran/dmftproj/modules.f
Normal file
@ -0,0 +1,410 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
C--------------------
|
||||
C MODULE almblm_data
|
||||
C--------------------
|
||||
MODULE almblm_data
|
||||
INTEGER :: nk, nloat
|
||||
INTEGER, DIMENSION(:,:), ALLOCATABLE :: nLO
|
||||
REAL(KIND=8), DIMENSION(:,:,:), ALLOCATABLE :: u_dot_norm
|
||||
REAL(KIND=8), DIMENSION(:,:,:,:), ALLOCATABLE :: ovl_LO_u
|
||||
REAL(KIND=8), DIMENSION(:,:,:,:), ALLOCATABLE :: ovl_LO_udot
|
||||
TYPE kp_data
|
||||
LOGICAL :: included
|
||||
INTEGER :: nb_bot, nb_top
|
||||
INTEGER :: nbmin,nbmax
|
||||
REAL(KIND=8) :: weight
|
||||
COMPLEX(KIND=8), DIMENSION(:), ALLOCATABLE :: tetrweight
|
||||
REAL(KIND=8),DIMENSION(:), ALLOCATABLE :: eband
|
||||
COMPLEX(KIND=8),DIMENSION(:,:,:), ALLOCATABLE :: Alm, Blm
|
||||
COMPLEX(KIND=8),DIMENSION(:,:,:,:), ALLOCATABLE :: Clm
|
||||
ENDTYPE
|
||||
TYPE(kp_data), DIMENSION(:,:), ALLOCATABLE :: kp
|
||||
ENDMODULE almblm_data
|
||||
C
|
||||
C--------------
|
||||
C MODULE bands
|
||||
C--------------
|
||||
MODULE bands
|
||||
INTEGER :: nlab, nkband
|
||||
TYPE label
|
||||
CHARACTER(len=20) :: kname
|
||||
INTEGER :: pos
|
||||
ENDTYPE
|
||||
TYPE(label), DIMENSION(:), ALLOCATABLE :: labels
|
||||
ENDMODULE
|
||||
C
|
||||
C--------------------
|
||||
C MODULE common_data
|
||||
C--------------------
|
||||
MODULE common_data
|
||||
C 11/03/10 : Modification of the fullpath for myDMFTproj-2
|
||||
C CHARACTER(len=*), PARAMETER :: wien_path=
|
||||
C & '/workpmc/martins/DMFTprojectors/newDMFTproj'
|
||||
CHARACTER(len=250) :: wien_path
|
||||
INTEGER :: natom, nsort, lmax, nlm, ns, nsp
|
||||
INTEGER, DIMENSION(:), ALLOCATABLE :: isort
|
||||
INTEGER, DIMENSION(:), ALLOCATABLE :: nmult
|
||||
INTEGER, DIMENSION(:,:), ALLOCATABLE :: lsort
|
||||
INTEGER, DIMENSION(:), ALLOCATABLE :: ifSOflag
|
||||
INTEGER, DIMENSION(:), ALLOCATABLE :: timeflag
|
||||
LOGICAL :: ifSO, ifSP, ifBAND
|
||||
LOGICAL, DIMENSION(:), ALLOCATABLE :: notinclude
|
||||
REAL(KIND=8) :: eferm
|
||||
REAL(KIND=8) :: e_bot, e_top
|
||||
REAL(KIND=8), PARAMETER :: PI=3.1415926535898d0
|
||||
C New type structure basistrans
|
||||
TYPE deftrans
|
||||
CHARACTER(len=8) :: typebasis
|
||||
C The size of typebasis is limited to 8 characters !
|
||||
CHARACTER(len=25) :: sourcefile
|
||||
C The size of sourcefile is limited to 25 characters !
|
||||
ENDTYPE
|
||||
TYPE(deftrans), DIMENSION(:), ALLOCATABLE :: defbasis
|
||||
C Type structure orbital
|
||||
TYPE orbital
|
||||
INTEGER :: atom
|
||||
INTEGER :: sort
|
||||
INTEGER :: l
|
||||
LOGICAL :: first
|
||||
LOGICAL :: ifsplit
|
||||
INTEGER :: ifSOat
|
||||
LOGICAL,DIMENSION(:), ALLOCATABLE :: correp
|
||||
ENDTYPE
|
||||
TYPE(orbital), DIMENSION(:), ALLOCATABLE :: orb, crorb
|
||||
INTEGER :: norb, ncrorb
|
||||
ENDMODULE common_data
|
||||
C
|
||||
C------------------
|
||||
C MODULE factorial
|
||||
C------------------
|
||||
MODULE factorial
|
||||
REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: fac
|
||||
INTEGER :: nfctrl
|
||||
CONTAINS
|
||||
SUBROUTINE setfact(n)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine sets the factorial array %%
|
||||
C %% FAC(I+1) = I! for I=0,...,N-1 %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
IMPLICIT NONE
|
||||
INTEGER :: n, i
|
||||
C
|
||||
nfctrl=n
|
||||
ALLOCATE(fac(nfctrl))
|
||||
C I! = FAC(I+1)
|
||||
fac(1)=1.0d00
|
||||
DO i=1,nfctrl-1
|
||||
fac(i+1)=i*fac(i)
|
||||
ENDDO
|
||||
RETURN
|
||||
END SUBROUTINE setfact
|
||||
END MODULE factorial
|
||||
C
|
||||
C-------------------
|
||||
C MODULE file_names
|
||||
C-------------------
|
||||
MODULE file_names
|
||||
INTEGER :: iudef, iuinp, iusym, iualmblm, iumatfile, iuradwf
|
||||
INTEGER :: iuklist
|
||||
INTEGER :: ouproj, ouprn, ouctqmc, oupartial,ousymqmc, ousympar
|
||||
INTEGER :: ouband, oubwinup, oubwindn, oubwin
|
||||
INTEGER :: outw2kpath
|
||||
CHARACTER(len=25) :: jobname
|
||||
CHARACTER(len=35) :: inp_file, sym_file, almblm_file
|
||||
CHARACTER(len=35) :: almblm_file_sp2
|
||||
CHARACTER(len=35) :: radwf_file, radwf_file_sp2
|
||||
CHARACTER(len=35) :: prn_file, ctqmc_file, partial_file
|
||||
CHARACTER(len=35) :: klist_file
|
||||
CHARACTER(len=35) :: symqmc_file, sympar_file, outband_file
|
||||
CHARACTER(len=35) :: oubwin_file, oubwinup_file, oubwindn_file
|
||||
CHARACTER(len=8), PARAMETER :: inp_ext='indmftpr'
|
||||
CHARACTER(len=7), PARAMETER :: sym_ext='dmftsym'
|
||||
CHARACTER(len=6), PARAMETER :: almblm_ext='almblm'
|
||||
CHARACTER(len=8), PARAMETER :: almblmup_ext='almblmup'
|
||||
CHARACTER(len=8), PARAMETER :: almblmdn_ext='almblmdn'
|
||||
CHARACTER(len=9), PARAMETER :: prn_ext='outdmftpr'
|
||||
CHARACTER(len=8), PARAMETER :: ctqmc_ext='ctqmcout'
|
||||
CHARACTER(len=7), PARAMETER :: partial_ext='parproj'
|
||||
CHARACTER(len=6), PARAMETER :: symqmc_ext='symqmc'
|
||||
CHARACTER(len=6), PARAMETER :: sympar_ext='sympar'
|
||||
CHARACTER(len=7), PARAMETER :: radwfup_ext='radwfup'
|
||||
CHARACTER(len=7), PARAMETER :: radwfdn_ext='radwfdn'
|
||||
CHARACTER(len=10), PARAMETER :: klist_ext='klist_band'
|
||||
CHARACTER(len=7), PARAMETER :: outband_ext='outband'
|
||||
CHARACTER(len=6), PARAMETER :: oubwin_ext='oubwin'
|
||||
CHARACTER(len=8), PARAMETER :: oubwinup_ext='oubwinup'
|
||||
CHARACTER(len=8), PARAMETER :: oubwindn_ext='oubwindn'
|
||||
CONTAINS
|
||||
SUBROUTINE set_file_name(filename,exten)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine sets the file name %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
IMPLICIT NONE
|
||||
CHARACTER(len=*) :: filename, exten
|
||||
INTEGER :: i1, i2, i
|
||||
i1=LEN_TRIM(jobname)
|
||||
i2=LEN(exten)
|
||||
i=i1+i2+1
|
||||
IF(LEN(filename) < i) THEN
|
||||
WRITE(*,'(i3,3a)')
|
||||
& i,' characters required for the $case.',exten,
|
||||
& ' filename, too long'
|
||||
STOP
|
||||
ENDIF
|
||||
filename=' '
|
||||
filename(1:i)=jobname(1:i1)//'.'//exten(1:i2)
|
||||
END SUBROUTINE set_file_name
|
||||
C
|
||||
SUBROUTINE openfiles
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine opens the input and output units for dmftproj %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data, ONLY: ifSP, ifSO, ifBAND, wien_path
|
||||
IMPLICIT NONE
|
||||
CHARACTER(len=120) :: buf
|
||||
INTEGER :: i1, i2
|
||||
C initialize input/output channels
|
||||
CALL setchannels
|
||||
C Get working directory name:
|
||||
CALL system('pwd > dir_name.tmp')
|
||||
OPEN(outw2kpath,file='dir_name.tmp',status='old')
|
||||
READ(outw2kpath,'(a)')buf
|
||||
CLOSE(outw2kpath,status='delete')
|
||||
i1=INDEX(buf,'/',.TRUE.)
|
||||
i2=LEN_TRIM(buf)
|
||||
jobname(1:i2-i1)=buf(i1+1:i2)
|
||||
jobname(i2-i1+1:)=' '
|
||||
C Construct file names
|
||||
CALL set_file_name(inp_file,inp_ext)
|
||||
CALL set_file_name(sym_file,sym_ext)
|
||||
IF(.NOT.ifSP) THEN
|
||||
CALL set_file_name(almblm_file,almblm_ext)
|
||||
ELSE
|
||||
CALL set_file_name(almblm_file,almblmup_ext)
|
||||
CALL set_file_name(almblm_file_sp2,almblmdn_ext)
|
||||
ENDIF
|
||||
CALL set_file_name(prn_file,prn_ext)
|
||||
CALL set_file_name(ctqmc_file,ctqmc_ext)
|
||||
CALL set_file_name(partial_file,partial_ext)
|
||||
CALL set_file_name(symqmc_file,symqmc_ext)
|
||||
CALL set_file_name(sympar_file,sympar_ext)
|
||||
IF(ifSP.AND.ifSO) THEN
|
||||
CALL set_file_name(radwf_file,radwfup_ext)
|
||||
CALL set_file_name(radwf_file_sp2,radwfdn_ext)
|
||||
ENDIF
|
||||
IF(ifBAND) THEN
|
||||
CALL set_file_name(klist_file,klist_ext)
|
||||
CALL set_file_name(outband_file,outband_ext)
|
||||
ENDIF
|
||||
IF(ifSP) THEN
|
||||
CALL set_file_name(oubwinup_file,oubwinup_ext)
|
||||
CALL set_file_name(oubwindn_file,oubwindn_ext)
|
||||
ELSE
|
||||
CALL set_file_name(oubwin_file,oubwin_ext)
|
||||
ENDIF
|
||||
C Open units
|
||||
OPEN(iuinp,file=inp_file,status='old')
|
||||
OPEN(iusym,file=sym_file,status='old')
|
||||
OPEN(iualmblm,file=almblm_file,status='old')
|
||||
OPEN(ouprn,file=prn_file)
|
||||
OPEN(ouctqmc,file=ctqmc_file)
|
||||
OPEN(oupartial,file=partial_file)
|
||||
OPEN(ousymqmc,file=symqmc_file)
|
||||
OPEN(ousympar,file=sympar_file)
|
||||
IF(ifBAND) THEN
|
||||
OPEN(iuklist,file=klist_file,status='old')
|
||||
OPEN(ouband,file=outband_file)
|
||||
ENDIF
|
||||
IF(ifSP) THEN
|
||||
OPEN(oubwinup,file=oubwinup_file)
|
||||
OPEN(oubwindn,file=oubwindn_file)
|
||||
ELSE
|
||||
OPEN(oubwin,file=oubwin_file)
|
||||
ENDIF
|
||||
C
|
||||
C Set path to Wien2k
|
||||
CALL system('echo $WIENROOT > path_wienroot.tmp')
|
||||
OPEN(outw2kpath,file='path_wienroot.tmp',status='old')
|
||||
READ(outw2kpath,'(a)')wien_path
|
||||
CLOSE(outw2kpath,status='delete')
|
||||
C
|
||||
RETURN
|
||||
END SUBROUTINE
|
||||
C
|
||||
SUBROUTINE setchannels
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine opens the input and output channels %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data, ONLY: ifSP
|
||||
IMPLICIT NONE
|
||||
C Channels
|
||||
C input
|
||||
iudef=5 ! def-file
|
||||
iuinp=7 ! input data
|
||||
iusym=8 ! symmetries
|
||||
iualmblm=9 ! almblm matrices from Wien
|
||||
iumatfile=15 !transformation matrices between different angular basises
|
||||
iuradwf=16 !radial mesh and wave functions
|
||||
iuklist=20 !bands
|
||||
C output
|
||||
ouprn=10 ! print-out file
|
||||
ouproj=11 ! projection matrices and other data for DMFT run
|
||||
ouctqmc=12 ! output for ctqmc
|
||||
oupartial=13 ! output for partial charges projectors for ctqmc
|
||||
ousymqmc=14 ! output for permutations and rotation matrices
|
||||
ousympar=19 ! output for permutations and rotation matrices
|
||||
! for partial charges analisis
|
||||
ouband=21 ! bands
|
||||
IF(ifSP) THEN
|
||||
oubwinup=22 ! included bands information for lapw2(up)
|
||||
oubwindn=23 ! included bands information for lapw2(dn)
|
||||
ELSE
|
||||
oubwin=22 ! included bands information for lapw2
|
||||
ENDIF
|
||||
C
|
||||
RETURN
|
||||
END SUBROUTINE
|
||||
C
|
||||
C
|
||||
ENDMODULE file_names
|
||||
C
|
||||
MODULE prnt
|
||||
CHARACTER(len=250) :: buf
|
||||
CONTAINS
|
||||
SUBROUTINE printout(newline)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine prints the string in buf to the screen %%
|
||||
C %% and to the output file and renitializes buf %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE file_names
|
||||
IMPLICIT NONE
|
||||
INTEGER :: newline, i
|
||||
i=LEN_TRIM(buf)
|
||||
WRITE(ouprn,'(a)')buf(1:i)
|
||||
WRITE(*,'(a)')buf(1:i)
|
||||
buf=' '
|
||||
IF(newline==1) THEN
|
||||
WRITE(ouprn,'(/)')
|
||||
WRITE(*,'(/)')
|
||||
ENDIF
|
||||
RETURN
|
||||
END subroutine
|
||||
ENDMODULE prnt
|
||||
C
|
||||
C--------------------
|
||||
C MODULE projections
|
||||
C--------------------
|
||||
MODULE projections
|
||||
TYPE proj_mat
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: mat
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: mat_rep
|
||||
ENDTYPE
|
||||
TYPE(proj_mat), DIMENSION(:,:,:), ALLOCATABLE :: pr_crorb
|
||||
C
|
||||
TYPE proj_mat_n
|
||||
COMPLEX(KIND=8), DIMENSION(:,:,:), ALLOCATABLE :: matn
|
||||
COMPLEX(KIND=8), DIMENSION(:,:,:), ALLOCATABLE :: matn_rep
|
||||
ENDTYPE
|
||||
TYPE(proj_mat_n), DIMENSION(:,:,:), ALLOCATABLE :: pr_orb
|
||||
C
|
||||
TYPE ortfunc
|
||||
INTEGER :: n
|
||||
REAL(KIND=8), DIMENSION(:,:,:), ALLOCATABLE :: s12
|
||||
ENDTYPE
|
||||
TYPE(ortfunc), DIMENSION(:), ALLOCATABLE :: norm_radf
|
||||
ENDMODULE projections
|
||||
C
|
||||
C-------------
|
||||
C MODULE reps
|
||||
C-------------
|
||||
MODULE reps
|
||||
TYPE ang_bas
|
||||
INTEGER :: nreps
|
||||
INTEGER, DIMENSION(:), ALLOCATABLE :: dreps
|
||||
LOGICAL :: ifmixing
|
||||
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: transmat
|
||||
ENDTYPE
|
||||
TYPE(ang_bas), DIMENSION(:,:), ALLOCATABLE :: reptrans
|
||||
ENDMODULE
|
||||
C
|
||||
C-------------
|
||||
C MODULE symm
|
||||
C-------------
|
||||
MODULE symm
|
||||
TYPE matrix
|
||||
COMPLEX(KIND=8),DIMENSION(:,:),ALLOCATABLE :: mat
|
||||
ENDTYPE
|
||||
TYPE symop
|
||||
LOGICAL :: timeinv
|
||||
INTEGER, DIMENSION(:), ALLOCATABLE :: perm
|
||||
INTEGER :: iprop
|
||||
REAL(KIND=8) :: a, b, g
|
||||
REAL(KIND=8) :: phase
|
||||
REAL(KIND=8) :: krotm(3,3)
|
||||
COMPLEX(KIND=8),DIMENSION(:,:,:),ALLOCATABLE ::rotl
|
||||
TYPE(matrix),DIMENSION(:,:),ALLOCATABLE ::rotrep
|
||||
ENDTYPE
|
||||
TYPE symoploc
|
||||
LOGICAL :: timeinv
|
||||
INTEGER :: iprop
|
||||
INTEGER :: srotnum
|
||||
REAL(KIND=8) :: a, b, g
|
||||
REAL(KIND=8) :: phase
|
||||
REAL(KIND=8) :: krotm(3,3)
|
||||
COMPLEX(KIND=8),DIMENSION(:,:,:),ALLOCATABLE ::rotl
|
||||
TYPE(matrix),DIMENSION(:),ALLOCATABLE ::rotrep
|
||||
ENDTYPE
|
||||
INTEGER :: nsym
|
||||
INTEGER :: lsym, nlmsym
|
||||
TYPE(symop), DIMENSION(:), ALLOCATABLE :: srot
|
||||
TYPE(symoploc), DIMENSION(:), ALLOCATABLE :: rotloc
|
||||
TYPE(matrix), DIMENSION(:,:), ALLOCATABLE :: densmat
|
||||
TYPE(matrix), DIMENSION(:,:), ALLOCATABLE :: crdensmat
|
||||
END MODULE symm
|
||||
|
225
fortran/dmftproj/orthogonal.f
Normal file
225
fortran/dmftproj/orthogonal.f
Normal file
@ -0,0 +1,225 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE orthogonal_h(s1,ndim,inv)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine computes : %%
|
||||
C %% - if inv = .FALSE. the square root of the Hermitian matrix s1 %%
|
||||
C %% - if inv = .TRUE. the inverse of the square root of the %%
|
||||
C %% Hermitian matrix s1 %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE prnt
|
||||
IMPLICIT NONE
|
||||
INTEGER :: ndim, INFO, lm, lm1
|
||||
COMPLEX(KIND=8), DIMENSION(ndim) :: WORK
|
||||
COMPLEX(KIND=8), DIMENSION(ndim,ndim) :: s1
|
||||
INTEGER, DIMENSION(ndim,ndim) :: IPIV
|
||||
LOGICAL :: inv
|
||||
C
|
||||
C Calculation of S1^(1/2) or S1^(-1/2):
|
||||
C -------------------------------------
|
||||
CALL sqrtm(s1,ndim,inv)
|
||||
C The resulting matrix is stored in s1.
|
||||
RETURN
|
||||
END
|
||||
|
||||
SUBROUTINE orthogonal_r(s2,ndim,inv)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine computes : %%
|
||||
C %% - if inv = .FALSE. the square root of s1 %%
|
||||
C %% - if inv = .TRUE. the inverse of the square root of s2 %%
|
||||
C %% where s2 is a real symmetric matrix. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE prnt
|
||||
IMPLICIT NONE
|
||||
INTEGER :: ndim, INFO, lm, lm1
|
||||
COMPLEX(KIND=8), DIMENSION(ndim) :: WORK
|
||||
COMPLEX(KIND=8), DIMENSION(ndim,ndim) :: s1
|
||||
REAL(KIND=8), DIMENSION(ndim,ndim) :: s2
|
||||
INTEGER, DIMENSION(ndim,ndim) :: IPIV
|
||||
LOGICAL :: inv
|
||||
C
|
||||
C Calculation of S2^(1/2) or S2^(-1/2):
|
||||
C -------------------------------------
|
||||
s1=s2
|
||||
CALL sqrtm(s1,ndim,inv)
|
||||
s2=REAL(s1)
|
||||
C The resulting matrix is stored in s2.
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
SUBROUTINE sqrtm(cmat,m,inv)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine calculates the square root of a positively %%
|
||||
C %% defined Hermitian matrix A=cmat using the decomposition %%
|
||||
C %% A=Z*D*Z^H %%
|
||||
C %% where D is a diagonal matrix of eigenvalues of A, %%
|
||||
C %% Z is matrix of orthonormal eigenvectors of A, %%
|
||||
C %% Z^H is its Hermitian conjugate. %%
|
||||
C %% Then A^(1/2)=Z*D^(1/2)*Z^H. %%
|
||||
C %% Correction: the matrix A is allowed to be negatively defined. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
IMPLICIT NONE
|
||||
INTEGER :: m
|
||||
COMPLEX(KIND=8), DIMENSION(m,m):: cmat, D, D1
|
||||
LOGICAL :: inv
|
||||
C Calculation of Z*D^(1/2):
|
||||
C -------------------------
|
||||
CALL sqrt_eigenvec(cmat,D1,m,inv)
|
||||
WRITE(95,*) cmat
|
||||
WRITE(95,*) ' '
|
||||
WRITE(95,*) D1
|
||||
WRITE(95,*) ' '
|
||||
C Calculation of A^(1/2)=Z*D^(1/2)*Z^H:
|
||||
C -------------------------------------
|
||||
D=CONJG(cmat)
|
||||
call ZGEMM('N','T',m,m,m,DCMPLX(1.D0,0.D0),D1,
|
||||
& m,D,m,DCMPLX(0.D0,0.D0),cmat,m)
|
||||
C The resulting matrix is stored in cmat.
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
SUBROUTINE sqrt_eigenvec(cmat,D1,m,inv)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine computes : %%
|
||||
C %% - if inv = .FALSE. Z*D^(1/2) %%
|
||||
C %% - if inv = .TRUE. Z*D^(-1/2) %%
|
||||
C %% where Z is a matrix of orthonormal eigenvectors of cmat and %%
|
||||
C %% D is the diagonal matrix of cmat's eigenvalues. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE prnt
|
||||
IMPLICIT NONE
|
||||
LOGICAL :: inv, ifwrite
|
||||
INTEGER :: m, INFO, i, j
|
||||
INTEGER, PARAMETER :: nwork=40
|
||||
C
|
||||
COMPLEX(KIND=8), allocatable, DIMENSION(:) :: WORK
|
||||
COMPLEX(KIND=8), DIMENSION(m,m) :: cmat, D1
|
||||
REAL(KIND=8), DIMENSION(m) :: W
|
||||
COMPLEX(KIND=8), DIMENSION(m) :: W_comp
|
||||
REAL(KIND=8), allocatable, DIMENSION(:) :: RWORK
|
||||
C
|
||||
C Finding the eigenvalues and the eigenvectors of cmat :
|
||||
C ------------------------------------------------------
|
||||
ALLOCATE(rwork(3*m-2))
|
||||
ALLOCATE(work(2*m-1))
|
||||
CALL ZHEEV('V', 'U', m, cmat, m, W, WORK,2*m-1,RWORK,INFO)
|
||||
IF (info.ne.0) THEN
|
||||
WRITE(buf,'(a)')
|
||||
& 'The subroutine zheev ends with info = ',info
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'In sqrt_eigenvec, a pbm occurs in zheev.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
C W contains the eigenvalues of cmat.
|
||||
W_comp=CMPLX(W,0d0)
|
||||
C
|
||||
C Checking of the validity of the computation :
|
||||
C ---------------------------------------------
|
||||
ifwrite=.FALSE.
|
||||
DO j=1,m
|
||||
C The warning is written only once in the file case.outdmftpr
|
||||
IF (ifwrite) EXIT
|
||||
C Checking if the eigenvalues are not negative.
|
||||
IF (W(j).lt.0.d0) THEN
|
||||
WRITE(buf,'(a,i2,a,a)')
|
||||
& 'WARNING : An eigenvalue (',j,') of the ',
|
||||
& 'overlap matrix is negative.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')' The result ',
|
||||
& 'of the calculation may thus be wrong.'
|
||||
CALL printout(1)
|
||||
ifwrite=.TRUE.
|
||||
ENDIF
|
||||
IF (ABS(W(j)).lt.1.d-12) THEN
|
||||
WRITE(buf,'(a,i2,a,a)')
|
||||
& 'WARNING : An eigenvalue (',j,') of the ',
|
||||
& 'overlap matrix is almost zero.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')' The result ',
|
||||
& 'of the calculation may thus be wrong.'
|
||||
CALL printout(1)
|
||||
ifwrite=.TRUE.
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
C Calculation of Z*D^(1/2) :
|
||||
C --------------------------
|
||||
C The result is stored in D1.
|
||||
IF(.NOT.inv) THEN
|
||||
DO i=1,m
|
||||
DO j=1,m
|
||||
D1(i,j)=cmat(i,j)*SQRT(W_comp(j))
|
||||
ENDDO
|
||||
ENDDO
|
||||
ELSE
|
||||
C Calculation of Z*D^(-1/2) :
|
||||
C ---------------------------
|
||||
C The result is stored in D1.
|
||||
DO i=1,m
|
||||
DO j=1,m
|
||||
IF (ABS(W(j))==0.d0) THEN
|
||||
WRITE(buf,'(a,i2,a)')
|
||||
& 'An eigenvalue (',j,') of the ',
|
||||
& 'overlap matrix has the value 0.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')
|
||||
& 'The calculation can not be performed further.'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
D1(i,j)=cmat(i,j)/SQRT(W_comp(j))
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDIF
|
||||
C The resulting matrix is stored in D1 and cmat is now Z.
|
||||
RETURN
|
||||
END
|
||||
|
593
fortran/dmftproj/orthogonal_wannier.f
Normal file
593
fortran/dmftproj/orthogonal_wannier.f
Normal file
@ -0,0 +1,593 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE orthogonal_wannier
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine orthonormalizes the Wannier-like functions %%
|
||||
C %% obtained with the projectors P(icrorb,ik,is), in order to %%
|
||||
C %% get a set of "true" Wannier orbitals. %%
|
||||
C %% %%
|
||||
C %% Only the correlated orbitals are treated here. %%
|
||||
C %% %%
|
||||
C %% THIS VERSION CAN NOT BE USED WITH SPIN-ORBIT %%
|
||||
C %% (since the calculation is made independently for up/dn states) %%
|
||||
C %% THIS VERSION CAN BE USED WITH SPIN-POLARIZED INPUT FILES. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE almblm_data
|
||||
USE common_data
|
||||
USE prnt
|
||||
USE projections
|
||||
USE reps
|
||||
IMPLICIT NONE
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: Dmat, D_orth, D
|
||||
INTEGER :: is, ik, l, nbnd, ndim, isrt, nbbot, nbtop
|
||||
INTEGER :: icrorb, ind1, ind2, ib, iatom
|
||||
INTEGER :: m1, m2, irep
|
||||
C
|
||||
WRITE(buf,'(a)')'Orthonormalization of the projectors...'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
C
|
||||
IF(ncrorb==0) RETURN
|
||||
C
|
||||
C =====================================
|
||||
C Creation of the overlap matrix Dmat :
|
||||
C =====================================
|
||||
C
|
||||
C -----------------------------------------------------------
|
||||
C Determination of the dimension ndim of the overlap matrix :
|
||||
C -----------------------------------------------------------
|
||||
ndim=0
|
||||
C Loop on the correlated orbitals
|
||||
DO icrorb=1,ncrorb
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
C Since this subroutine is used only in the case without SO,
|
||||
C the correlated ireps can be considered if there are any. (ifsplit=.TRUE.)
|
||||
IF(crorb(icrorb)%ifsplit) THEN
|
||||
C the value of l can not be 0 here, because ifsplit is necessary .FALSE.
|
||||
C for s-orbital (restriction in dmftproj.f)
|
||||
DO irep=1,reptrans(l,isrt)%nreps
|
||||
IF(crorb(icrorb)%correp(irep))
|
||||
& ndim=ndim+reptrans(l,isrt)%dreps(irep)
|
||||
C The dimension of the irep is added to ndim.
|
||||
ENDDO
|
||||
ELSE
|
||||
C If no particular irep is considered (ifsplit=.FALSE.),
|
||||
C The whole matrix of the representation is considered.
|
||||
ndim=ndim+2*l+1
|
||||
ENDIF
|
||||
ENDDO
|
||||
C ------------------
|
||||
C Creation of Dmat :
|
||||
C ------------------
|
||||
ALLOCATE(Dmat(1:ndim,1:ndim))
|
||||
C
|
||||
C =====================================================================
|
||||
C Computation of the orthonormalized Wannier functions and projectors :
|
||||
C =====================================================================
|
||||
C The computation is performed for each k_point and each spin-value independently
|
||||
C because they are good quantum numbers.
|
||||
DO ik=1,nk
|
||||
DO is=1,ns
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,is)%included) CYCLE
|
||||
nbnd=kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1
|
||||
nbbot=kp(ik,is)%nb_bot
|
||||
nbtop=kp(ik,is)%nb_top
|
||||
ALLOCATE(D(1:ndim,1:nbnd))
|
||||
C
|
||||
C --------------------------------
|
||||
C Initialization of the D matrix :
|
||||
C --------------------------------
|
||||
C This D matrix of size ndim*nbnd is the complete "projector matrix"
|
||||
C which enables to go from the Wannier-like basis |u_orb> to the Bloch states |ik,ib>.
|
||||
ind1=0
|
||||
DO icrorb=1,ncrorb
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
C If l=0, there only possible irep is the whole matrix itself.
|
||||
IF (l==0) THEN
|
||||
D(ind1+1,1:nbnd)=pr_crorb(icrorb,ik,is)%
|
||||
& mat_rep(1,nbbot:nbtop)
|
||||
ind1=ind1+1
|
||||
ELSE
|
||||
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
|
||||
IF(crorb(icrorb)%ifsplit) THEN
|
||||
C the value of l can not be 0 here, because ifsplit is necessary .FALSE.
|
||||
C for s-orbital (restriction in dmftproj.f)
|
||||
m1=-l-1
|
||||
DO irep=1,reptrans(l,isrt)%nreps
|
||||
IF(crorb(icrorb)%correp(irep)) THEN
|
||||
m2=m1+reptrans(l,isrt)%dreps(irep)
|
||||
ind2=ind1+reptrans(l,isrt)%dreps(irep)
|
||||
C Since there is no SO, prcrorb%matrep is of size 2*l+1, from -l to l
|
||||
C (the basis which mix up/dn states are not possible here.)
|
||||
C The states range from m1+1 to m2 in the irep.
|
||||
C The corresponding projector is stored from the line (ind1+1) to the line ind2, in the D matrix.
|
||||
D(ind1+1:ind2,1:nbnd)=pr_crorb(icrorb,ik,is)%
|
||||
& mat_rep(m1+1:m2,nbbot:nbtop)
|
||||
ind1=ind2
|
||||
ENDIF
|
||||
m1=m1+reptrans(l,isrt)%dreps(irep)
|
||||
ENDDO
|
||||
ELSE
|
||||
C The projectors of the whole correlated representation is considered. (ifsplit=.FALSE.)
|
||||
ind2=ind1+2*l+1
|
||||
C Since there is no SO, prcrorb%matrep is of size 2*l+1, from -l to l.
|
||||
C (the basis which mix up/dn states are not possible here.)
|
||||
C The corresponding projection matrix is stored from the line (ind1+1) to the line ind2, in the D matrix.
|
||||
D(ind1+1:ind2,1:nbnd)=pr_crorb(icrorb,ik,is)%
|
||||
& mat_rep(-l:l,nbbot:nbtop)
|
||||
ind1=ind2
|
||||
ENDIF ! End of the ifsplit if-then-else
|
||||
ENDIF ! End of the l=0 if-then-else
|
||||
ENDDO ! End of the icrorb loop
|
||||
C
|
||||
C ----------------------------------------
|
||||
C Computation of the overlap matrix Dmat :
|
||||
C ----------------------------------------
|
||||
C The overlap matrix is stored in Dmat = D*transpose(conjugate(D))
|
||||
CALL ZGEMM('N','C',ndim,ndim,nbnd,DCMPLX(1.D0,0.D0),
|
||||
& D,ndim,D,ndim,DCMPLX(0.D0,0.D0),Dmat,ndim)
|
||||
C
|
||||
C -------------------------------------------
|
||||
C Computation of the matrix S = Dmat^{-1/2} :
|
||||
C -------------------------------------------
|
||||
CALL orthogonal_h(Dmat,ndim,.TRUE.)
|
||||
C This matrix is stored in Dmat.
|
||||
C
|
||||
C -----------------------------------------------
|
||||
C Computation of the orthonormalized projectors :
|
||||
C -----------------------------------------------
|
||||
C The calculation performed is the following : P=O^(-1/2)*P_tilde.
|
||||
C Its value is stored in the matrix D_orth (of size ndim*nbnd)
|
||||
|
||||
ALLOCATE(D_orth(1:ndim,1:nbnd))
|
||||
CALL ZGEMM('N','N',ndim,nbnd,ndim,DCMPLX(1.D0,0.D0),
|
||||
& Dmat,ndim,D,ndim,DCMPLX(0.D0,0.D0),D_orth,ndim)
|
||||
DEALLOCATE(D)
|
||||
C
|
||||
C --------------------------------------------------------------------------------
|
||||
C Storing the value of the orthonormalized projectors in the pr_crorb structures :
|
||||
C --------------------------------------------------------------------------------
|
||||
ind1=0
|
||||
DO icrorb=1,ncrorb
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
C If l=0, there only possible irep is the whole matrix itself.
|
||||
IF (l==0) THEN
|
||||
pr_crorb(icrorb,ik,is)%mat_rep
|
||||
& (1,nbbot:nbtop)=D_orth(ind1+1,1:nbnd)
|
||||
ind1=ind1+1
|
||||
ELSE
|
||||
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
|
||||
IF(crorb(icrorb)%ifsplit) THEN
|
||||
C the value of l can not be 0 here, because ifsplit is necessary .FALSE.
|
||||
C for s-orbital (restriction in dmftproj.f)
|
||||
m1=-l-1
|
||||
DO irep=1,reptrans(l,isrt)%nreps
|
||||
IF(crorb(icrorb)%correp(irep)) THEN
|
||||
m2=m1+reptrans(l,isrt)%dreps(irep)
|
||||
ind2=ind1+reptrans(l,isrt)%dreps(irep)
|
||||
C prcrorb%matrep is of size 2*l+1, from -l to l (the basis which mix up/dn states are not possible here.)
|
||||
C In the D_orth matrix, the corresponding part of the projection matrix ranges from the line (ind1+1) to the line ind2.
|
||||
C The projector associated to the ireps is stored in the prcrorb%matrep from m1+1 to m2.
|
||||
pr_crorb(icrorb,ik,is)%
|
||||
& mat_rep(m1+1:m2,nbbot:nbtop)=
|
||||
& D_orth(ind1+1:ind2,1:nbnd)
|
||||
ind1=ind2
|
||||
ENDIF
|
||||
m1=m1+reptrans(l,isrt)%dreps(irep)
|
||||
ENDDO
|
||||
ELSE
|
||||
C The projectors of the whole correlated representation is considered. (ifsplit=.FALSE.)
|
||||
ind2=ind1+2*l+1
|
||||
C Since there is no SO, prcrorb%matrep is of size 2*l+1, from -l to l.
|
||||
C (the basis which mix up/dn states are not possible here.)
|
||||
C In the D_orth matrix, the projection matrix ranges from the line (ind1+1) to the line ind2.
|
||||
C The projector is stored in the pr_crorb%matrep (from -l to l).
|
||||
pr_crorb(icrorb,ik,is)%mat_rep
|
||||
& (-l:l,nbbot:nbtop)=D_orth(ind1+1:ind2,1:nbnd)
|
||||
ind1=ind2
|
||||
ENDIF ! End of the ifsplit if-then-else
|
||||
ENDIF ! End of the l=0 if-then-else
|
||||
ENDDO ! End of the icrorb loop
|
||||
C prcrorb%matrep contains now the orthonormalized projectors.
|
||||
DEALLOCATE(D_orth)
|
||||
ENDDO ! End of the loop on is
|
||||
ENDDO ! End of the loop on ik
|
||||
DEALLOCATE(Dmat)
|
||||
C
|
||||
C =============================================================================
|
||||
C Printing the projectors with k-points 1 and nk in the file fort.18 for test :
|
||||
C =============================================================================
|
||||
DO icrorb=1,ncrorb
|
||||
iatom=crorb(icrorb)%atom
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
WRITE(18,'()')
|
||||
WRITE(18,'(a)') 'apres othonormalizsation'
|
||||
WRITE(18,'(a,i4)') 'icrorb = ', icrorb
|
||||
WRITE(18,'(a,i4,a,i4)') 'isrt = ', isrt, ' l = ', l
|
||||
IF (l==0) THEN
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ELSE
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
|
||||
SUBROUTINE orthogonal_wannier_SO
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine orthonormalizes the Wannier-like functions %%
|
||||
C %% obtained with the projectors P(icrorb,ik,is), in order to %%
|
||||
C %% get a set of "true" Wannier orbitals. %%
|
||||
C %% %%
|
||||
C %% Only the correlated orbitals are treated here. %%
|
||||
C %% %%
|
||||
C %% THIS VERSION MUST BE USED WITH SPIN-ORBIT %%
|
||||
C %% (since the calculation for up/dn states is made simultaneously) %%
|
||||
C %% THIS VERSION CAN NOT BE USED WITHOUT SPIN-POLARIZED INPUT FILES.%%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE almblm_data
|
||||
USE common_data
|
||||
USE prnt
|
||||
USE projections
|
||||
USE reps
|
||||
IMPLICIT NONE
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: Dmat, D_orth, D
|
||||
INTEGER :: is, ik, l, nbnd, ndim, isrt, nbbot, nbtop
|
||||
INTEGER :: icrorb, ind1, ind2, iatom, ib
|
||||
INTEGER :: m1, m2, irep
|
||||
C
|
||||
WRITE(buf,'(a)')'Orthonormalization of the projectors...'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if there is no dn part of pr_crorb.
|
||||
C -------------------------
|
||||
C
|
||||
IF(.not.ifSP) THEN
|
||||
WRITE(buf,'(a,a,i2,a)')'The projectors on ',
|
||||
& 'the dn states are required for isrt = ',isrt,
|
||||
& ' but there is no spin-polarized input files.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C =====================================
|
||||
C Creation of the overlap matrix Dmat :
|
||||
C =====================================
|
||||
C
|
||||
C -----------------------------------------------------------
|
||||
C Determination of the dimension ndim of the overlap matrix :
|
||||
C -----------------------------------------------------------
|
||||
ndim=0
|
||||
C Loop on the correlated orbitals
|
||||
DO icrorb=1,ncrorb
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
C The case l=0 is a particular case of "non-mixing" basis.
|
||||
C --------------------------------------------------------
|
||||
IF (l==0) THEN
|
||||
C Since this subroutine is used only in the case with SO,
|
||||
C the only irep possible for s-orbital is the matrix itself.
|
||||
ndim=ndim+2
|
||||
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
||||
C ---------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
|
||||
IF(crorb(icrorb)%ifsplit) THEN
|
||||
DO irep=1,reptrans(l,isrt)%nreps
|
||||
IF(crorb(icrorb)%correp(irep)) THEN
|
||||
ndim=ndim+reptrans(l,isrt)%dreps(irep)
|
||||
ENDIF
|
||||
C The dimension of the irep is added to ndim.
|
||||
ENDDO
|
||||
ELSE
|
||||
C If no particular irep is considered (ifsplit=.FALSE.),
|
||||
C The whole matrix of the representation is considered.
|
||||
ndim=ndim+2*(2*l+1)
|
||||
ENDIF
|
||||
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
||||
C --------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
C Since this subroutine is used only in the case with SO,
|
||||
C the only irep possible for this orbital is the matrix itself.
|
||||
ndim=ndim+2*(2*l+1)
|
||||
ENDIF
|
||||
ENDDO
|
||||
C ------------------
|
||||
C Creation of Dmat :
|
||||
C ------------------
|
||||
ALLOCATE(Dmat(1:ndim,1:ndim))
|
||||
C
|
||||
C =====================================================================
|
||||
C Computation of the orthonormalized Wannier functions and projectors :
|
||||
C =====================================================================
|
||||
C The computation is performed for each k_point independently
|
||||
C because they are still good quantum numbers.
|
||||
DO ik=1,nk
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,1)%included) CYCLE
|
||||
nbnd=kp(ik,1)%nb_top-kp(ik,1)%nb_bot+1
|
||||
nbbot=kp(ik,1)%nb_bot
|
||||
nbtop=kp(ik,1)%nb_top
|
||||
C it was checked that nbtop(up)=nbtop(dn) and nbbot(up)=nbbot(dn)
|
||||
C for a computation with SO [in set_projections.f]
|
||||
ALLOCATE(D(1:ndim,1:nbnd))
|
||||
C
|
||||
C --------------------------------
|
||||
C Initialization of the D matrix :
|
||||
C --------------------------------
|
||||
C This D matrix of size ndim*nbnd is the complete "projector matrix"
|
||||
C which enables to go from the Wannier-like basis |u_orb> to the Bloch states |ik,ib>.
|
||||
ind1=0
|
||||
DO icrorb=1,ncrorb
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
C The case l=0 is a particular case of "non-mixing" basis.
|
||||
C --------------------------------------------------------
|
||||
IF (l==0) THEN
|
||||
C the only irep possible for s-orbital is the matrix itself.
|
||||
DO is=1,ns
|
||||
C D(ind1,1:nbnd)=
|
||||
C Bug correction 8.11.2012
|
||||
D(ind1+1,1:nbnd)=
|
||||
& pr_crorb(icrorb,ik,is)%mat_rep(1,nbbot:nbtop)
|
||||
ind1=ind1+1
|
||||
ENDDO
|
||||
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
||||
C ---------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C In this case, the projection matrix is stored in prcrorb%matrep with is=1.
|
||||
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
|
||||
IF (crorb(icrorb)%ifsplit) THEN
|
||||
m1=0
|
||||
DO irep=1,reptrans(l,isrt)%nreps
|
||||
IF (crorb(icrorb)%correp(irep)) THEN
|
||||
m2=m1+reptrans(l,isrt)%dreps(irep)
|
||||
ind2=ind1+reptrans(l,isrt)%dreps(irep)
|
||||
C The states range from m1+1 to m2 in the irep.
|
||||
C The corresponding projector is stored from the line (ind1+1) to the line ind2, in the D matrix.
|
||||
D(ind1+1:ind2,1:nbnd)=pr_crorb(icrorb,ik,1)%
|
||||
& mat_rep(m1+1:m2,nbbot:nbtop)
|
||||
ind1=ind2
|
||||
ENDIF
|
||||
m1=m1+reptrans(l,isrt)%dreps(irep)
|
||||
ENDDO
|
||||
ELSE
|
||||
C The projectors of the whole correlated representation is considered. (ifsplit=.FALSE.)
|
||||
ind2=ind1+2*(2*l+1)
|
||||
C The corresponding projection matrix is stored from the line (ind1+1) to the line ind2, in the D matrix.
|
||||
D(ind1+1:ind2,1:nbnd)=pr_crorb(icrorb,ik,1)%
|
||||
& mat_rep(1:2*(2*l+1),nbbot:nbtop)
|
||||
ind1=ind2
|
||||
ENDIF ! End of the ifsplit if-then-else
|
||||
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
||||
C --------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
C the only irep possible for such an orbital is the matrix itself.
|
||||
DO is=1,ns
|
||||
ind2=ind1+2*l+1
|
||||
D(ind1+1:ind2,1:nbnd)=
|
||||
& pr_crorb(icrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)
|
||||
ind1=ind2
|
||||
ENDDO
|
||||
ENDIF ! End of the ifmixing if-then-else
|
||||
ENDDO ! End of the icrorb loop
|
||||
C
|
||||
C ----------------------------------------
|
||||
C Computation of the overlap matrix Dmat :
|
||||
C ----------------------------------------
|
||||
C The overlap matrix is stored in Dmat = D*transpose(conjugate(D))
|
||||
CALL ZGEMM('N','C',ndim,ndim,nbnd,DCMPLX(1.D0,0.D0),
|
||||
& D,ndim,D,ndim,DCMPLX(0.D0,0.D0),Dmat,ndim)
|
||||
C
|
||||
C -------------------------------------------
|
||||
C Computation of the matrix S = Dmat^{-1/2} :
|
||||
C -------------------------------------------
|
||||
CALL orthogonal_h(Dmat,ndim,.TRUE.)
|
||||
C This matrix is stored in Dmat.
|
||||
C
|
||||
C -----------------------------------------------
|
||||
C Computation of the orthonormalized projectors :
|
||||
C -----------------------------------------------
|
||||
C The calculation performed is the following : P=O^(-1/2)*P_tilde.
|
||||
C Its value is stored in the matrix D_orth (of size ndim*nbnd)
|
||||
ALLOCATE(D_orth(1:ndim,1:nbnd))
|
||||
CALL ZGEMM('N','N',ndim,nbnd,ndim,DCMPLX(1.D0,0.D0),
|
||||
& Dmat,ndim,D,ndim,DCMPLX(0.D0,0.D0),D_orth,ndim)
|
||||
DEALLOCATE(D)
|
||||
C
|
||||
C --------------------------------------------------------------------------------
|
||||
C Storing the value of the orthonormalized projectors in the pr_crorb structures :
|
||||
C --------------------------------------------------------------------------------
|
||||
ind1=0
|
||||
DO icrorb=1,ncrorb
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
C The case l=0 is a particular case of "non-mixing" basis.
|
||||
C --------------------------------------------------------
|
||||
IF (l==0) THEN
|
||||
C the only irep possible for s-orbital is the matrix itself.
|
||||
DO is=1,ns
|
||||
pr_crorb(icrorb,ik,is)%mat_rep(1,nbbot:nbtop)=
|
||||
& D_orth(ind1+1,1:nbnd)
|
||||
ind1=ind1+1
|
||||
ENDDO
|
||||
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
||||
C ---------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
|
||||
IF(crorb(icrorb)%ifsplit) THEN
|
||||
m1=0
|
||||
DO irep=1,reptrans(l,isrt)%nreps
|
||||
IF (crorb(icrorb)%correp(irep)) THEN
|
||||
m2=m1+reptrans(l,isrt)%dreps(irep)
|
||||
ind2=ind1+reptrans(l,isrt)%dreps(irep)
|
||||
C In the D_orth matrix, the corresponding part of the projection matrix ranges from the line (ind1+1) to the line ind2.
|
||||
C The projector associated to the ireps is stored in the prcrorb%matrep from m1+1 to m2.
|
||||
pr_crorb(icrorb,ik,1)%mat_rep(m1+1:m2,nbbot:nbtop)
|
||||
& =D_orth(ind1+1:ind2,1:nbnd)
|
||||
ind1=ind2
|
||||
ENDIF
|
||||
m1=m1+reptrans(l,isrt)%dreps(irep)
|
||||
ENDDO
|
||||
ELSE
|
||||
C The projectors of the whole correlated representation is considered. (ifsplit=.FALSE.)
|
||||
ind2=ind1+2*(2*l+1)
|
||||
C The corresponding projection matrix is stored from the line (ind1+1) to the line ind2, in the D matrix.
|
||||
pr_crorb(icrorb,ik,1)%mat_rep(1:2*(2*l+1),nbbot:nbtop)
|
||||
& =D_orth(ind1+1:ind2,1:nbnd)
|
||||
ind1=ind2
|
||||
ENDIF ! End of the ifsplit if-then-else
|
||||
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
||||
C --------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
C the only irep possible for this orbital is the matrix itself.
|
||||
DO is=1,ns
|
||||
ind2=ind1+2*l+1
|
||||
pr_crorb(icrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)
|
||||
& =D_orth(ind1+1:ind2,1:nbnd)
|
||||
ind1=ind2
|
||||
ENDDO
|
||||
ENDIF ! End of the ifmixing if-then-else
|
||||
ENDDO ! End of the icrorb loop
|
||||
DEALLOCATE(D_orth)
|
||||
ENDDO ! End of the loop on ik
|
||||
DEALLOCATE(Dmat)
|
||||
C
|
||||
C =============================================================================
|
||||
C Printing the projectors with k-points 1 and nk in the file fort.18 for test :
|
||||
C =============================================================================
|
||||
DO icrorb=1,ncrorb
|
||||
iatom=crorb(icrorb)%atom
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
WRITE(18,'()')
|
||||
WRITE(18,'(a)') 'apres othonormalizsation'
|
||||
WRITE(18,'(a,i4)') 'icrorb = ', icrorb
|
||||
WRITE(18,'(a,i4,a,i4)') 'isrt = ', isrt, ' l = ', l
|
||||
IF (l==0) THEN
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ELSE
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
287
fortran/dmftproj/outband.f
Normal file
287
fortran/dmftproj/outband.f
Normal file
@ -0,0 +1,287 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE outband
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine creates the output file case.outband, with all %%
|
||||
C %% the informations necessary for the computation of the spectral %%
|
||||
C %% function of the system. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definition of the variables :
|
||||
C -----------------------------
|
||||
USE almblm_data
|
||||
USE bands
|
||||
USE common_data
|
||||
USE file_names
|
||||
USE prnt
|
||||
USE projections
|
||||
USE reps
|
||||
IMPLICIT NONE
|
||||
C
|
||||
INTEGER :: iorb, icrorb, irep, isrt
|
||||
INTEGER :: l, m, is, i1, i2, i
|
||||
INTEGER :: ik, il, ib, ir, n
|
||||
INTEGER :: ind1, ind2, iatom
|
||||
C
|
||||
WRITE(buf,'(a)')'Writing the file case.outband...'
|
||||
CALL printout(0)
|
||||
C
|
||||
C ======================================
|
||||
C Informations about the chosen k-path :
|
||||
C ======================================
|
||||
C
|
||||
C Number of k-points along the chosen k-path
|
||||
WRITE(ouband,'(i6)') nkband
|
||||
C Description of the number of bands in the energy window at each k_point
|
||||
C
|
||||
DO is=1,ns
|
||||
C If SO is considered, the number of up and dn bands are the same.
|
||||
IF ((ifSP.AND.ifSO).and.(is.eq.2)) cycle
|
||||
DO ik=1,nk
|
||||
WRITE(ouband,'(i6)')
|
||||
& ABS(kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1)
|
||||
ENDDO ! End of the ik loop
|
||||
ENDDO ! End of the is loop
|
||||
C for each k-point, the number of band included in the energy window is written.
|
||||
C ===========================================================
|
||||
C Description of the projectors for the correlated orbitals :
|
||||
C ===========================================================
|
||||
DO ik=1,nk
|
||||
DO icrorb=1,ncrorb
|
||||
l=crorb(icrorb)%l
|
||||
isrt=crorb(icrorb)%sort
|
||||
C
|
||||
C The case l=0 is a particular case of "non-mixing" basis.
|
||||
C --------------------------------------------------------
|
||||
IF (l==0) THEN
|
||||
C For the s-orbitals, the only irep possible is the matrix itself.
|
||||
DO is=1,ns
|
||||
WRITE(ouband,*)
|
||||
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(1,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||||
ENDDO
|
||||
DO is=1,ns
|
||||
WRITE(ouband,*)
|
||||
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(1,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||||
ENDDO
|
||||
C
|
||||
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
||||
C ---------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C In this case, the SO is necessary considered, spinor rotation matrices are used.
|
||||
IF(crorb(icrorb)%ifsplit) THEN
|
||||
C If only 1 irep is correlated
|
||||
ind1=1
|
||||
DO irep=1,reptrans(l,isrt)%nreps
|
||||
IF(crorb(icrorb)%correp(irep)) THEN
|
||||
ind2=ind1+reptrans(l,isrt)%dreps(irep)-1
|
||||
DO m=ind1,ind2
|
||||
WRITE(ouband,*)
|
||||
& REAL(pr_crorb(icrorb,ik,1)%mat_rep(m,
|
||||
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
|
||||
ENDDO
|
||||
DO m=ind1,ind2
|
||||
WRITE(ouband,*)
|
||||
& AIMAG(pr_crorb(icrorb,ik,1)%mat_rep(m,
|
||||
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
|
||||
ENDDO
|
||||
ENDIF
|
||||
ind1=ind1+reptrans(l,isrt)%dreps(irep)
|
||||
ENDDO
|
||||
ELSE
|
||||
C If no particular irep is correlated
|
||||
DO m=1,2*(2*l+1)
|
||||
WRITE(ouband,*)
|
||||
& REAL(pr_crorb(icrorb,ik,1)%mat_rep(m,
|
||||
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
|
||||
ENDDO
|
||||
DO m=1,2*(2*l+1)
|
||||
WRITE(ouband,*)
|
||||
& AIMAG(pr_crorb(icrorb,ik,1)%mat_rep(m,
|
||||
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
|
||||
ENDDO
|
||||
ENDIF
|
||||
C
|
||||
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
||||
C --------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
IF ((.not.(ifSP.AND.ifSO)).AND.crorb(icrorb)%ifsplit) THEN
|
||||
C If only 1 irep is correlated (case without SO)
|
||||
ind1=-l
|
||||
DO irep=1,reptrans(l,isrt)%nreps
|
||||
IF(crorb(icrorb)%correp(irep)) THEN
|
||||
ind2=ind1+reptrans(l,isrt)%dreps(irep)-1
|
||||
DO is=1,ns
|
||||
DO m=ind1,ind2
|
||||
WRITE(ouband,*)
|
||||
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(m,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||||
ENDDO
|
||||
ENDDO
|
||||
DO is=1,ns
|
||||
DO m=ind1,ind2
|
||||
WRITE(ouband,*)
|
||||
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(m,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDIF
|
||||
ind1=ind1+reptrans(l,isrt)%dreps(irep)
|
||||
ENDDO
|
||||
ELSE
|
||||
C If no particular irep is correlated (case with and without SO)
|
||||
DO is=1,ns
|
||||
DO m=-l,l
|
||||
WRITE(ouband,*)
|
||||
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(m,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||||
ENDDO
|
||||
ENDDO
|
||||
DO is=1,ns
|
||||
DO m=-l,l
|
||||
WRITE(ouband,*)
|
||||
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(m,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||||
ENDDO
|
||||
ENDDO
|
||||
END IF ! End of the ifsplit if-then-else
|
||||
END IF ! End of the ifmixing if-then-else
|
||||
END DO ! End of the icrorb loop
|
||||
END DO ! End of the ik loop
|
||||
C for each k-point and each correlated orbital, the corresponding projector is described by :
|
||||
C - the real part of the "correlated" submatrix
|
||||
C - the imaginary part of the "correlated" submatrix
|
||||
C
|
||||
C ======================================================
|
||||
C Description of the Hamiltonian H(k) at each k_point :
|
||||
C ======================================================
|
||||
DO is=1,ns
|
||||
DO ik=1,nk
|
||||
C If SO is considered, the numbers of up and dn bands are the same.
|
||||
IF (ifSO.and.is.eq.2) cycle
|
||||
DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top
|
||||
WRITE(ouband,*) kp(ik,is)%eband(ib)
|
||||
ENDDO
|
||||
ENDDO ! End of the ik loop
|
||||
ENDDO ! End of the is loop
|
||||
C for each spin value is and each k-point,
|
||||
C - the energies of the band with spin is at point k
|
||||
C
|
||||
C ================================================================
|
||||
C Description of the size of the basis for each included orbital :
|
||||
C ================================================================
|
||||
DO iorb=1,norb
|
||||
WRITE(ouband,'(3(i6))') norm_radf(iorb)%n
|
||||
ENDDO
|
||||
C There is not more than 1 LO for each orbital (hence n < 4 )
|
||||
C
|
||||
C ====================================
|
||||
C Description of the Theta projector :
|
||||
C ====================================
|
||||
DO iorb=1,norb
|
||||
l=orb(iorb)%l
|
||||
isrt=orb(iorb)%sort
|
||||
C
|
||||
C The case l=0 is a particular case of "non-mixing" basis.
|
||||
C --------------------------------------------------------
|
||||
IF (l==0) THEN
|
||||
DO ik=1,nk
|
||||
DO ir=1,norm_radf(iorb)%n
|
||||
DO is=1,ns
|
||||
WRITE(ouband,*)
|
||||
& REAL(pr_orb(iorb,ik,is)%matn_rep(1,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
|
||||
ENDDO
|
||||
DO is=1,ns
|
||||
WRITE(ouband,*)
|
||||
& AIMAG(pr_orb(iorb,ik,is)%matn_rep(1,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
|
||||
ENDDO
|
||||
ENDDO ! End of the ir loop
|
||||
ENDDO ! End of the ik loop
|
||||
C
|
||||
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
||||
C ---------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C In this case, the calculation is necessary spin-polarized with SO, spinor rotation matrices are used.
|
||||
DO ik=1,nk
|
||||
DO ir=1,norm_radf(iorb)%n
|
||||
DO m=1,2*(2*l+1)
|
||||
WRITE(ouband,*)
|
||||
& REAL(pr_orb(iorb,ik,1)%matn_rep(m,
|
||||
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top,ir))
|
||||
ENDDO
|
||||
DO m=1,2*(2*l+1)
|
||||
WRITE(ouband,*)
|
||||
& AIMAG(pr_orb(iorb,ik,1)%matn_rep(m,
|
||||
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top,ir))
|
||||
ENDDO
|
||||
ENDDO ! End of the ir loop
|
||||
ENDDO ! End of the ik loop
|
||||
C
|
||||
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
||||
C --------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
DO ik=1,nk
|
||||
DO ir=1,norm_radf(iorb)%n
|
||||
DO is=1,ns
|
||||
DO m=-l,l
|
||||
WRITE(ouband,*)
|
||||
& REAL(pr_orb(iorb,ik,is)%matn_rep(m,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
|
||||
ENDDO
|
||||
ENDDO ! End of the is loop
|
||||
DO is=1,ns
|
||||
DO m=-l,l
|
||||
WRITE(ouband,*)
|
||||
& AIMAG(pr_orb(iorb,ik,is)%matn_rep(m,
|
||||
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
|
||||
ENDDO
|
||||
ENDDO ! End of the is loop
|
||||
ENDDO ! End of the ir loop
|
||||
ENDDO ! End of the ik loop
|
||||
ENDIF ! End of the ifmixing if-then-else
|
||||
ENDDO ! End of the iorb loop
|
||||
C for each included orbital, for each k-point and each |phi_j> elmt,
|
||||
C the corresponding Thetaprojector is described by :
|
||||
C - the real part of the matrix
|
||||
C - the imaginary part of the matrix
|
||||
C
|
||||
C =============================
|
||||
C Description of the k-labels :
|
||||
C =============================
|
||||
DO i=1,nlab
|
||||
WRITE(ouband,'(2i6,a)') i,labels(i)%pos,labels(i)%kname
|
||||
ENDDO
|
||||
C for each label, are written :
|
||||
C - the number of the corresponding k-point in the k-path
|
||||
C - the name associated to this label
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
|
92
fortran/dmftproj/outbwin.f
Normal file
92
fortran/dmftproj/outbwin.f
Normal file
@ -0,0 +1,92 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE outbwin
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine creates the output file case.oubwin %%
|
||||
C %% which contains all the informations for the charge density %%
|
||||
C %% self-consistency. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definition of the variables :
|
||||
C ----------------------------
|
||||
USE almblm_data
|
||||
USE common_data
|
||||
USE file_names
|
||||
USE prnt
|
||||
IMPLICIT NONE
|
||||
INTEGER :: is, ik, ou
|
||||
C
|
||||
WRITE(buf,'(a)')'Writing the file case.outbwin...'
|
||||
CALL printout(0)
|
||||
C
|
||||
DO is=1,ns
|
||||
C ====================================
|
||||
C Definition of the file case.oubwin :
|
||||
C ====================================
|
||||
C If the computations is spin-polarized, the output file is divided
|
||||
C in two files : case.oubwinup and case.oubwindn
|
||||
IF(ifSP.AND.is==1) THEN
|
||||
ou=oubwinup
|
||||
ELSEIF(ifSP.AND.is==2) THEN
|
||||
ou=oubwindn
|
||||
ELSE
|
||||
ou=oubwin
|
||||
ENDIF
|
||||
C =======================================
|
||||
C General informations about the system :
|
||||
C =======================================
|
||||
C
|
||||
C Number of k-points in the I-BZ
|
||||
WRITE(ou,'(i6)') nk
|
||||
C Definition of the Spin-orbit flag ifSO
|
||||
IF(ifSO) THEN
|
||||
WRITE(ou,'(i6)') 1
|
||||
ELSE
|
||||
WRITE(ou,'(i6)') 0
|
||||
ENDIF
|
||||
C ====================================================
|
||||
C Description of the main properties of each k-point :
|
||||
C ====================================================
|
||||
DO ik=1,nk
|
||||
C Description of the if-included flag
|
||||
IF(kp(ik,is)%included) THEN
|
||||
WRITE(ou,'(i6)') 1
|
||||
ELSE
|
||||
WRITE(ou,'(i6)') 0
|
||||
ENDIF
|
||||
IF(kp(ik,is)%included) THEN
|
||||
C Range of bands included at each k-point
|
||||
WRITE(ou,'(2(i6))') kp(ik,is)%nb_bot,kp(ik,is)%nb_top
|
||||
C Weight associated to each k-point (for the simple point integration)
|
||||
WRITE(ou,*) kp(ik,is)%weight
|
||||
ENDIF
|
||||
ENDDO ! End of the ik loop
|
||||
ENDDO ! End of the is loop
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
|
1405
fortran/dmftproj/outputqmc.f
Normal file
1405
fortran/dmftproj/outputqmc.f
Normal file
File diff suppressed because it is too large
Load Diff
98
fortran/dmftproj/read_k_list.f
Normal file
98
fortran/dmftproj/read_k_list.f
Normal file
@ -0,0 +1,98 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE read_k_list
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine reads the labels of high-symmetry points %%
|
||||
C %% along the k-path chosen for plotting the k-resolved spectral %%
|
||||
C %% function. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ---------------------------
|
||||
USE bands
|
||||
USE file_names
|
||||
IMPLICIT NONE
|
||||
CHARACTER(len=100) :: buf
|
||||
INTEGER :: ilab, pos, i
|
||||
C
|
||||
C ========================================================================
|
||||
C Determination of the total number of labels and the number of k-points :
|
||||
C ========================================================================
|
||||
buf=' '
|
||||
nlab=0
|
||||
pos=0
|
||||
C nlab will count the number of labels met.
|
||||
C pos will count the number of lines
|
||||
C (which is also the number of k-points along the k-path)
|
||||
DO WHILE (buf(1:3).NE.'END')
|
||||
READ(iuklist,'(a)') buf
|
||||
pos=pos+1
|
||||
IF(buf(1:1).NE.' ') THEN
|
||||
nlab=nlab+1
|
||||
ENDIF
|
||||
ENDDO
|
||||
C pos is now the number of line of the file.
|
||||
C nlab is the number of labels, includind the label 'END'
|
||||
C
|
||||
C nkband = number of k-points along the k-path.
|
||||
nkband=pos-1
|
||||
C The label 'END' must not be taken into account
|
||||
nlab=nlab-1
|
||||
C The last line of the file case.klist_band contains "END".
|
||||
C So the while loop can have an end too.
|
||||
C
|
||||
C =============================
|
||||
C Determination of the labels :
|
||||
C =============================
|
||||
ALLOCATE(labels(nlab))
|
||||
C The file case.klist_band is read again.
|
||||
REWIND(iuklist)
|
||||
ilab=0
|
||||
DO pos=1,nkband
|
||||
READ(iuklist,'(a)') buf
|
||||
IF(buf(1:1).NE.' ') THEN
|
||||
ilab=ilab+1
|
||||
labels(ilab)%pos=pos
|
||||
C labels(ilab)%pos is the number of the corresponding k-point
|
||||
i=INDEX(buf,' ')
|
||||
C determination of the size of buf
|
||||
C (index is a function which finds the index of ' ' in buf)
|
||||
labels(ilab)%kname=' '
|
||||
labels(ilab)%kname(1:i)=buf(1:i)
|
||||
C labels(ilab)%kname is the corresponding label
|
||||
ENDIF
|
||||
ENDDO
|
||||
C ======================================
|
||||
C Printing the labels read for testing :
|
||||
C ======================================
|
||||
WRITE(*,*) nkband
|
||||
WRITE(*,*)'nlab = ', nlab
|
||||
DO i=1,nlab
|
||||
WRITE(*,*) i, labels(i)%pos, labels(i)%kname
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
105
fortran/dmftproj/readcomline.f
Normal file
105
fortran/dmftproj/readcomline.f
Normal file
@ -0,0 +1,105 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE readcomline
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine reads and process the command line options %%
|
||||
C %% (Only -so, -sp and -band are the possible ones). %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data
|
||||
USE prnt
|
||||
IMPLICIT NONE
|
||||
CHARACTER(len=100) :: buf1
|
||||
CHARACTER(len=100), DIMENSION(:), ALLOCATABLE :: flags
|
||||
INTEGER :: i1, iargc, iarg
|
||||
LOGICAL :: ifError
|
||||
C Process the command line :
|
||||
C ---------------------------
|
||||
iarg=iargc()
|
||||
ALLOCATE(flags(iarg))
|
||||
ifSP=.FALSE.
|
||||
ifSO=.FALSE.
|
||||
ifBAND=.FALSE.
|
||||
ifError=.FALSE.
|
||||
DO i1=1,iarg
|
||||
CALL getarg(i1,buf1)
|
||||
READ(buf1,*)flags(i1)
|
||||
flags(i1)=ADJUSTL(flags(i1))
|
||||
CALL makelowcase(flags(i1))
|
||||
SELECT CASE(flags(i1)(1:5))
|
||||
CASE('-sp ')
|
||||
ifSP=.TRUE.
|
||||
CASE('-so ')
|
||||
ifSO=.TRUE.
|
||||
CASE('-band')
|
||||
ifBAND=.TRUE.
|
||||
CASE DEFAULT
|
||||
ifError=.TRUE.
|
||||
EXIT
|
||||
END SELECT
|
||||
ENDDO
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if the options are not recognized.
|
||||
C -------------------------
|
||||
C
|
||||
IF (ifError) THEN
|
||||
WRITE(6,'(a,a,a)')'Command line option: ',flags(i1)(1:5),
|
||||
& ' is not recognized.'
|
||||
WRITE(6,'(a)')'END OF THE PRGM'
|
||||
STOP
|
||||
ENDIF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
DEALLOCATE(flags)
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
SUBROUTINE makelowcase(string)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine modifies the input string into low case %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
IMPLICIT NONE
|
||||
CHARACTER*26 :: upperabc
|
||||
CHARACTER*26 :: lowabc
|
||||
CHARACTER* (*) string
|
||||
INTEGER :: i,k
|
||||
PARAMETER(upperabc='ABCDEFHGIJKLMNOPQRSTUVWXYZ')
|
||||
PARAMETER(lowabc='abcdefhgijklmnopqrstuvwxyz')
|
||||
DO i=1,len(string)
|
||||
DO k=1,26
|
||||
IF(string(i:i)==upperabc(k:k)) string(i:i)=lowabc(k:k)
|
||||
ENDDO
|
||||
ENDDO
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
239
fortran/dmftproj/rot_dens.f
Normal file
239
fortran/dmftproj/rot_dens.f
Normal file
@ -0,0 +1,239 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE rotdens_mat(Dmat,orbit,norbit)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine applies to each density matrix in Dmat %%
|
||||
C %% the transformation to go from the global coordinates to the %%
|
||||
C %% local coordinates associated to the considered orbital. %%
|
||||
C %% %%
|
||||
C %% This version can be used for SO computations. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definition of the variables :
|
||||
C ----------------------------
|
||||
USE common_data
|
||||
USE projections
|
||||
USE symm
|
||||
USE reps
|
||||
IMPLICIT NONE
|
||||
INTEGER :: norbit
|
||||
TYPE(matrix), DIMENSION(nsp,norbit) :: Dmat
|
||||
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: rot_dmat
|
||||
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: tmp_mat
|
||||
COMPLEX(KIND=8):: ephase
|
||||
REAL(KIND=8):: factor
|
||||
TYPE(orbital), DIMENSION(norbit) :: orbit
|
||||
INTEGER :: iatom, isrt, iorb, is, is1, l, i, m
|
||||
C
|
||||
C
|
||||
DO iorb=1,norbit
|
||||
l=orbit(iorb)%l
|
||||
isrt=orbit(iorb)%sort
|
||||
iatom=orbit(iorb)%atom
|
||||
C
|
||||
IF(ifSP.AND.ifSO) THEN
|
||||
C In this case, the complete spinor rotation approach (matrices of size 2*(2*l+1) ) is used for rotloc.
|
||||
IF (l==0) THEN
|
||||
C ------------------------------------------------------------------------------------------------------------
|
||||
C For the s orbital, the spinor rotation matrix will be constructed directly from the Euler angles a,b and c :
|
||||
C ------------------------------------------------------------------------------------------------------------
|
||||
C Up/dn and Dn/up terms
|
||||
ALLOCATE(tmp_mat(1:2,1:2))
|
||||
ALLOCATE(rot_dmat(1:2,1:2))
|
||||
IF (rotloc(iatom)%timeinv) THEN
|
||||
factor=(rotloc(iatom)%a+rotloc(iatom)%g)/2.d0
|
||||
tmp_mat(2,1)=EXP(CMPLX(0.d0,factor))*
|
||||
& DCOS(rotloc(iatom)%b/2.d0)
|
||||
tmp_mat(1,2)=-CONJG(tmp_mat(2,1))
|
||||
C Up/dn and Dn/up terms
|
||||
factor=-(rotloc(iatom)%a-rotloc(iatom)%g)/2.d0
|
||||
tmp_mat(2,2)=-EXP(CMPLX(0.d0,factor))*
|
||||
& DSIN(rotloc(iatom)%b/2.d0)
|
||||
tmp_mat(1,1)=CONJG(tmp_mat(2,2))
|
||||
C definition of the total density matrix
|
||||
rot_dmat(1,1)=Dmat(1,iorb)%mat(1,1)
|
||||
rot_dmat(2,2)=Dmat(2,iorb)%mat(1,1)
|
||||
rot_dmat(1,2)=Dmat(3,iorb)%mat(1,1)
|
||||
rot_dmat(2,1)=Dmat(4,iorb)%mat(1,1)
|
||||
C going to the local basis
|
||||
rot_dmat(1:2,1:2)=CONJG(MATMUl(
|
||||
& rot_dmat(1:2,1:2),tmp_mat(1:2,1:2)))
|
||||
rot_dmat(1:2,1:2)=MATMUl(
|
||||
& TRANSPOSE(tmp_mat(1:2,1:2)),
|
||||
& rot_dmat(1:2,1:2))
|
||||
ELSE
|
||||
factor=(rotloc(iatom)%a+rotloc(iatom)%g)/2.d0
|
||||
tmp_mat(1,1)=EXP(CMPLX(0.d0,factor))*
|
||||
& DCOS(rotloc(iatom)%b/2.d0)
|
||||
tmp_mat(2,2)=CONJG(tmp_mat(1,1))
|
||||
C Up/dn and Dn/up terms
|
||||
factor=-(rotloc(iatom)%a-rotloc(iatom)%g)/2.d0
|
||||
tmp_mat(1,2)=EXP(CMPLX(0.d0,factor))*
|
||||
& DSIN(rotloc(iatom)%b/2.d0)
|
||||
tmp_mat(2,1)=-CONJG(tmp_mat(1,2))
|
||||
C definition of the total density matrix
|
||||
rot_dmat(1,1)=Dmat(1,iorb)%mat(1,1)
|
||||
rot_dmat(2,2)=Dmat(2,iorb)%mat(1,1)
|
||||
rot_dmat(1,2)=Dmat(3,iorb)%mat(1,1)
|
||||
rot_dmat(2,1)=Dmat(4,iorb)%mat(1,1)
|
||||
C going to the local basis
|
||||
rot_dmat(1:2,1:2)=MATMUl(
|
||||
& TRANSPOSE(CONJG(tmp_mat(1:2,1:2))),
|
||||
& rot_dmat(1:2,1:2))
|
||||
rot_dmat(1:2,1:2)=MATMUl(
|
||||
& rot_dmat(1:2,1:2),tmp_mat(1:2,1:2))
|
||||
ENDIF
|
||||
DEALLOCATE(tmp_mat)
|
||||
C storing in Dmat
|
||||
Dmat(1,iorb)%mat(1,1)=rot_dmat(1,1)
|
||||
Dmat(2,iorb)%mat(1,1)=rot_dmat(2,2)
|
||||
Dmat(3,iorb)%mat(1,1)=rot_dmat(1,2)
|
||||
Dmat(4,iorb)%mat(1,1)=rot_dmat(2,1)
|
||||
DEALLOCATE(rot_dmat)
|
||||
ELSE
|
||||
C -----------------------------------------------------------------------------------------------------
|
||||
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) :
|
||||
C -----------------------------------------------------------------------------------------------------
|
||||
IF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C We use the complete spin-space representation, so no trick on indices is necessary.
|
||||
C
|
||||
C Application of the operation inverse(Rloc).Dmat.(Rloc) :
|
||||
C -------------------------------------------------------
|
||||
IF (rotloc(iatom)%timeinv) THEN
|
||||
C In this case, the operators is antiunitary [ inverse(R)=transpose(R) ]
|
||||
Dmat(1,iorb)%mat(:,:)=CONJG(
|
||||
= MATMUL(Dmat(1,iorb)%mat(:,:),
|
||||
& rotloc(iatom)%rotrep(l)%mat(:,:) ))
|
||||
Dmat(1,iorb)%mat(:,:)=
|
||||
= MATMUL(TRANSPOSE( rotloc(iatom)%
|
||||
& rotrep(l)%mat(:,:) ),Dmat(1,iorb)%mat(:,:) )
|
||||
C Dmat_{local} = inverse(Rloc) Dmat_{global}* Rloc*
|
||||
C Dmat_{local} = transpose(Rloc) Dmat_{global}* Rloc*
|
||||
ELSE
|
||||
C In this case, all the operators are unitary [ inverse(R)=transpose(conjugate(R)) ]
|
||||
Dmat(1,iorb)%mat(:,:)=
|
||||
= MATMUL(Dmat(1,iorb)%mat(:,:),
|
||||
& rotloc(iatom)%rotrep(l)%mat(:,:) )
|
||||
Dmat(1,iorb)%mat(:,:)=
|
||||
= MATMUL(TRANSPOSE(CONJG( rotloc(iatom)%
|
||||
& rotrep(l)%mat(:,:) )),Dmat(1,iorb)%mat(:,:) )
|
||||
C Dmat_{local} = <x_local | x_global> Dmat_{global} <x_global | x_local>
|
||||
C Dmat_{local} = inverse(Rloc) Dmat_{global} Rloc
|
||||
ENDIF
|
||||
C
|
||||
ELSE
|
||||
C ----------------------------------------------------------------------------------------------
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
|
||||
C ----------------------------------------------------------------------------------------------
|
||||
C definition of the total density matrix
|
||||
ALLOCATE(rot_dmat(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
rot_dmat(1:(2*l+1),1:(2*l+1))=
|
||||
& Dmat(1,iorb)%mat(-l:l,-l:l)
|
||||
rot_dmat(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
|
||||
& Dmat(2,iorb)%mat(-l:l,-l:l)
|
||||
rot_dmat(1:(2*l+1),2*l+2:2*(2*l+1))=
|
||||
& Dmat(3,iorb)%mat(-l:l,-l:l)
|
||||
rot_dmat(2*l+2:2*(2*l+1),1:(2*l+1))=
|
||||
& Dmat(4,iorb)%mat(-l:l,-l:l)
|
||||
IF (rotloc(iatom)%timeinv) THEN
|
||||
C In this case, the operator is antiunitary [ inverse(R)=transpose(R) ]
|
||||
rot_dmat(1:2*(2*l+1),1:2*(2*l+1))=CONJG(
|
||||
= MATMUL(rot_dmat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& rotloc(iatom)%rotrep(l)
|
||||
& %mat(1:2*(2*l+1),1:2*(2*l+1)) ))
|
||||
rot_dmat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(TRANSPOSE( rotloc(iatom)%
|
||||
& rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1)) ),
|
||||
& rot_dmat(1:2*(2*l+1),1:2*(2*l+1)) )
|
||||
C Dmat_{local} = inverse(Rloc) Dmat_{global}* Rloc*
|
||||
C Dmat_{local} = transpose(Rloc) Dmat_{global}* Rloc*
|
||||
ELSE
|
||||
C In this case, all the operators are unitary [ inverse(R)=transpose(conjugate(R)) ]
|
||||
rot_dmat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(rot_dmat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& rotloc(iatom)%rotrep(l)
|
||||
& %mat(1:2*(2*l+1),1:2*(2*l+1)) )
|
||||
rot_dmat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(TRANSPOSE(CONJG( rotloc(iatom)%
|
||||
& rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1)) )),
|
||||
& rot_dmat(1:2*(2*l+1),1:2*(2*l+1)) )
|
||||
C Dmat_{local} = <x_local | x_global> Dmat_{global} <x_global | x_local>
|
||||
C Dmat_{local} = inverse(Rloc) Dmat_{global} Rloc
|
||||
ENDIF
|
||||
C storing in dmat again
|
||||
Dmat(1,iorb)%mat(-l:l,-l:l)=
|
||||
& rot_dmat(1:(2*l+1),1:(2*l+1))
|
||||
Dmat(2,iorb)%mat(-l:l,-l:l)=
|
||||
& rot_dmat(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))
|
||||
Dmat(3,iorb)%mat(-l:l,-l:l)=
|
||||
& rot_dmat(1:(2*l+1),2*l+2:2*(2*l+1))
|
||||
Dmat(4,iorb)%mat(-l:l,-l:l)=
|
||||
& rot_dmat(2*l+2:2*(2*l+1),1:(2*l+1))
|
||||
DEALLOCATE(rot_dmat)
|
||||
ENDIF ! End of the if mixing if-then-else
|
||||
ENDIF ! End of the if "l=0" if-then-else
|
||||
ELSE
|
||||
C ------------------------------------------------------------------------------
|
||||
C The s-orbitals are a particular case of a "non-mixing" basis and is invariant.
|
||||
C ------------------------------------------------------------------------------
|
||||
IF(l==0) CYCLE
|
||||
C ----------------------------------------------------------------------------------------------
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
|
||||
C ----------------------------------------------------------------------------------------------
|
||||
ALLOCATE(rot_dmat(-l:l,-l:l))
|
||||
DO is=1,nsp
|
||||
rot_dmat=0.d0
|
||||
C
|
||||
C Application of the operation inverse(Rloc).Dmat.(Rloc) :
|
||||
C -------------------------------------------------------
|
||||
C In this case, (either a paramagnetic calculation or a spin-polarized one
|
||||
C but the symmetry operation does not change the magntization direction)
|
||||
C all the operators are unitary [ inverse(R)=transpose(conjugate(R)) ]
|
||||
rot_dmat(-l:l,-l:l)=
|
||||
= MATMUL(Dmat(is,iorb)%mat(-l:l,-l:l),
|
||||
& rotloc(iatom)%rotrep(l)%mat(-l:l,-l:l) )
|
||||
rot_dmat(-l:l,-l:l)=
|
||||
= MATMUL(TRANSPOSE(CONJG( rotloc(iatom)%
|
||||
& rotrep(l)%mat(-l:l,-l:l) )),
|
||||
& rot_dmat(-l:l,-l:l) )
|
||||
C rotmat_{local} = <x_local | x_global> rotmat_{global} <x_global | x_local>
|
||||
C rotmat_{local} = inverse(Rloc) rotmat_{global} Rloc
|
||||
C
|
||||
C Storing the new value in Dmat :
|
||||
C -------------------------------
|
||||
Dmat(is,iorb)%mat(-l:l,-l:l)=rot_dmat(-l:l,-l:l)
|
||||
ENDDO
|
||||
DEALLOCATE(rot_dmat)
|
||||
C
|
||||
ENDIF ! End of the ifSO-ifSP if-then-else
|
||||
ENDDO ! End of the iorb loop
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
|
||||
|
||||
|
72
fortran/dmftproj/rot_projectmat.f
Normal file
72
fortran/dmftproj/rot_projectmat.f
Normal file
@ -0,0 +1,72 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE rot_projectmat(mat,l,bottom,top,jatom,isrt)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine makes the transformation from local to global %%
|
||||
C %% frame coordinates for the matrices mat in agreement with %%
|
||||
C %% the atom j considered. %%
|
||||
C %% %%
|
||||
C %% mat SHOULD BE IN THE COMPLEX SPHERICAL HARMONICS BASIS. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE almblm_data, ONLY : nk
|
||||
USE common_data
|
||||
USE symm
|
||||
IMPLICIT NONE
|
||||
INTEGER,INTENT(IN) :: l, bottom, top, jatom, isrt
|
||||
COMPLEX(KIND=8), DIMENSION(-l:l,bottom:top) :: mat
|
||||
COMPLEX(KIND=8), DIMENSION(-l:l,bottom:top) :: mattmp
|
||||
COMPLEX(KIND=8), DIMENSION(1:2*l+1,1:2*l+1) :: rot_dmat
|
||||
INTEGER :: is, ik, isym, lm, lms, ind1, ind2, m
|
||||
C
|
||||
DO m=-l,l
|
||||
mattmp(m,bottom:top)= mat(m,bottom:top)
|
||||
END DO
|
||||
C mat is the projector in the local frame (spherical harmonic basis).
|
||||
C
|
||||
C The subroutine lapw2 has actually made the computation in the local frame
|
||||
C BUT with considering the up and the dn elements in the global frame (no rotation in spin-space),
|
||||
C That's why we have to make the computation only in the spin-space to put entirely the matrix mat in the global frame.
|
||||
C Moreover, no time-reversal symmetry should be taken into account, since the true "rotloc" matrix is considered in lapw2 (-alm).
|
||||
C
|
||||
C The transformation is thus simply achieved by performing the multiplication by rotloc = <x_global | x_local >
|
||||
C (use of the subroutine dmat)
|
||||
rot_dmat=0.d0
|
||||
CALL dmat(l,rotloc(jatom)%a,rotloc(jatom)%b,
|
||||
& rotloc(jatom)%g,
|
||||
& REAL(rotloc(jatom)%iprop,KIND=8),rot_dmat,2*l+1)
|
||||
C Performing the rotation
|
||||
mattmp(-l:l,bottom:top)=
|
||||
= MATMUL(rot_dmat(1:2*l+1,1:2*l+1),
|
||||
& mattmp(-l:l,bottom:top))
|
||||
C The variable mattmp is then the projector in the global frame (spherical harmonic basis).
|
||||
C The resulting matrix is stored in mat.
|
||||
mat(-l:l,bottom:top)=mattmp(-l:l,bottom:top)
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
538
fortran/dmftproj/set_ang_trans.f
Normal file
538
fortran/dmftproj/set_ang_trans.f
Normal file
@ -0,0 +1,538 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE set_ang_trans
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine sets up the matrices for transformation between %%
|
||||
C %% the default complex spherical harmonics used in Wien2k and an %%
|
||||
C %% angular basis chosen, for each orbital of each atom. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data
|
||||
USE file_names
|
||||
USE reps
|
||||
USE prnt
|
||||
IMPLICIT NONE
|
||||
CHARACTER(len=150) :: fullpath
|
||||
CHARACTER(len=250) :: buf1
|
||||
CHARACTER(len=25) :: basis_file
|
||||
CHARACTER(len=1) :: repsign
|
||||
INTEGER, DIMENSION(2*(2*lmax+1)) :: degrep
|
||||
REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: rtrans,itrans
|
||||
INTEGER :: m, l, m1, irep, isrt, ind, ind1, ind2
|
||||
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: tempmat
|
||||
LOGICAL :: flag
|
||||
C
|
||||
C
|
||||
WRITE(buf,'(a)')'======================================='
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'Basis representation for each sort.'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
C =================================
|
||||
C Creation of the reptrans matrix :
|
||||
C =================================
|
||||
C
|
||||
C For the s-electrons : no transformation is necessary (it's always the scalar 1)
|
||||
ALLOCATE(reptrans(1:lmax,1:nsort))
|
||||
C Definition of the size of reptrans (size lmax*nsort)
|
||||
C Each element of this table is an "ang_bas" element, which will be defined below.
|
||||
DO isrt=1,nsort
|
||||
C -----------------------------------------------
|
||||
C Case of a representation in the complex basis :
|
||||
C -----------------------------------------------
|
||||
IF (defbasis(isrt)%typebasis(1:7)=='complex') THEN
|
||||
DO l=1,lmax
|
||||
IF (lsort(l,isrt)==0) THEN
|
||||
C The considered orbital is not included, all the fields are set up to default value.
|
||||
reptrans(l,isrt)%nreps=1
|
||||
ALLOCATE(reptrans(l,isrt)%dreps(1))
|
||||
ALLOCATE(reptrans(l,isrt)%transmat(1,1))
|
||||
reptrans(l,isrt)%transmat=0d0
|
||||
reptrans(l,isrt)%dreps(1)=0
|
||||
reptrans(l,isrt)%ifmixing=.FALSE.
|
||||
ELSE
|
||||
C The considered orbital is included.
|
||||
reptrans(l,isrt)%nreps=1
|
||||
ALLOCATE(reptrans(l,isrt)%dreps(1))
|
||||
ALLOCATE(reptrans(l,isrt)%transmat(-l:l,-l:l))
|
||||
reptrans(l,isrt)%transmat=0d0
|
||||
reptrans(l,isrt)%dreps(1)=2*l+1
|
||||
reptrans(l,isrt)%ifmixing=.FALSE.
|
||||
DO m=-l,l
|
||||
reptrans(l,isrt)%transmat(m,m)=1d0
|
||||
ENDDO
|
||||
C In this case, the transformation matrix is just the Identity (hence 1 irep).
|
||||
C Spin up and Spin down states are not mixed in the basis representation.
|
||||
ENDIF
|
||||
ENDDO
|
||||
C ---------------------------------------------
|
||||
C Case of a representation in the cubic basis :
|
||||
C ---------------------------------------------
|
||||
ELSEIF (defbasis(isrt)%typebasis(1:5)=='cubic') THEN
|
||||
DO l=1,lmax
|
||||
IF (lsort(l,isrt)==0) THEN
|
||||
C The considered orbital is not included, all the fields are set up to default value.
|
||||
reptrans(l,isrt)%nreps=1
|
||||
ALLOCATE(reptrans(l,isrt)%dreps(1))
|
||||
ALLOCATE(reptrans(l,isrt)%transmat(1,1))
|
||||
reptrans(l,isrt)%transmat=0d0
|
||||
reptrans(l,isrt)%dreps(1)=0
|
||||
reptrans(l,isrt)%ifmixing=.FALSE.
|
||||
ELSE
|
||||
C The considered orbital is included.
|
||||
C The cubic basis is described in the format transpose(P) where P is the usual matrix
|
||||
C of the eigenvectors of a matrix D ( D.P=Delta.P with Delta diagonal or P=<lm|new_i>).
|
||||
C In other words, each line of the file describes the coefficient of the "new basis vector"
|
||||
C in the basis { |l,-l,up>,...|l,l,up>,|l,-l,dn>,...|l,l,dn> }.
|
||||
C The transformation matrices are stored in the directory SRC_templates, the variable "fullpath"
|
||||
C must be updated if this prgm is copied.
|
||||
ALLOCATE(reptrans(l,isrt)%transmat(-l:l,-l:l))
|
||||
ALLOCATE(rtrans(-l:l))
|
||||
ALLOCATE(itrans(-l:l))
|
||||
C write(*,*)fullpath
|
||||
IF (l==1) CALL
|
||||
& set_harm_file(fullpath,'case.cf_p_cubic')
|
||||
C standard cubic representation of p electrons : px,py,pz
|
||||
IF (l==2) CALL
|
||||
& set_harm_file(fullpath,'case.cf_d_eg_t2g')
|
||||
C standard cubic representation of d-electrons : dz2, dx2-y2, dxy, dxz,dyz (Wien-convention for the phase)
|
||||
IF (l==3) CALL
|
||||
& set_harm_file(fullpath,'case.cf_f_mm2')
|
||||
C mm2 representation of the f electrons (standard definition with complex coefficients)
|
||||
C
|
||||
C Reading of the file
|
||||
OPEN(iumatfile,file=fullpath,status='old')
|
||||
ind=-l
|
||||
irep=0
|
||||
DO m=-l,l
|
||||
READ(iumatfile,'(a)')buf1
|
||||
READ(buf1(1:1),'(a)')repsign
|
||||
IF(repsign=='*') THEN
|
||||
C Finding the different ireps in the new basis (a "*" means the end of an irep)
|
||||
irep=irep+1
|
||||
degrep(irep)=m-ind+1
|
||||
ind=m+1
|
||||
ENDIF
|
||||
READ(buf1(2:250),*)(rtrans(m1),itrans(m1),m1=-l,l)
|
||||
C The line of the file is stored in the column of reptrans, which is temporarly "P".
|
||||
reptrans(l,isrt)%transmat(-l:l,m)=
|
||||
& CMPLX(rtrans(-l:l),itrans(-l:l))
|
||||
ENDDO
|
||||
reptrans(l,isrt)%transmat(-l:l,-l:l)=
|
||||
= TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l)))
|
||||
C reptrans%transmat = inverse(P) = <new_i|lm>, the transformation matrix from complex basis to the cubic one.
|
||||
C ( inverse(P) is the decomposition of the complex basis in the new basis...)
|
||||
reptrans(l,isrt)%nreps=irep
|
||||
ALLOCATE(reptrans(l,isrt)%dreps(irep))
|
||||
reptrans(l,isrt)%dreps(1:irep)=degrep(1:irep)
|
||||
reptrans(l,isrt)%ifmixing=.FALSE.
|
||||
C reptrans%nreps = the total number of ireps in the cubic basis
|
||||
C reptrans%dreps = table of the size of the different ireps
|
||||
C reptrans%ifmixing = .FALSE. because Spin up and Spin down states are not mixed in the basis representation.
|
||||
CLOSE(iumatfile)
|
||||
DEALLOCATE(rtrans)
|
||||
DEALLOCATE(itrans)
|
||||
ENDIF
|
||||
ENDDO
|
||||
C ---------------------------------------------------------
|
||||
C Case of a representation defined in an added input file :
|
||||
C ---------------------------------------------------------
|
||||
ELSEIF (defbasis(isrt)%typebasis(1:8)=='fromfile') THEN
|
||||
basis_file=defbasis(isrt)%sourcefile
|
||||
OPEN(iumatfile,file=basis_file,status='old')
|
||||
DO l=1,lmax
|
||||
IF (lsort(l,isrt)==0) THEN
|
||||
C The considered orbital is not included, all the fields are set up to default value.
|
||||
reptrans(l,isrt)%nreps=1
|
||||
ALLOCATE(reptrans(l,isrt)%dreps(1))
|
||||
ALLOCATE(reptrans(l,isrt)%transmat(1,1))
|
||||
reptrans(l,isrt)%transmat=0d0
|
||||
reptrans(l,isrt)%dreps(1)=0
|
||||
ELSE
|
||||
C The considered orbital is included.
|
||||
C The new basis is described in the format transpose(P) where P is the usual matrix
|
||||
C of the eigenvectors of a matrix D ( D.P=Delta.P with Delta diagonal or P=<lm|new_i>).
|
||||
C In other words, each line of the file describes the coefficient of the "new basis vector"
|
||||
C in the basis { |l,-l,up>,...|l,l,up>,|l,-l,dn>,...|l,l,dn> }.
|
||||
C The transformation matrices are stored in the directory SRC_templates, the variable "fullpath"
|
||||
C must be updated if this prgm is copied.
|
||||
ind=1
|
||||
irep=0
|
||||
ALLOCATE(tempmat(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
ALLOCATE(rtrans(1:2*(2*l+1)))
|
||||
ALLOCATE(itrans(1:2*(2*l+1)))
|
||||
C
|
||||
C Reading of the file
|
||||
DO m=1,2*(2*l+1)
|
||||
READ(iumatfile,'(a)')buf1
|
||||
READ(buf1(1:1),'(a)')repsign
|
||||
IF(repsign=='*') THEN
|
||||
C Finding the different ireps in the new basis (a "*" means the end of an irep)
|
||||
irep=irep+1
|
||||
degrep(irep)=m-ind+1
|
||||
ind=m+1
|
||||
ENDIF
|
||||
READ(buf1(2:250),*)(rtrans(m1),itrans(m1),
|
||||
& m1=1,2*(2*l+1))
|
||||
tempmat(1:2*(2*l+1),m)=
|
||||
= CMPLX(rtrans(1:2*(2*l+1)),itrans(1:2*(2*l+1)))
|
||||
C The lines of the read matrix are stored in the column of tempmat, which is then P.
|
||||
ENDDO
|
||||
C
|
||||
C Determination if the basis mixes Spin up and Spin down states
|
||||
flag=.TRUE.
|
||||
ind1=1
|
||||
ind2=1
|
||||
C The "do while" loop stops when flag=FALSE or i=2*(l+1)
|
||||
DO WHILE (flag.AND.(ind1.lt.2*(l+1)))
|
||||
flag=flag.AND.
|
||||
& (tempmat((2*l+1)+ind1,(2*l+1)+ind2)==tempmat(ind1,ind2))
|
||||
flag=flag.AND.(tempmat((2*l+1)+ind1,ind2)==0.d0)
|
||||
flag=flag.AND.(tempmat(ind1,(2*l+1)+ind2)==0.d0)
|
||||
IF (ind2==(2*l+1)) THEN
|
||||
ind1=ind1+1
|
||||
ind2=1
|
||||
ELSE
|
||||
ind2=ind2+1
|
||||
END IF
|
||||
ENDDO
|
||||
IF (flag) THEN
|
||||
C If flag=TRUE (then i=2*l+2), the tempmat matrix is block diagonal in spin with
|
||||
C the condition block up/up = block down/down.
|
||||
C The Spin up and Spin down states are not mixed in the basis representation.
|
||||
reptrans(l,isrt)%ifmixing=.FALSE.
|
||||
C reptrans%ifmixing = .FALSE. because Spin up and Spin down states are not mixed in the basis representation.
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if the basis description is not correct.
|
||||
C -------------------------
|
||||
C
|
||||
IF (SUM(degrep(1:irep/2)).ne.(2*l+1)) THEN
|
||||
WRITE(buf,'(a,a,i2,a,i2,a)')'The basis description ',
|
||||
& 'for isrt = ',isrt,' and l = ',l,' is not recognized.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'Check the structure of the file ',
|
||||
& defbasis(isrt)%sourcefile
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
END IF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
ALLOCATE(reptrans(l,isrt)%transmat(-l:l,-l:l))
|
||||
reptrans(l,isrt)%transmat(-l:l,-l:l)=
|
||||
= tempmat(1:(2*l+1),1:(2*l+1))
|
||||
reptrans(l,isrt)%transmat(-l:l,-l:l)=
|
||||
= TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l)))
|
||||
C The up/up block is enough to describe the transformation (as for cubic or complex bases)
|
||||
C reptrans%transmat = inverse(P) = <new_i|lm>
|
||||
C inverse(P) is indeed the decomposition of the complex basis in the new basis.
|
||||
reptrans(l,isrt)%nreps=irep/2
|
||||
ALLOCATE(reptrans(l,isrt)%dreps(reptrans(l,isrt)%nreps))
|
||||
reptrans(l,isrt)%dreps(1:reptrans(l,isrt)%nreps)=
|
||||
= degrep(1:reptrans(l,isrt)%nreps)
|
||||
C reptrans%nreps = the number of ireps in the desired basis for up spin
|
||||
C reptrans%dreps = table of the size of the different ireps for up spin
|
||||
ELSE
|
||||
C If flag=FALSE, either the tempmat matrix either mixes Spin up and Spin down states
|
||||
C or the representation basis for Spin up and Spin down states differ.
|
||||
C In this case, it is not possible to reduce the description only to the up/up block.
|
||||
C The whole tempmat matrix is necessary.
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if the basis description is not correct.
|
||||
C -------------------------
|
||||
C
|
||||
IF (SUM(degrep(1:irep)).ne.(2*(2*l+1))) THEN
|
||||
WRITE(buf,'(a,a,i2,a,i2,a)')'The basis description ',
|
||||
& 'for isrt = ',isrt,' and l = ',l,' is not recognized.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'Check the structure of the file ',
|
||||
& defbasis(isrt)%sourcefile
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
END IF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
reptrans(l,isrt)%ifmixing=.TRUE.
|
||||
C reptrans%ifmixing = .TRUE. because Spin up and Spin down states are mixed in the basis representation.
|
||||
ALLOCATE(reptrans(l,isrt)%transmat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1)))
|
||||
reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= tempmat(1:2*(2*l+1),1:2*(2*l+1))
|
||||
reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= TRANSPOSE(CONJG(reptrans(l,isrt)%transmat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1))))
|
||||
C In this case, reptrans%transmat is a square matrix which ranges from 1 to 2*(2*l+1).
|
||||
C reptrans%transmat = inverse(P) = <new_i|lm>
|
||||
C inverse(P) is indeed the decomposition of the complex basis in the new basis.
|
||||
reptrans(l,isrt)%nreps=irep
|
||||
ALLOCATE(reptrans(l,isrt)%dreps(irep))
|
||||
reptrans(l,isrt)%dreps(1:irep)=degrep(1:irep)
|
||||
C reptrans%nreps = the total number of ireps in the desired basis
|
||||
C reptrans%dreps = table of the size of the different ireps
|
||||
C
|
||||
C Restriction for simplicity in the following (and for physical reasons) :
|
||||
C a basis with ifmixing=.TRUE. is allowed only if the computation includes SO.
|
||||
IF (.not.ifSO) THEN
|
||||
WRITE(buf,'(a,a,i2,a,i2,a)')'The basis description ',
|
||||
& 'for isrt = ',isrt,' and l = ',l,
|
||||
& ' mixes up and down states.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'This option can not ',
|
||||
& 'be used in a computation without Spin-Orbit.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)')'Modify the structure of the file ',
|
||||
& defbasis(isrt)%sourcefile
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
END IF
|
||||
END IF
|
||||
DEALLOCATE(tempmat)
|
||||
DEALLOCATE(rtrans)
|
||||
DEALLOCATE(itrans)
|
||||
ENDIF
|
||||
ENDDO
|
||||
CLOSE(iumatfile)
|
||||
C ----------------------------------------------
|
||||
C Case of a wrong definition in the input file :
|
||||
C ----------------------------------------------
|
||||
ELSE
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if the file has not the expected structure.
|
||||
C -------------------------
|
||||
C
|
||||
WRITE(buf,'(a,i2,a)')'The basis description for isrt = ',
|
||||
& isrt,' is not recognized.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
ENDDO
|
||||
C
|
||||
C
|
||||
C ===============================================
|
||||
C Printing the basis representation information :
|
||||
C ===============================================
|
||||
C
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'-------------------------------------'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,i2,a)')'For the sort ',isrt,' :'
|
||||
CALL printout(0)
|
||||
IF (defbasis(isrt)%typebasis(1:7)=='complex') THEN
|
||||
C -----------------------------------------------
|
||||
C Case of a representation in the complex basis :
|
||||
C -----------------------------------------------
|
||||
WRITE(buf,'(a,i2,a)')'The atomic sort', isrt,
|
||||
& ' is studied in the complex basis representation.'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
ELSEIF (defbasis(isrt)%typebasis(1:5)=='cubic') THEN
|
||||
C ---------------------------------------------
|
||||
C Case of a representation in the cubic basis :
|
||||
C ---------------------------------------------
|
||||
WRITE(buf,'(a,i2,a)')'The atomic sort', isrt,
|
||||
& ' is studied in the cubic basis representation.'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
DO l=0,lmax
|
||||
C The considered orbital is not included.
|
||||
IF (lsort(l,isrt)==0) cycle
|
||||
C Case of the s-electrons
|
||||
IF (l==0) THEN
|
||||
WRITE(buf,'(a,a,(F12.6))')'The basis for s-orbital ',
|
||||
& 'is still',1.d0
|
||||
CALL printout(0)
|
||||
ELSE
|
||||
C Case of the other orbitals
|
||||
WRITE(buf,'(a,i2,a,a,a)')'The basis for orbital l=',l,
|
||||
& ' has the following properties :'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,i2)')' - number of ireps : ',
|
||||
& reptrans(l,isrt)%nreps
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,14(i2,x))')' - degree of each ireps : ',
|
||||
& reptrans(l,isrt)%dreps(1:reptrans(l,isrt)%nreps)
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a,a)')'The transformation matrix is block',
|
||||
& ' diagonal in the spin-space. The up/up and down/down',
|
||||
& ' blocks are the same and defined as :'
|
||||
CALL printout(0)
|
||||
C The transformation matrix "P = <lm|new_i>" is displayed.
|
||||
DO m=-l,l
|
||||
WRITE(buf,'(7(2F12.6),x)')
|
||||
& CONJG(reptrans(l,isrt)%transmat(-l:l,m))
|
||||
CALL printout(0)
|
||||
ENDDO
|
||||
CALL printout(0)
|
||||
ENDIF
|
||||
ENDDO
|
||||
CALL printout(0)
|
||||
ELSE
|
||||
C ---------------------------------------------------------
|
||||
C Case of a representation defined in an added input file :
|
||||
C ---------------------------------------------------------
|
||||
WRITE(buf,'(a,i2,a,a,a)')'The atomic sort', isrt,
|
||||
& ' is studied in the basis representation',
|
||||
& ' defined in the file ',
|
||||
& defbasis(isrt)%sourcefile
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
DO l=0,lmax
|
||||
C The considered orbital is not included.
|
||||
IF (lsort(l,isrt)==0) cycle
|
||||
C Case of the s-electrons
|
||||
IF (l==0) THEN
|
||||
WRITE(buf,'(a,a,(F12.6))')'The basis for s-orbital ',
|
||||
& 'is still',1.d0
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
ELSE
|
||||
C Case of the other orbitals
|
||||
WRITE(buf,'(a,i2,a)')'The basis for orbital l=',l,
|
||||
& ' has the following properties :'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,i2)')' - number of ireps : ',
|
||||
& reptrans(l,isrt)%nreps
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,14(i2,x))')' - degree of each ireps : ',
|
||||
& reptrans(l,isrt)%dreps(1:reptrans(l,isrt)%nreps)
|
||||
CALL printout(0)
|
||||
IF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C If the whole matrix description is necessary.
|
||||
WRITE(buf,'(a,a)')'The transformation matrix mixes',
|
||||
& ' up and down states in the spin-space'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)') ' and is defined as : ',
|
||||
& '[ block 1 | block 2 ] with'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a,a)') ' ',
|
||||
& '[ block 3 | block 4 ]'
|
||||
CALL printout(0)
|
||||
C The transformation matrix "P = <lm|new_i>" is displayed.
|
||||
WRITE(buf,'(a,i2,a)') 'For the block 1 :'
|
||||
CALL printout(0)
|
||||
DO m=1,2*l+1
|
||||
WRITE(buf,'(7(2F12.6),x)')
|
||||
& CONJG(reptrans(l,isrt)%transmat(1:(2*l+1),m))
|
||||
CALL printout(0)
|
||||
ENDDO
|
||||
WRITE(buf,'(a,i2,a)') 'For the block 2 :'
|
||||
CALL printout(0)
|
||||
DO m=1,2*l+1
|
||||
WRITE(buf,'(7(2F12.6),x)')
|
||||
& CONJG(reptrans(l,isrt)%transmat(2*l+2:2*(2*l+1),m))
|
||||
CALL printout(0)
|
||||
ENDDO
|
||||
WRITE(buf,'(a,i2,a)') 'For the block 3 :'
|
||||
CALL printout(0)
|
||||
DO m=2*l+2,2*(2*l+1)
|
||||
WRITE(buf,'(7(2F12.6),x)')
|
||||
& CONJG(reptrans(l,isrt)%transmat(1:(2*l+1),m))
|
||||
CALL printout(0)
|
||||
ENDDO
|
||||
WRITE(buf,'(a,i2,a)') 'For the block 4 :'
|
||||
CALL printout(0)
|
||||
DO m=2*l+2,2*(2*l+1)
|
||||
WRITE(buf,'(7(2F12.6),x)')
|
||||
& CONJG(reptrans(l,isrt)%
|
||||
& transmat(2*l+2:2*(2*l+1),m))
|
||||
CALL printout(0)
|
||||
ENDDO
|
||||
ELSE
|
||||
C If the matrix description can be reduced to its up/up block.
|
||||
WRITE(buf,'(a,a,a)')'The transformation matrix is block',
|
||||
& ' diagonal in the spin-space. The up/up and down/down',
|
||||
& ' blocks are the same and defined as :'
|
||||
CALL printout(0)
|
||||
C The transformation matrix "P = <lm|new_i>" is displayed.
|
||||
DO m=-l,l
|
||||
WRITE(buf,'(7(2F12.6),x)')
|
||||
& CONJG(reptrans(l,isrt)%transmat(-l:l,m))
|
||||
CALL printout(0)
|
||||
ENDDO
|
||||
ENDIF ! End of the ifmixing if-then-else
|
||||
CALL printout(0)
|
||||
ENDIF ! End of the l if-then-else
|
||||
ENDDO ! End of the l loop
|
||||
CALL printout(0)
|
||||
ENDIF ! End of the basis description if-then-else
|
||||
ENDDO ! End of the isrt loop
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
SUBROUTINE set_harm_file(fullpath,filename)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine sets the fullpath variable %%
|
||||
C %% Be careful, wien_path is defined in modules.f !!! %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data, ONLY : wien_path
|
||||
USE prnt
|
||||
IMPLICIT NONE
|
||||
CHARACTER(len=*) :: filename, fullpath
|
||||
CHARACTER(len=*), PARAMETER :: dir='SRC_templates'
|
||||
INTEGER :: i1, i2, i, i3
|
||||
C
|
||||
i1=LEN_TRIM(wien_path)
|
||||
i2=LEN(dir)
|
||||
i3=LEN(filename)
|
||||
i=i1+i2+i3+2
|
||||
IF(LEN(fullpath) < i) THEN
|
||||
WRITE(buf,'(a)')
|
||||
& 'Characters required for the basis transformation ',
|
||||
& ' filename is too long.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
STOP
|
||||
ENDIF
|
||||
fullpath=' '
|
||||
fullpath(1:i)=wien_path(1:i1)//'/'//dir//'/'//filename(1:i3)
|
||||
END SUBROUTINE set_harm_file
|
||||
|
||||
|
||||
|
724
fortran/dmftproj/set_projections.f
Normal file
724
fortran/dmftproj/set_projections.f
Normal file
@ -0,0 +1,724 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE set_projections(e1,e2)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine sets up the projection matrices in the energy %%
|
||||
C %% window [e1,e2].Two types of projection can be defined : %%
|
||||
C %% - The projectors <u_orb|ik,ib,is> for the correlated orbital %%
|
||||
C %% only. (orb = iatom,is,m) %%
|
||||
C %% (They are stored in the table pr_crorb) %%
|
||||
C %% - The Theta projectors <theta_orb|k,ib> for all the orbitals %%
|
||||
C %% (They are stored in the table pr_orb) %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
C
|
||||
USE almblm_data
|
||||
USE common_data
|
||||
USE prnt
|
||||
USE projections
|
||||
USE reps
|
||||
USE symm
|
||||
IMPLICIT NONE
|
||||
C
|
||||
REAL(KIND=8) :: e1, e2
|
||||
INTEGER :: iorb, icrorb, ik, is, ib, m, l, lm, nbbot, nbtop
|
||||
INTEGER :: isrt, n, ilo, iatom, i, imu, jatom, jorb,isym, jcrorb
|
||||
LOGICAL :: included,param
|
||||
COMPLEX(KIND=8), DIMENSION(:), ALLOCATABLE :: coeff
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_mat
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_matbis
|
||||
COMPLEX(KIND=8), DIMENSION(:,:,:), ALLOCATABLE :: tmp_matn
|
||||
C
|
||||
C
|
||||
C
|
||||
WRITE(buf,'(a)')'Creation of the projectors...'
|
||||
CALL printout(0)
|
||||
C
|
||||
C
|
||||
C ======================================================================
|
||||
C Selection of the bands which lie in the chosen energy window [e1;e2] :
|
||||
C ======================================================================
|
||||
C
|
||||
kp(:,:)%included=.FALSE.
|
||||
C the field kp%included = boolean which is .TRUE. when there is at least one band
|
||||
C at this k-point whose energy eignevalue is in the energy window.
|
||||
DO is=1,ns
|
||||
DO ik=1,nk
|
||||
included=.FALSE.
|
||||
DO ib=kp(ik,is)%nbmin,kp(ik,is)%nbmax
|
||||
IF(.NOT.included.AND.kp(ik,is)%eband(ib) > e1.AND.
|
||||
& kp(ik,is)%eband(ib).LE.e2) THEN
|
||||
C If the energy eigenvalue E of the band ib at the k-point ik is such that e1 < E =< e2,
|
||||
C then all the band with ib1>ib must be "included" in the computation and kp%nb_bot is initialized at the value ib.
|
||||
included=.TRUE.
|
||||
kp(ik,is)%nb_bot=ib
|
||||
ELSEIF(included.AND.kp(ik,is)%eband(ib) > e2) THEN
|
||||
C If the energy eigenvalue E of the current band ib at the k-point ik is such that E > e2 and all the previous
|
||||
C band are "included", then the field kp%included = .TRUE. and kp%nb_top = ib-1 (the index of the previous band)
|
||||
kp(ik,is)%nb_top=ib-1
|
||||
kp(ik,is)%included=.TRUE.
|
||||
EXIT
|
||||
C The loop on the band ib is stopped, since all the bands after ib have an energy > that of ib.
|
||||
ELSEIF(ib==kp(ik,is)%nbmax.AND.kp(ik,is)%eband(ib)
|
||||
& > e1.AND.kp(ik,is)%eband(ib).LE.e2) THEN
|
||||
C If the energy eigenvalue E of the last band ib=kp%nbmax at the k-point ik is such that e1 < E =< e2 and all the
|
||||
C previous bands are "included", then the band ib must be "included" and kp%nb_bot is initialized at the value kp%nbmax.
|
||||
kp(ik,is)%nb_top=ib
|
||||
kp(ik,is)%included=.TRUE.
|
||||
ENDIF
|
||||
C If the eigenvalues of the bands at the k-point ik are < e1 and included=.FALSE.
|
||||
C of if the eigenvalues of the bands at the k-point ik are in the energy window [e1,e2] and included=.TRUE.,
|
||||
C nothing is done...
|
||||
ENDDO ! End of the ib loop
|
||||
C If all the eigenvalues of the bands at the k-point ik are not in the window,
|
||||
C then kp%included remains at the value .FALSE. and the field kp%nb_top and kp%nb_bot are set to 0.
|
||||
IF (.not.kp(ik,is)%included) THEN
|
||||
kp(ik,is)%nb_bot=0
|
||||
kp(ik,is)%nb_top=0
|
||||
ENDIF
|
||||
ENDDO ! End of the ik loop
|
||||
ENDDO ! End of the is loop
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Checking of the input files if spin-polarized inputs and SO is taken into account:
|
||||
C There should not be any difference between up and dn limits for each k-point.
|
||||
C Printing a Warning if this is not the case.
|
||||
C -------------------
|
||||
C
|
||||
IF (ifSP.AND.ifSO) THEN
|
||||
param=.TRUE.
|
||||
DO ik=1,nk
|
||||
param=param.AND.(kp(ik,1)%included.eqv.kp(ik,2)%included)
|
||||
param=param.AND.(kp(ik,1)%nb_bot==kp(ik,2)%nb_bot)
|
||||
param=param.AND.(kp(ik,1)%nb_top==kp(ik,2)%nb_top)
|
||||
IF (.not.param) EXIT
|
||||
C For a valid compoutation, the same k-points must be included for up and dn states,
|
||||
C and the upper and lower limits must be the same in both case.
|
||||
ENDDO
|
||||
IF (.not.param) THEN
|
||||
WRITE(buf,'(a,a)')'A Spin-orbit computation for this',
|
||||
& ' compound is not possible with these input files.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
ENDIF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C
|
||||
C ==================================================================
|
||||
C Orthonormalization of the radial wave functions for each orbital :
|
||||
C ==================================================================
|
||||
C
|
||||
C This step is essential for setting the Theta projectors.
|
||||
IF(.NOT.ALLOCATED(norm_radf)) THEN
|
||||
ALLOCATE(norm_radf(norb))
|
||||
C norm_radf is a table of "ortfunc" elements, its size ranges from 1 to norb.
|
||||
DO iorb=1,norb
|
||||
l=orb(iorb)%l
|
||||
isrt=orb(iorb)%sort
|
||||
norm_radf(iorb)%n=nLO(l,isrt)+2
|
||||
n=norm_radf(iorb)%n
|
||||
ALLOCATE(norm_radf(iorb)%s12(n,n,ns))
|
||||
C norm_radf%n = size of the matrix s12
|
||||
C norm_radf%s12 = matrix of size n*n (one for spin up, one for spin down, if necessary)
|
||||
DO is=1,ns
|
||||
norm_radf(iorb)%s12(1:n,1:n,is)=0d0
|
||||
norm_radf(iorb)%s12(1,1,is)=1d0
|
||||
norm_radf(iorb)%s12(2,2,is)=u_dot_norm(l,isrt,is)
|
||||
C Initialization of the matrix norm_radf%s12 for each orbital (l,isrt).
|
||||
C We remind tha it is assumed that nLO has the value 0 or 1 only !!
|
||||
DO ilo=1,nLO(l,isrt)
|
||||
norm_radf(iorb)%s12(2+ilo,2+ilo,is)=1d0
|
||||
norm_radf(iorb)%s12(2+ilo,1,is)=
|
||||
= ovl_LO_u(ilo,l,isrt,is)
|
||||
norm_radf(iorb)%s12(1,2+ilo,is)=
|
||||
= ovl_LO_u(ilo,l,isrt,is)
|
||||
norm_radf(iorb)%s12(2+ilo,2,is)=
|
||||
= ovl_LO_udot(ilo,l,isrt,is)
|
||||
norm_radf(iorb)%s12(2,2+ilo,is)=
|
||||
= ovl_LO_udot(ilo,l,isrt,is)
|
||||
ENDDO
|
||||
C Computation of the square root of norm_radf:
|
||||
CALL orthogonal_r(norm_radf(iorb)%
|
||||
& s12(1:n,1:n,is),n,.FALSE.)
|
||||
C the field norm_radf%s12 is finally the C matrix described in the tutorial (or in equation (3.63) in my thesis)
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDIF
|
||||
C
|
||||
C =====================================
|
||||
C Creation of the projection matrices :
|
||||
C =====================================
|
||||
C
|
||||
IF(.NOT.ALLOCATED(pr_orb)) THEN
|
||||
ALLOCATE(pr_crorb(ncrorb,nk,ns))
|
||||
ALLOCATE(pr_orb(norb,nk,ns))
|
||||
ENDIF
|
||||
C pr_crorb = table of "proj_mat" elements for the correlated orbitals (size from 1 to ncrorb, from 1 to nk, from 1 to ns)
|
||||
C pr_orb = table of "proj_mat_n" elements for all the orbitals (size from 1 to norb, from 1 to nk, from 1 to ns)
|
||||
DO is=1,ns
|
||||
DO ik=1,nk
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,is)%included) CYCLE
|
||||
C ------------------------------------------------
|
||||
C Wannier Projectors for the correlated orbitals :
|
||||
C ------------------------------------------------
|
||||
DO icrorb=1,ncrorb
|
||||
l=crorb(icrorb)%l
|
||||
iatom=crorb(icrorb)%atom
|
||||
isrt=crorb(icrorb)%sort
|
||||
C Case of l=0 :
|
||||
C -------------
|
||||
IF (l==0) THEN
|
||||
IF(ALLOCATED(pr_crorb(icrorb,ik,is)%mat)) THEN
|
||||
DEALLOCATE(pr_crorb(icrorb,ik,is)%mat)
|
||||
ENDIF
|
||||
ALLOCATE(pr_crorb(icrorb,ik,is)%
|
||||
% mat(1,kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||||
C pr_crorb%mat = the projection matrix with 1 line and (nb_top-nb_bot) columns
|
||||
DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top
|
||||
pr_crorb(icrorb,ik,is)%mat(1,ib)=
|
||||
= kp(ik,is)%Alm(1,iatom,ib)
|
||||
DO ilo=1,nLO(l,isrt)
|
||||
pr_crorb(icrorb,ik,is)%mat(1,ib)=
|
||||
= pr_crorb(icrorb,ik,is)%mat(1,ib)+
|
||||
+ kp(ik,is)%Clm(ilo,1,iatom,ib)*
|
||||
* ovl_LO_u(ilo,l,isrt,is)
|
||||
ENDDO ! End of the ilo loop
|
||||
ENDDO ! End of the ib loop
|
||||
C prcrorb(icrorb,ik,is)%mat(1,ib)= <ul1(icrorb,1,is)|psi(is,ik,ib)> = Alm+Clm*ovl_LO_u
|
||||
C
|
||||
C Case of any other l :
|
||||
C ---------------------
|
||||
ELSE
|
||||
lm=l*l
|
||||
C Since the correlated orbital is the l orbital, the elements range from l*l+1 to (l+1)^2
|
||||
C the sum from 0 to (l-1) of m (from -l to l) is l^2.
|
||||
IF(ALLOCATED(pr_crorb(icrorb,ik,is)%mat)) THEN
|
||||
DEALLOCATE(pr_crorb(icrorb,ik,is)%mat)
|
||||
ENDIF
|
||||
ALLOCATE(pr_crorb(icrorb,ik,is)%
|
||||
% mat(-l:l,kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||||
C pr_crorb%mat = the projection matrix with (2*l+1) lines and (nb_top-nb_bot) columns
|
||||
DO m=-l,l
|
||||
lm=lm+1
|
||||
DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top
|
||||
pr_crorb(icrorb,ik,is)%mat(m,ib)=
|
||||
= kp(ik,is)%Alm(lm,iatom,ib)
|
||||
DO ilo=1,nLO(l,isrt)
|
||||
pr_crorb(icrorb,ik,is)%mat(m,ib)=
|
||||
= pr_crorb(icrorb,ik,is)%mat(m,ib)+
|
||||
+ kp(ik,is)%Clm(ilo,lm,iatom,ib)*
|
||||
* ovl_LO_u(ilo,l,isrt,is)
|
||||
ENDDO ! End of the ilo loop
|
||||
ENDDO ! End of the ib loop
|
||||
ENDDO ! End of the m loop
|
||||
C prcrorb(icrorb,ik,is)%mat(m,ib)= <ul1(icrorb,m,is)|psi(is,ik,ib)> = Alm+Clm*ovl_LO_u
|
||||
ENDIF ! End of the if l=0 if-then-else
|
||||
ENDDO ! End of the icrorb loop
|
||||
C
|
||||
C ---------------------------------------
|
||||
C Theta Projectors for all the orbitals :
|
||||
C ---------------------------------------
|
||||
DO iorb=1,norb
|
||||
l=orb(iorb)%l
|
||||
n=norm_radf(iorb)%n
|
||||
iatom=orb(iorb)%atom
|
||||
C Case of l=0 :
|
||||
C -------------
|
||||
IF (l==0) THEN
|
||||
IF(ALLOCATED(pr_orb(iorb,ik,is)%matn)) THEN
|
||||
DEALLOCATE(pr_orb(iorb,ik,is)%matn)
|
||||
ENDIF
|
||||
ALLOCATE(pr_orb(iorb,ik,is)%
|
||||
% matn(1,kp(ik,is)%nb_bot:kp(ik,is)%nb_top,n))
|
||||
ALLOCATE(coeff(1:n))
|
||||
C pr_orb%matn = the projection matrix with 1 line and (nb_top-nb_bot) columns for the n (size of s12) coefficients
|
||||
C coeff = table of size n which will contain the decomposition of the Bloch state |psi_ik,ib,is>
|
||||
C as in equation 22 of the tutorial (Alm, Blm, and Clm )
|
||||
DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top
|
||||
coeff(1)=kp(ik,is)%Alm(1,iatom,ib)
|
||||
coeff(2)=kp(ik,is)%Blm(1,iatom,ib)
|
||||
coeff(3:n)=kp(ik,is)%Clm(1:n-2,1,iatom,ib)
|
||||
coeff=MATMUL(coeff,norm_radf(iorb)%s12(1:n,1:n,is))
|
||||
C coeff = coefficients c_(j,lm) of the decomposition of the state |psi> in the orthogonalized basis |phi_j>
|
||||
C as defined in the tutorial (equation 25)
|
||||
pr_orb(iorb,ik,is)%matn(1,ib,1:n)=coeff(1:n)
|
||||
ENDDO
|
||||
DEALLOCATE(coeff)
|
||||
C pr_orb(iorb,ik,is)%matn(m,ib,1:n) is then the Theta projector as defined in equation 26 of the tutorial.
|
||||
C
|
||||
C Case of any other l :
|
||||
C ---------------------
|
||||
ELSE
|
||||
lm=l*l
|
||||
C As the orbital is the l orbital, the elements range from l*l+1 to (l+1)^2
|
||||
C the sum from 0 to (l-1) of m (from -l to l) is l^2.
|
||||
IF(ALLOCATED(pr_orb(iorb,ik,is)%matn)) THEN
|
||||
DEALLOCATE(pr_orb(iorb,ik,is)%matn)
|
||||
ENDIF
|
||||
ALLOCATE(pr_orb(iorb,ik,is)%
|
||||
% matn(-l:l,kp(ik,is)%nb_bot:kp(ik,is)%nb_top,n))
|
||||
ALLOCATE(coeff(1:n))
|
||||
C pr_orb%matn = the projection matrix with (2*l+1) lines and (nb_top-nb_bot) columns for the n (size of s12) coefficients
|
||||
C coeff = table of size n which will contain the decomposition of the Bloch state |psi_ik,ib,is>
|
||||
C as in equation 22 of the tutorial (Alm, Blm, and Clm )
|
||||
DO m=-l,l
|
||||
lm=lm+1
|
||||
DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top
|
||||
coeff(1)=kp(ik,is)%Alm(lm,iatom,ib)
|
||||
coeff(2)=kp(ik,is)%Blm(lm,iatom,ib)
|
||||
coeff(3:n)=kp(ik,is)%Clm(1:n-2,lm,iatom,ib)
|
||||
coeff=MATMUL(coeff,
|
||||
& norm_radf(iorb)%s12(1:n,1:n,is))
|
||||
C coeff = coefficients c_(j,lm) of the decomposition of the state |psi> in the orthogonalized basis |phi_j>
|
||||
C as defined in the tutorial (equation 25)
|
||||
pr_orb(iorb,ik,is)%matn(m,ib,1:n)=coeff(1:n)
|
||||
ENDDO
|
||||
ENDDO ! End of the m loop
|
||||
DEALLOCATE(coeff)
|
||||
C pr_orb(iorb,ik,is)%matn(m,ib,1:n) is then the Theta projector as defined in equation 26 of the tutorial.
|
||||
ENDIF ! End of the if l=0 if-then-else
|
||||
ENDDO ! End of the iorb loop
|
||||
C
|
||||
ENDDO ! End of the loop on ik
|
||||
ENDDO ! End of the loop on is
|
||||
C
|
||||
C
|
||||
C ==========================================================================
|
||||
C Multiplication of the projection matrices by the local rotation matrices :
|
||||
C ==========================================================================
|
||||
C
|
||||
C ------------------------------------------------
|
||||
C Wannier Projectors for the correlated orbitals :
|
||||
C ------------------------------------------------
|
||||
C
|
||||
DO jcrorb=1,ncrorb
|
||||
jatom=crorb(jcrorb)%atom
|
||||
isrt=crorb(jcrorb)%sort
|
||||
l=crorb(jcrorb)%l
|
||||
C
|
||||
C The case l=0 is a particular case of "non-mixing" basis.
|
||||
C --------------------------------------------------------
|
||||
IF (l==0) THEN
|
||||
C For the s orbital, no multiplication is needed, since the matrix representation of any rotation
|
||||
C (and thus Rloc) is always 1.
|
||||
DO ik=1,nk
|
||||
DO is=1,ns
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,is)%included) CYCLE
|
||||
nbtop=kp(ik,is)%nb_top
|
||||
nbbot=kp(ik,is)%nb_bot
|
||||
IF(ALLOCATED(pr_crorb(jcrorb,ik,is)%mat_rep)) THEN
|
||||
DEALLOCATE(pr_crorb(jcrorb,ik,is)%mat_rep)
|
||||
ENDIF
|
||||
ALLOCATE(pr_crorb(jcrorb,ik,is)
|
||||
& %mat_rep(1,nbbot:nbtop))
|
||||
pr_crorb(jcrorb,ik,is)%mat_rep(1,nbbot:nbtop)=
|
||||
= pr_crorb(jcrorb,ik,is)%mat(1,nbbot:nbtop)
|
||||
C As a result, prcrorb%matrep = prcrorb%mat
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
||||
C ---------------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C If this option is used, then ifSO=.TRUE. (because of the restriction in set_ang_trans.f)
|
||||
C Moreover ifSP=.TRUE. (since ifSO => ifSP in this version)
|
||||
C As a result, we know that nb_bot(up)=nb_bot(dn) and nb_top(up)=nb_top(dn)
|
||||
DO ik=1,nk
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,1)%included) CYCLE
|
||||
nbbot=kp(ik,1)%nb_bot
|
||||
nbtop=kp(ik,1)%nb_top
|
||||
C In this case, the projection matrix will be stored in prcrorb%matrep with is=1.
|
||||
IF(ALLOCATED(pr_crorb(jcrorb,ik,1)%mat_rep)) THEN
|
||||
DEALLOCATE(pr_crorb(jcrorb,ik,1)%mat_rep)
|
||||
ENDIF
|
||||
ALLOCATE(pr_crorb(jcrorb,ik,1)%
|
||||
% mat_rep(1:2*(2*l+1),nbbot:nbtop))
|
||||
C The element prcrorb%matrep for is=2 is set to 0, since all the matrix will be stored in the matrix matrep for is=1
|
||||
IF(.not.ALLOCATED(pr_crorb(jcrorb,ik,2)%mat_rep)) THEN
|
||||
ALLOCATE(pr_crorb(jcrorb,ik,2)%mat_rep(1,1))
|
||||
pr_crorb(jcrorb,ik,2)%mat_rep(1,1)=0.d0
|
||||
ENDIF
|
||||
C Creation of a matrix tmp_mat which "concatenates" up and dn parts of pr_crorb.
|
||||
ALLOCATE(tmp_mat(1:2*(2*l+1),nbbot:nbtop))
|
||||
tmp_mat(1:(2*l+1),nbbot:nbtop)=
|
||||
= pr_crorb(jcrorb,ik,1)%mat(-l:l,nbbot:nbtop)
|
||||
C The first (2l+1) lines are the spin-up part of the projection matrix prcrorb%mat.
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if there is no dn part of pr_orb.
|
||||
C -------------------------
|
||||
C
|
||||
IF(.not.ifSP) THEN
|
||||
WRITE(buf,'(a,a,i2,a)')'The projectors on ',
|
||||
& 'the dn states are required for isrt = ',isrt,
|
||||
& ' but there is no spin-polarized input files.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C The last (2l+1) lines are the spin-dn part of the projection matrix prcrorb%mat.
|
||||
tmp_mat((2*l+2):2*(2*l+1),nbbot:nbtop)=
|
||||
= pr_crorb(jcrorb,ik,2)%mat(-l:l,nbbot:nbtop)
|
||||
C
|
||||
C Multiplication by the local rotation matrix ; Up and dn parts are treated independently
|
||||
C since in lapw2 (-alm) the coefficients Alm, Blm and Clm were calculated in the local frame
|
||||
C but without taking into account the spinor-rotation matrix.
|
||||
ALLOCATE(tmp_matbis(1:(2*l+1),nbbot:nbtop))
|
||||
tmp_matbis(1:(2*l+1),nbbot:nbtop)=
|
||||
= tmp_mat(1:(2*l+1),nbbot:nbtop)
|
||||
CALL rot_projectmat(tmp_matbis,
|
||||
& l,nbbot,nbtop,jatom,isrt)
|
||||
tmp_mat(1:(2*l+1),nbbot:nbtop)=
|
||||
= tmp_matbis(1:(2*l+1),nbbot:nbtop)
|
||||
tmp_matbis(1:(2*l+1),nbbot:nbtop)=
|
||||
= tmp_mat(2*l+2:2*(2*l+1),nbbot:nbtop)
|
||||
CALL rot_projectmat(tmp_matbis,
|
||||
& l,nbbot,nbtop,jatom,isrt)
|
||||
tmp_mat(2*l+2:2*(2*l+1),nbbot:nbtop)=
|
||||
= tmp_matbis(1:(2*l+1),nbbot:nbtop)
|
||||
DEALLOCATE(tmp_matbis)
|
||||
C
|
||||
C Putting pr_crorb in the desired basis associated to (l,isrt)
|
||||
C
|
||||
pr_crorb(jcrorb,ik,1)%mat_rep(1:2*(2*l+1),nbbot:nbtop)=
|
||||
= MATMUL(reptrans(l,isrt)%transmat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& tmp_mat(1:2*(2*l+1),nbbot:nbtop))
|
||||
C pr_crorb%mat_rep = proj_{new_i} = reptrans*proj_{lm} = <new_i|lm>*proj_{lm}
|
||||
DEALLOCATE(tmp_mat)
|
||||
ENDDO ! End of the ik loop
|
||||
C
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
||||
C --------------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
DO ik=1,nk
|
||||
DO is=1,ns
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,is)%included) CYCLE
|
||||
C In this case, nb_top(up) and nb_bot(up) can differ from nb_top(dn) and nb_bot(dn)
|
||||
nbbot=kp(ik,is)%nb_bot
|
||||
nbtop=kp(ik,is)%nb_top
|
||||
IF(ALLOCATED(pr_crorb(jcrorb,ik,is)%mat_rep)) THEN
|
||||
DEALLOCATE(pr_crorb(jcrorb,ik,is)%mat_rep)
|
||||
ENDIF
|
||||
ALLOCATE(pr_crorb(jcrorb,ik,is)
|
||||
& %mat_rep(-l:l,nbbot:nbtop))
|
||||
pr_crorb(jcrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)=
|
||||
= pr_crorb(jcrorb,ik,is)%mat(-l:l,nbbot:nbtop)
|
||||
C
|
||||
C Multiplication by the local rotation matrix
|
||||
C since in lapw2 (-alm) the coefficients Alm, Blm and Clm were calculated in the local frame
|
||||
CALL rot_projectmat(pr_crorb(jcrorb,ik,is)
|
||||
& %mat_rep(-l:l,nbbot:nbtop),l,nbbot,nbtop,jatom,isrt)
|
||||
C
|
||||
C Putting pr_crorb in the desired basis associated to (l,isrt)
|
||||
pr_crorb(jcrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)=
|
||||
= MATMUL(reptrans(l,isrt)%transmat(-l:l,-l:l),
|
||||
& pr_crorb(jcrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop))
|
||||
C pr_crorb%mat_rep = proj_{new_i} = reptrans*proj_{lm} = <new_i|lm>*proj_{lm}
|
||||
ENDDO ! End of the is loop
|
||||
ENDDO ! End of the ik loop
|
||||
ENDIF ! End of the if mixing if-then-else
|
||||
ENDDO ! End of the jcrorb loop
|
||||
C
|
||||
C ---------------------------------------
|
||||
C Theta Projectors for all the orbitals :
|
||||
C ---------------------------------------
|
||||
C
|
||||
DO jorb=1,norb
|
||||
jatom=orb(jorb)%atom
|
||||
isrt=orb(jorb)%sort
|
||||
n=norm_radf(jorb)%n
|
||||
l=orb(jorb)%l
|
||||
C
|
||||
C The case l=0 is a particular case of "non-mixing" basis.
|
||||
C --------------------------------------------------------
|
||||
IF (l==0) THEN
|
||||
C For the s orbital, no multiplication is needed, since the matrix representation of any rotation
|
||||
C (and therefore Rloc) is always 1.
|
||||
DO ik=1,nk
|
||||
DO is=1,ns
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,is)%included) CYCLE
|
||||
nbtop=kp(ik,is)%nb_top
|
||||
nbbot=kp(ik,is)%nb_bot
|
||||
IF(ALLOCATED(pr_orb(jorb,ik,is)%matn_rep)) THEN
|
||||
DEALLOCATE(pr_orb(jorb,ik,is)%matn_rep)
|
||||
ENDIF
|
||||
ALLOCATE(pr_orb(jorb,ik,is)%matn_rep
|
||||
& (1,nbbot:nbtop,1:n))
|
||||
pr_orb(jorb,ik,is)%matn_rep(1,nbbot:nbtop,1:n)=
|
||||
= pr_orb(jorb,ik,is)%matn(1,nbbot:nbtop,1:n)
|
||||
C As a result, prorb%matnrep = prorb%matn
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
||||
C ---------------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C If this option is used, then ifSO=.TRUE. (restriction in set_ang_trans.f)
|
||||
C Moreover ifSP=.TRUE. (since ifSO => ifSP)
|
||||
C As a result, we know that nb_bot(up)=nb_bot(dn) and nb_top(up)=nb_top(dn)
|
||||
DO ik=1,nk
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,1)%included) CYCLE
|
||||
nbbot=kp(ik,1)%nb_bot
|
||||
nbtop=kp(ik,1)%nb_top
|
||||
C In this case, the projection matrix will be stored in prorb%matnrep with is=1.
|
||||
IF(ALLOCATED(pr_orb(jorb,ik,1)%matn_rep)) THEN
|
||||
DEALLOCATE(pr_orb(jorb,ik,1)%matn_rep)
|
||||
ENDIF
|
||||
ALLOCATE(pr_orb(jorb,ik,1)%
|
||||
% matn_rep(1:2*(2*l+1),nbbot:nbtop,1:n))
|
||||
C The element prorb%matnrep for is=2 is set to 0, since all the matrix will be stored in the matrix matnrep for is=1
|
||||
IF(.not.ALLOCATED(pr_orb(jorb,ik,2)%matn_rep)) THEN
|
||||
ALLOCATE(pr_orb(jorb,ik,2)%matn_rep(1,1,1))
|
||||
pr_orb(jorb,ik,2)%matn_rep(1,1,1)=0.d0
|
||||
ENDIF
|
||||
C Creation of a matrix tmp_matn which "concatenates" up and dn parts of pr_orb
|
||||
ALLOCATE(tmp_matn(1:2*(2*l+1),nbbot:nbtop,1:n))
|
||||
tmp_matn(1:(2*l+1),nbbot:nbtop,1:n)=
|
||||
= pr_orb(jorb,ik,1)%matn(-l:l,nbbot:nbtop,1:n)
|
||||
C The first (2l+1) lines are the spin-up part of the projection matrix prorb%matn.
|
||||
C
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C Interruption of the prgm if there is no dn part of pr_orb.
|
||||
C -------------------------
|
||||
C
|
||||
IF(.not.ifSP) THEN
|
||||
WRITE(buf,'(a,a,i2,a)')'The projectors on ',
|
||||
& 'the down states are required for isrt = ',isrt,
|
||||
& ' but there is no spin-polarized input files.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'END OF THE PRGM'
|
||||
CALL printout(0)
|
||||
STOP
|
||||
ENDIF
|
||||
C ---------------------------------------------------------------------------------------
|
||||
C
|
||||
C The last (2l+1) lines are the spin-dn part of the projection matrix prorb%matn.
|
||||
tmp_matn(2*l+2:2*(2*l+1),nbbot:nbtop,1:n)=
|
||||
= pr_orb(jorb,ik,2)%matn(-l:l,nbbot:nbtop,1:n)
|
||||
C
|
||||
DO i=1,n
|
||||
C Multiplication by the local rotation matrix ; Up and dn parts are treated independently
|
||||
C since in lapw2 (-alm) the coefficients Alm, Blm and Clm were calculated in the local frame
|
||||
C but without taking into account the spinor-rotation matrix.
|
||||
ALLOCATE(tmp_matbis(1:(2*l+1),nbbot:nbtop))
|
||||
tmp_matbis(1:(2*l+1),nbbot:nbtop)=
|
||||
= tmp_matn(1:(2*l+1),nbbot:nbtop,i)
|
||||
CALL rot_projectmat(tmp_matbis,
|
||||
& l,nbbot,nbtop,jatom,isrt)
|
||||
tmp_matn(1:(2*l+1),nbbot:nbtop,i)=
|
||||
= tmp_matbis(1:(2*l+1),nbbot:nbtop)
|
||||
tmp_matbis(1:(2*l+1),nbbot:nbtop)=
|
||||
= tmp_matn(2*l+2:2*(2*l+1),nbbot:nbtop,i)
|
||||
CALL rot_projectmat(tmp_matbis,
|
||||
& l,nbbot,nbtop,jatom,isrt)
|
||||
tmp_matn(2*l+2:2*(2*l+1),nbbot:nbtop,i)=
|
||||
= tmp_matbis(1:(2*l+1),nbbot:nbtop)
|
||||
DEALLOCATE(tmp_matbis)
|
||||
C Putting pr_orb in the desired basis associated to (l,isrt)
|
||||
pr_orb(jorb,ik,1)%matn_rep
|
||||
& (1:2*(2*l+1),nbbot:nbtop,i)=
|
||||
= MATMUL(reptrans(l,isrt)%
|
||||
& transmat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& tmp_matn(1:2*(2*l+1),nbbot:nbtop,i))
|
||||
C pr_orb%matn_rep = proj_{new_i} = reptrans*proj_{lm} = <new_i|lm>*proj_{lm}
|
||||
ENDDO ! End of the i-loop
|
||||
DEALLOCATE(tmp_matn)
|
||||
ENDDO ! End of the ik loop
|
||||
C
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
||||
C --------------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
DO ik=1,nk
|
||||
DO is=1,ns
|
||||
C Only the k-points with inlcuded bands are considered for the projectors.
|
||||
IF(.NOT.kp(ik,is)%included) CYCLE
|
||||
C In this case, nb_top(up) and nb_bot(up) can differ from nb_top(dn) and nb_bot(dn)
|
||||
nbbot=kp(ik,is)%nb_bot
|
||||
nbtop=kp(ik,is)%nb_top
|
||||
IF(ALLOCATED(pr_orb(jorb,ik,is)%matn_rep)) THEN
|
||||
DEALLOCATE(pr_orb(jorb,ik,is)%matn_rep)
|
||||
ENDIF
|
||||
ALLOCATE(pr_orb(jorb,ik,is)%
|
||||
& matn_rep(-l:l,nbbot:nbtop,1:n))
|
||||
pr_orb(jorb,ik,is)%matn_rep(-l:l,nbbot:nbtop,1:n)=
|
||||
= pr_orb(jorb,ik,is)%matn(-l:l,nbbot:nbtop,1:n)
|
||||
C
|
||||
DO i=1,n
|
||||
C Multiplication by the local rotation matrix
|
||||
C since in lapw2 (-alm) the coefficients Alm, Blm and Clm were calculated in the local frame
|
||||
CALL rot_projectmat(pr_orb(jorb,ik,is)
|
||||
& %matn_rep(-l:l,nbbot:nbtop,i),
|
||||
& l,nbbot,nbtop,jatom,isrt)
|
||||
C Putting pr_orb in the desired basis associated to (l,isrt)
|
||||
pr_orb(jorb,ik,is)%matn_rep(-l:l,nbbot:nbtop,i)=
|
||||
= MATMUL(reptrans(l,isrt)%transmat(-l:l,-l:l),
|
||||
& pr_orb(jorb,ik,is)%matn_rep(-l:l,nbbot:nbtop,i))
|
||||
C pr_orb%matn_rep = proj_{new_i} = reptrans*proj_{lm} = <new_i|lm>*proj_{lm}
|
||||
ENDDO ! End of the i loop
|
||||
ENDDO ! End of the is loop
|
||||
ENDDO ! End of the ik loop
|
||||
ENDIF ! End of the if mixing if-then-else
|
||||
ENDDO ! End of the jorb loop
|
||||
C
|
||||
C
|
||||
C =============================================================================
|
||||
C Printing the projectors with k-points 1 and nk in the file fort.18 for test :
|
||||
C =============================================================================
|
||||
DO icrorb=1,ncrorb
|
||||
iatom=crorb(icrorb)%atom
|
||||
isrt=crorb(icrorb)%sort
|
||||
l=crorb(icrorb)%l
|
||||
WRITE(18,'()')
|
||||
WRITE(18,'(a,i4)') 'icrorb = ', icrorb
|
||||
WRITE(18,'(a,i4,a,i4)') 'isrt = ', isrt, ' l = ', l
|
||||
IF (l==0) THEN
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ELSE
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
DO iorb=1,norb
|
||||
iatom=orb(iorb)%atom
|
||||
isrt=orb(iorb)%sort
|
||||
l=orb(iorb)%l
|
||||
n=norm_radf(iorb)%n
|
||||
WRITE(18,'()')
|
||||
WRITE(18,'(a,i4)') 'iorb = ', iorb
|
||||
WRITE(18,'(a,i4,a,i4)') 'isrt = ', isrt, ' l = ', l
|
||||
IF (l==0) THEN
|
||||
WRITE(18,'(a,i4)') 'ik = ', 1
|
||||
DO i=1,n
|
||||
WRITE(18,'(i4)') i
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_orb(iorb,1,1)%matn_rep(:,ib,i)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_orb(iorb,1,2)%matn_rep(:,ib,i)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO i=1,n
|
||||
WRITE(18,'(i4)') i
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_orb(iorb,nk,1)%matn_rep(:,ib,i)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_orb(iorb,nk,2)%matn_rep(:,ib,i)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDDO
|
||||
ELSEIF(reptrans(l,isrt)%ifmixing) THEN
|
||||
DO i=1,n
|
||||
WRITE(18,'(i4)') i
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_orb(iorb,1,1)%matn_rep(:,ib,i)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO i=1,n
|
||||
WRITE(18,'(i4)') i
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_orb(iorb,nk,1)%matn_rep(:,ib,i)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDDO
|
||||
ELSE
|
||||
DO i=1,n
|
||||
WRITE(18,'(i4)') i
|
||||
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
|
||||
WRITE(18,*) pr_orb(iorb,1,1)%matn_rep(:,ib,i)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_orb(iorb,1,2)%matn_rep(:,ib,i)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDDO
|
||||
WRITE(18,'(a,i4)') 'ik = ', nk
|
||||
DO i=1,n
|
||||
WRITE(18,'(i4)') i
|
||||
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
|
||||
WRITE(18,*) pr_orb(iorb,nk,1)%matn_rep(:,ib,i)
|
||||
IF (ifSP)
|
||||
& WRITE(18,*) pr_orb(iorb,nk,2)%matn_rep(:,ib,i)
|
||||
WRITE(18,'()')
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
368
fortran/dmftproj/set_rotloc.f
Normal file
368
fortran/dmftproj/set_rotloc.f
Normal file
@ -0,0 +1,368 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE set_rotloc
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine sets up the Global->local coordinates %%
|
||||
C %% rotational matrices for each atom of the system. %%
|
||||
C %% These matrices will be used to create the projectors. %%
|
||||
C %% (They are the SR matrices defined in the tutorial file.) %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data
|
||||
USE reps
|
||||
USE symm
|
||||
USE prnt
|
||||
IMPLICIT NONE
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_rot, spinrot
|
||||
REAL(KIND=8) :: alpha, beta, gama, factor
|
||||
INTEGER :: iatom, jatom, imu, isrt
|
||||
INTEGER :: is, is1, isym, l, lm
|
||||
INTEGER :: ind1, ind2, inof1, inof2
|
||||
COMPLEX(KIND=8) :: ephase
|
||||
C
|
||||
C ====================================================
|
||||
C Multiplication by an S matrix for equivalent sites :
|
||||
C ====================================================
|
||||
C Up to now, rotloc is the rotloc matrix (from Global to local coordinates rotation : (rotloc)_ij = <x_global_i | x_local_j >)
|
||||
C The matrix S to go from the representative atom of the sort to another one must be introduced. That's what is done here-after.
|
||||
DO isrt=1,nsort
|
||||
iatom=SUM(nmult(0:isrt-1))+1
|
||||
DO imu=1,nmult(isrt)
|
||||
jatom=iatom+imu-1
|
||||
DO isym=1,nsym
|
||||
C If the symmetry operation isym transforms the representative atom iatom in the jatom,
|
||||
C the matrix rotloc is multiplied by the corresponding srot matrix, for each orbital number l.
|
||||
C if R[isym](iatom) = jatom, rotloc is multiplied by R[isym] and Rloc is finally R[isym] X rotloc = <x_global|x_sym><x_sym|x_local>
|
||||
IF(srot(isym)%perm(iatom)==jatom) THEN
|
||||
WRITE(17,*) ' For jatom = ',jatom, ', isym =', isym
|
||||
rotloc(jatom)%srotnum=isym
|
||||
C Calculation of krotm and iprop.
|
||||
rotloc(jatom)%krotm(1:3,1:3)=
|
||||
= MATMUL(srot(isym)%krotm(1:3,1:3),
|
||||
& rotloc(jatom)%krotm(1:3,1:3))
|
||||
rotloc(jatom)%iprop=rotloc(jatom)%iprop*
|
||||
* srot(isym)%iprop
|
||||
C Evaluation of the Euler angles of the final operation Rloc
|
||||
CALL euler(TRANSPOSE(rotloc(jatom)%krotm(1:3,1:3)),
|
||||
& alpha,beta,gama)
|
||||
C According to Wien convention, euler takes in argument the transpose
|
||||
C of the matrix rotloc(jatom)%krotm to give a,b anc c of rotloc(jatom).
|
||||
rotloc(jatom)%a=alpha
|
||||
rotloc(jatom)%b=beta
|
||||
rotloc(jatom)%g=gama
|
||||
C
|
||||
C =============================================================================================================
|
||||
C Calculation of the rotational matrices and evaluation of the fields timeinv and phase for the Rloc matrices :
|
||||
C =============================================================================================================
|
||||
IF(ifSP.AND.ifSO) THEN
|
||||
C No time reversal operation is applied to rotloc (alone). If a time reversal operation must be applied,
|
||||
C it comes from the symmetry operation R[isym]. That is why the field timeinv is the same as the one from srot.
|
||||
rotloc(jatom)%timeinv=srot(isym)%timeinv
|
||||
rotloc(jatom)%phase=0.d0
|
||||
DO l=1,lmax
|
||||
ALLOCATE(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
tmp_rot=0.d0
|
||||
C Whatever the value of beta (0 or Pi), the spinor rotation matrix of isym is block-diagonal.
|
||||
C because the time-reversal operation have been applied if necessary.
|
||||
factor=srot(isym)%phase/2.d0
|
||||
ephase=EXP(CMPLX(0.d0,factor))
|
||||
C We remind that the field phase is (g-a) if beta=Pi. As a result, ephase = exp(+i(g-a)/2) = -exp(+i(alpha-gamma)/2)
|
||||
C We remind that the field phase is (a+g) if beta=0. As a result, ephase = exp(+i(a+g)/2)=-exp(-i(alpha+gamma)/2)
|
||||
C in good agreement with Wien conventions for the definition of this phase factor.
|
||||
C Up/up block :
|
||||
tmp_rot(1:2*l+1,1:2*l+1)=ephase*
|
||||
& srot(isym)%rotl(-l:l,-l:l,l)
|
||||
C Dn/dn block :
|
||||
ephase=CONJG(ephase)
|
||||
C now, ephase = exp(+i(a-g)/2) = -exp(-i(alpha-gamma)/2) if beta=Pi
|
||||
C now, ephase = exp(-i(a+g)/2) = -exp(+i(alpha+gamma)/2) if beta=0
|
||||
tmp_rot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
|
||||
& ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
IF (rotloc(jatom)%timeinv) THEN
|
||||
C In this case, the time reversal operator was applied to srot.
|
||||
rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)=
|
||||
& MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),CONJG(
|
||||
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)))
|
||||
C rotloc(jatom)%rotl now contains D(Rloc) = D(R[isym])*transpose[D(rotloc)].
|
||||
ELSE
|
||||
C In this case, no time reversal operator was applied to srot.
|
||||
rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)=
|
||||
& MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
|
||||
C rotloc(jatom)%rotl now contains D(Rloc) = D(R[isym])*D(rotloc).
|
||||
ENDIF
|
||||
DEALLOCATE(tmp_rot)
|
||||
ENDDO
|
||||
ELSE
|
||||
C Calculation of the rotational matrices associated to Rloc
|
||||
ALLOCATE(tmp_rot(1:2*lmax+1,1:2*lmax+1))
|
||||
DO l=1,lmax
|
||||
C Use of the subroutine dmat to compute the rotational matrix
|
||||
C associated to the Rloc operation in a (2*l+1) space :
|
||||
tmp_rot=0.d0
|
||||
CALL dmat(l,rotloc(jatom)%a,rotloc(jatom)%b,
|
||||
& rotloc(jatom)%g,
|
||||
& REAL(rotloc(jatom)%iprop,KIND=8),tmp_rot,2*lmax+1)
|
||||
rotloc(jatom)%rotl(-l:l,-l:l,l)=
|
||||
= tmp_rot(1:2*l+1,1:2*l+1)
|
||||
C rotloc(jatom)%rotl = table of the rotational matrices of the symmetry operation
|
||||
C for the different l orbital (from 1 to lmax), in the usual complex basis : dmat = D(R[isym])_l
|
||||
C rotloc(jatom)%rotl = D(Rloc[jatom])_{lm}
|
||||
ENDDO
|
||||
DEALLOCATE(tmp_rot)
|
||||
ENDIF ! End of the "ifSO-ifSP" if-then-else
|
||||
C
|
||||
EXIT
|
||||
C Only one symmetry operation is necessary to be applied to R to get the complete rotloc matrix.
|
||||
C This EXIT enables to leave the loop as soon as a symmetry operation which transforms the representative atom in jatom is found.
|
||||
ENDIF ! End of the "perm" if-then-else
|
||||
ENDDO ! End of the isym loop
|
||||
C
|
||||
C
|
||||
C ===========================================================
|
||||
C Computation of the rotational matrices in each sort basis :
|
||||
C ===========================================================
|
||||
ALLOCATE(rotloc(jatom)%rotrep(lmax))
|
||||
C
|
||||
C Initialization of the rotloc(jatom)%rotrep field = D(Rloc)_{new_i}
|
||||
C This field is a table of size lmax which contains the rotloc matrices
|
||||
C in the representation basis associated to each included orbital of the jatom.
|
||||
DO l=1,lmax
|
||||
ALLOCATE(rotloc(jatom)%rotrep(l)%mat(1,1))
|
||||
rotloc(jatom)%rotrep(l)%mat(1,1)=0.d0
|
||||
ENDDO
|
||||
C
|
||||
C Computation of the elements 'mat' in rotloc(jatom)%rotrep(l)
|
||||
DO l=1,lmax
|
||||
C The considered orbital is not included, hence no computation
|
||||
IF (lsort(l,isrt)==0) cycle
|
||||
C The considered orbital is included
|
||||
IF (ifSP.AND.ifSO) THEN
|
||||
C In this case, the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
||||
C --------------------------------------------------------------------------------------------------------------
|
||||
DEALLOCATE(rotloc(jatom)%rotrep(l)%mat)
|
||||
ALLOCATE(rotloc(jatom)%rotrep(l)%mat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1)))
|
||||
ALLOCATE(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
C Computation of rotloc(jatom)%rotrep(l)%mat
|
||||
IF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C In this case, the basis representation requires a complete spinor rotation approach too.
|
||||
IF(rotloc(jatom)%timeinv) THEN
|
||||
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
||||
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
|
||||
rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& TRANSPOSE(reptrans(l,isrt)%transmat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1))))
|
||||
C Since the operation is antilinear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*conjugate(inverse(reptrans))
|
||||
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} [<lm|new_i>]^*
|
||||
C which is exactly the expression of the spinor rotation matrix in the new basis.
|
||||
ELSE
|
||||
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
||||
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
|
||||
rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& TRANSPOSE(CONJG(reptrans(l,isrt)%transmat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1)))))
|
||||
C Since the operation is linear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*inverse(reptrans)
|
||||
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i>
|
||||
C which is exactly the expression of the spinor rotation matrix in the new basis.
|
||||
ENDIF
|
||||
ELSE
|
||||
C In this case, the basis representation is reduced to the up/up block and must be extended.
|
||||
ALLOCATE(spinrot(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
spinrot(1:2*(2*l+1),1:2*(2*l+1))=0.d0
|
||||
spinrot(1:2*l+1,1:2*l+1)=
|
||||
& reptrans(l,isrt)%transmat(-l:l,-l:l)
|
||||
spinrot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
|
||||
& reptrans(l,isrt)%transmat(-l:l,-l:l)
|
||||
IF(rotloc(jatom)%timeinv) THEN
|
||||
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
||||
& spinrot(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
|
||||
rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& TRANSPOSE(spinrot(1:2*(2*l+1),1:2*(2*l+1))))
|
||||
C Since the operation is antilinear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*conjugate(inverse(reptrans))
|
||||
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} [<lm|new_i>]^*
|
||||
C which is exactly the expression of the spinor rotation matrix in the new basis.
|
||||
ELSE
|
||||
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
||||
& spinrot(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
|
||||
rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& TRANSPOSE(CONJG(spinrot(1:2*(2*l+1),1:2*(2*l+1)))))
|
||||
C Since the operation is linear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*inverse(reptrans)
|
||||
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i>
|
||||
C which is exactly the expression of the spinor rotation matrix in the new basis.
|
||||
ENDIF
|
||||
DEALLOCATE(spinrot)
|
||||
ENDIF ! End of the if mixing if-then-else
|
||||
DEALLOCATE(tmp_rot)
|
||||
C
|
||||
ELSE
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
||||
C --------------------------------------------------------------------------------------------
|
||||
DEALLOCATE(rotloc(jatom)%rotrep(l)%mat)
|
||||
ALLOCATE(rotloc(jatom)%rotrep(l)%mat(-l:l,-l:l))
|
||||
ALLOCATE(tmp_rot(-l:l,-l:l))
|
||||
C Computation of rotloc(jatom)%rotrep(l)%mat
|
||||
tmp_rot(-l:l,-l:l)=MATMUL(
|
||||
& reptrans(l,isrt)%transmat(-l:l,-l:l),
|
||||
& rotloc(jatom)%rotl(-l:l,-l:l,l))
|
||||
rotloc(jatom)%rotrep(l)%mat(-l:l,-l:l)=
|
||||
= MATMUL(tmp_rot(-l:l,-l:l),
|
||||
& TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l))))
|
||||
C the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*rotl*inverse(reptrans)
|
||||
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i>
|
||||
C which is exactly the expression of the rotation matrix for the up/up block in the new basis.
|
||||
DEALLOCATE(tmp_rot)
|
||||
ENDIF
|
||||
ENDDO ! End of the l loop
|
||||
ENDDO ! End of the jatom loop
|
||||
ENDDO ! End of the isrt loop
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
SUBROUTINE euler(Rot,a,b,c)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine calculates the Euler angles a, b and c of Rot. %%
|
||||
C %% The result are stored in a,b,c. (same as in SRC_lapwdm/euler.f) %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C
|
||||
IMPLICIT NONE
|
||||
REAL(KIND=8) :: a,aa,b,bb,c,cc,zero,pi,y_norm,dot
|
||||
REAL(KIND=8), DIMENSION(3,3) :: Rot, Rot_temp
|
||||
REAL(KIND=8), DIMENSION(3) :: z,zz,y,yy,yyy,pom,x,xx
|
||||
INTEGER :: i,j
|
||||
C Definition of the constants
|
||||
zero=0d0
|
||||
pi=ACOS(-1d0)
|
||||
C Definition of Rot_temp=Id
|
||||
DO i=1,3
|
||||
DO j=1,3
|
||||
Rot_temp(i,j)=0
|
||||
IF (i.EQ.j) Rot_temp(i,i)=1
|
||||
ENDDO
|
||||
ENDDO
|
||||
C Initialization of y=e_y, z=e_z, yyy and zz
|
||||
DO j=1,3
|
||||
y(j)=Rot_temp(j,2)
|
||||
yyy(j)=Rot(j,2)
|
||||
z(j)=Rot_temp(j,3)
|
||||
zz(j)=Rot(j,3)
|
||||
ENDDO
|
||||
C Calculation of yy
|
||||
CALL vecprod(z,zz,yy)
|
||||
y_norm=DSQRT(dot(yy,yy))
|
||||
IF (y_norm.lt.1d-10) THEN
|
||||
C If yy=0, this implies that b is zero or pi
|
||||
IF (ABS(dot(y,yyy)).gt.1d0) THEN
|
||||
aa=dot(y,yyy)/ABS(dot(y,yyy))
|
||||
a=ACOS(aa)
|
||||
ELSE
|
||||
a=ACOS(dot(y,yyy))
|
||||
ENDIF
|
||||
C
|
||||
IF (dot(z,zz).gt.zero) THEN
|
||||
c=zero
|
||||
b=zero
|
||||
IF (yyy(1).gt.zero) a=2*pi-a
|
||||
ELSE
|
||||
c=a
|
||||
a=zero
|
||||
b=pi
|
||||
IF (yyy(1).lt.zero) c=2*pi-c
|
||||
ENDIF
|
||||
ELSE
|
||||
C If yy is not 0, then b belongs to ]0,pi[
|
||||
DO j=1,3
|
||||
yy(j)=yy(j)/y_norm
|
||||
ENDDO
|
||||
C
|
||||
aa=dot(y,yy)
|
||||
bb=dot(z,zz)
|
||||
cc=dot(yy,yyy)
|
||||
IF (ABS(aa).gt.1d0) aa=aa/ABS(aa)
|
||||
IF (ABS(bb).gt.1d0) bb=bb/ABS(bb)
|
||||
IF (ABS(cc).gt.1d0) cc=cc/ABS(cc)
|
||||
b=ACOS(bb)
|
||||
a=ACOS(aa)
|
||||
c=ACOS(cc)
|
||||
IF (yy(1).gt.zero) a=2*pi-a
|
||||
CALL vecprod(yy,yyy,pom)
|
||||
IF (dot(pom,zz).lt.zero) c=2*pi-c
|
||||
ENDIF
|
||||
C
|
||||
END
|
||||
|
||||
|
||||
SUBROUTINE vecprod(a,b,c)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine calculates the vector product of a and b. %%
|
||||
C %% The result is stored in c. (same as in SRC_lapwdm/euler.f) %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C
|
||||
IMPLICIT NONE
|
||||
REAL(KIND=8), DIMENSION(3) :: a,b,c
|
||||
C
|
||||
c(1)=a(2)*b(3)-a(3)*b(2)
|
||||
c(2)=a(3)*b(1)-a(1)*b(3)
|
||||
c(3)=a(1)*b(2)-a(2)*b(1)
|
||||
C
|
||||
END
|
||||
|
||||
REAL(KIND=8) FUNCTION dot(a,b)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This function calculates the scalar product of a and b. %%
|
||||
C %% The result is stored in dot. (same as in SRC_lapwdm/euler.f) %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C
|
||||
IMPLICIT NONE
|
||||
REAL(KIND=8) :: a,b
|
||||
INTEGER :: i
|
||||
dimension a(3),b(3)
|
||||
dot=0
|
||||
DO i=1,3
|
||||
dot=dot+a(i)*b(i)
|
||||
ENDDO
|
||||
C
|
||||
END
|
||||
|
||||
|
||||
|
886
fortran/dmftproj/setsym.f
Normal file
886
fortran/dmftproj/setsym.f
Normal file
@ -0,0 +1,886 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE setsym
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine sets up the symmetry matrices of the structure %%
|
||||
C %% and the local rotation matrices for each atom of the system. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data
|
||||
USE factorial
|
||||
USE file_names
|
||||
USE prnt
|
||||
USE reps
|
||||
USE symm
|
||||
IMPLICIT NONE
|
||||
C
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_rot, spinrot
|
||||
COMPLEX(KIND=8), DIMENSION(:,:),ALLOCATABLE :: tmat
|
||||
COMPLEX(KIND=8), DIMENSION(:,:,:),ALLOCATABLE :: tmp_dmat
|
||||
REAL(KIND=8) :: factor
|
||||
INTEGER :: l, isym, mmax, nrefl, i, m, isrt, lms
|
||||
INTEGER :: lm, is, is1
|
||||
INTEGER :: iatom, imu, iatomref
|
||||
REAL(KIND=8) :: det
|
||||
REAL(KIND=8), DIMENSION(:),ALLOCATABLE :: bufreal
|
||||
COMPLEX(KIND=8), DIMENSION(:),ALLOCATABLE :: bufcomp
|
||||
COMPLEX(KIND=8), DIMENSION(:,:),ALLOCATABLE :: tmpcomp
|
||||
COMPLEX(KIND=8), DIMENSION(1:2,1:2) :: spmt
|
||||
|
||||
C
|
||||
C
|
||||
WRITE(buf,'(a)')'======================================='
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'Symmetry operations of the system'
|
||||
CALL printout(1)
|
||||
C
|
||||
C ===========================================
|
||||
C Reading of the symmetry file case.dmftsym :
|
||||
C ===========================================
|
||||
CALL setfact(170)
|
||||
READ(iusym,*)nsym
|
||||
WRITE(buf,'(a,i4)')'Number of Symmetries = ',nsym
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
C nsym = total number of symmetry operations for the structure
|
||||
lsym=lmax
|
||||
nlmsym=2*lsym+1
|
||||
C lsym = maximal orbital number for the symmetry
|
||||
C nlmsym = maximal size of the representation for the symmetry
|
||||
ALLOCATE(srot(nsym))
|
||||
DO isym=1,nsym
|
||||
ALLOCATE(srot(isym)%perm(natom))
|
||||
READ(iusym,*)srot(isym)%perm
|
||||
ENDDO
|
||||
C srot = table of symop elements from to 1 to nsym.
|
||||
C the field srot(isym)%perm = the table of permutation for the isym symmetry (table from 1 to natom)
|
||||
C srot(isym)%perm(iatom) = R[isym](iatom) = image by R[isym] fo iatom
|
||||
WRITE(buf,'(a)')'Properties of the symmetry operations :'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)') ' alpha, beta, gamma are their Euler angles.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)') ' iprop is the value of their determinant.'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')' SYM.OP. alpha beta gamma iprop'
|
||||
CALL printout(0)
|
||||
DO isym=1,nsym
|
||||
READ(iusym,'()')
|
||||
READ(iusym,'()')
|
||||
READ(iusym,'(3(f6.1),i3)') srot(isym)%a, srot(isym)%b,
|
||||
& srot(isym)%g, srot(isym)%iprop
|
||||
C Printing the matrices parameters in the file case.outdmftpr
|
||||
WRITE(buf,'(i5,3F10.1,5x,i3)')isym,
|
||||
& srot(isym)%a,srot(isym)%b,srot(isym)%g,srot(isym)%iprop
|
||||
CALL printout(0)
|
||||
srot(isym)%a=srot(isym)%a/180d0*Pi
|
||||
srot(isym)%b=srot(isym)%b/180d0*Pi
|
||||
srot(isym)%g=srot(isym)%g/180d0*Pi
|
||||
C the field srot(isym)%a is linked to the Euler precession angle (alpha)
|
||||
C the field srot(isym)%b is linked to the Euler nutation angle (beta)
|
||||
C the field srot(isym)%c is linked to the Euler intrinsic rotation angle (gamma)
|
||||
C They are read in case.dmftsym in degree and are then transformed into radians
|
||||
C the field sort(isym)% iprop = value of the transformation determinant (1 or -1),
|
||||
C determines if there is an inversion in the transformation
|
||||
READ(iusym,*)(srot(isym)%krotm(1:3,i),i=1,3)
|
||||
srot(isym)%krotm(1:3,1:3)=
|
||||
& TRANSPOSE(srot(isym)%krotm(1:3,1:3))
|
||||
C the field srot(isym)%krotm = 3x3 matrices of rotation associated to the transformation (R[isym]).
|
||||
C (without the global inversion). The matrix was multiplied by the value of iprop before being written in case.dmftsym.
|
||||
C This reading line was chosen to be consistent with the writing line in rotmat_dmft (in SRC_lapw2)
|
||||
ENDDO
|
||||
C
|
||||
C =============================================================
|
||||
C Determination of the properties for each symmetry operation :
|
||||
C =============================================================
|
||||
C
|
||||
C Creation of the rotational matrices for each orbital :
|
||||
C ------------------------------------------------------
|
||||
DO isym=1,nsym
|
||||
ALLOCATE(srot(isym)%rotl(-lsym:lsym,-lsym:lsym,lsym))
|
||||
srot(isym)%rotl=0.d0
|
||||
ALLOCATE(tmat(1:2*lsym+1,1:2*lsym+1))
|
||||
DO l=1,lsym
|
||||
C Use of the subroutine dmat to compute the the rotational matrix
|
||||
C associated to the isym symmetry operation in a (2*l+1) space :
|
||||
CALL dmat(l,srot(isym)%a,srot(isym)%b,srot(isym)%g,
|
||||
& REAL(srot(isym)%iprop,KIND=8),tmat,2*lsym+1)
|
||||
srot(isym)%rotl(-l:l,-l:l,l)=tmat(1:2*l+1,1:2*l+1)
|
||||
C srot(isym)%rotl = table of the rotationnal matrices of the symmetry operation
|
||||
C for the different l orbital (from 1 to lsym), in the usual complex basis : dmat = D(R[isym])_l
|
||||
C srot(isym)%rotl = D(R[isym])_{lm}
|
||||
ENDDO
|
||||
DEALLOCATE(tmat)
|
||||
C
|
||||
C
|
||||
C Determination of the fields timeinv and phase (if SP+SO computations):
|
||||
C ----------------------------------------------------------------------
|
||||
C If the calculation is spin-polarized with spin-orbit, the magnetic spacegroup of the
|
||||
C system is of type III (black-and-white type). The operation must then be classified
|
||||
C according to their keeping the z-axis invariant or not.
|
||||
C
|
||||
C srot(isym)%timeinv = boolean indicating if a time reversal operation is required
|
||||
IF(ifSP.AND.ifSO) THEN
|
||||
det=srot(isym)%krotm(1,1)*srot(isym)%krotm(2,2)-
|
||||
- srot(isym)%krotm(1,2)*srot(isym)%krotm(2,1)
|
||||
C the value of det is cos(srot(isym)%b) even if the rotation is improper.
|
||||
IF(det < 0.0d0) THEN
|
||||
srot(isym)%timeinv=.TRUE.
|
||||
C The direction of the magnetic moment is changed to its opposite ( srot(isym)%b=pi ),
|
||||
C A time reversal operation is required.
|
||||
srot(isym)%phase=srot(isym)%g-srot(isym)%a
|
||||
C In this case, we define a phase factor for the off-diagonal term (up/dn term)
|
||||
C which is srot(isym)%phase= g-a = 2pi+(alpha-gamma)
|
||||
ELSE
|
||||
srot(isym)%timeinv=.FALSE.
|
||||
C The direction of the magnetic moment is unchanged ( srot(isym)%b=0 ),
|
||||
C no time reversal operation is required.
|
||||
srot(isym)%phase=srot(isym)%a+srot(isym)%g
|
||||
C In this case, we define a phase factor for the off-diagonal term (up/dn term)
|
||||
C which is srot(isym)%phase= a+g = 2pi-(alpha+gamma)
|
||||
ENDIF
|
||||
ELSE
|
||||
C If the calculation is either spin-polarized without spin-orbit, or paramagnetic
|
||||
C the magnetic spacegroup of the system is of type I (ordinary type). The operation
|
||||
C are thus merely applied.
|
||||
srot(isym)%timeinv=.FALSE.
|
||||
srot(isym)%phase=0.d0
|
||||
ENDIF ! End of the ifSP if-then-else
|
||||
C
|
||||
C
|
||||
C Computation of the rotational matrices in each sort basis :
|
||||
C -----------------------------------------------------------
|
||||
ALLOCATE(srot(isym)%rotrep(lsym,nsort))
|
||||
C
|
||||
C Initialization of the srot(isym)%rotrep field
|
||||
C This field is a table of size (lsym*nsort) which contains the rotation matrices
|
||||
C of isym in the representation basis associated to each included orbital of each atom.
|
||||
C srot(isym)%rotrep = D(R[isym])_{new_i}
|
||||
DO isrt=1,nsort
|
||||
DO l=1,lsym
|
||||
ALLOCATE(srot(isym)%rotrep(l,isrt)%mat(1,1))
|
||||
srot(isym)%rotrep(l,isrt)%mat(1,1)=0.d0
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
C Computation of the elements 'mat' in srot(isym)%rotrep(l,isrt)
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
DO l=1,lsym
|
||||
C The considered orbital is not included, hence no computation
|
||||
IF (lsort(l,isrt)==0) cycle
|
||||
C The considered orbital is included
|
||||
IF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
||||
C If this option is used, then ifSO=.TRUE. (because of the restriction in set_ang_trans.f)
|
||||
C Moreover ifSP=.TRUE. (since ifSO => ifSP in this version)
|
||||
DEALLOCATE(srot(isym)%rotrep(l,isrt)%mat)
|
||||
ALLOCATE(srot(isym)%rotrep(l,isrt)%mat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1)))
|
||||
ALLOCATE(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
ALLOCATE(spinrot(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
spinrot=0.d0
|
||||
C Computation of the full spinor rotation matrix associated to isym.
|
||||
CALL spinrotmat(spinrot,isym,l)
|
||||
C Computation of srot(isym)%rotrep(l,isrt)%mat
|
||||
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
||||
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& spinrot(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
srot(isym)%rotrep(l,isrt)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& TRANSPOSE(CONJG(reptrans(l,isrt)%transmat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1)))))
|
||||
C the field srot(isym)%rotrep(l,isrt)%mat = (reptrans)*spinrot(l)*inverse(reptrans)
|
||||
C or srot(isym)%rotrep = D(R[isym])_{new_i} = <new_i|lm> D(R[isym])_{lm} <lm|new_i>
|
||||
C which is exactly the expression of the spinor rotation matrix in the new basis.
|
||||
DEALLOCATE(tmp_rot)
|
||||
DEALLOCATE(spinrot)
|
||||
ELSE
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
||||
DEALLOCATE(srot(isym)%rotrep(l,isrt)%mat)
|
||||
ALLOCATE(srot(isym)%rotrep(l,isrt)%mat(-l:l,-l:l))
|
||||
ALLOCATE(tmp_rot(-l:l,-l:l))
|
||||
C Computation of srot(isym)%rotrep(l,isrt)%mat
|
||||
tmp_rot(-l:l,-l:l)=MATMUL(
|
||||
& reptrans(l,isrt)%transmat(-l:l,-l:l),
|
||||
& srot(isym)%rotl(-l:l,-l:l,l))
|
||||
srot(isym)%rotrep(l,isrt)%mat(-l:l,-l:l)=
|
||||
= MATMUL(tmp_rot(-l:l,-l:l),
|
||||
& TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l))))
|
||||
C the field srot(isym)%rotrep(l,isrt)%mat = (reptrans)*rotl*inverse(reptrans)
|
||||
C or srot(isym)%rotrep = D(R[isym])_{new_i} = <new_i|lm> D(R[isym])_{lm} <lm|new_i>
|
||||
C which is exactly the expression of the rotation matrix for the up/up block in the new basis.
|
||||
DEALLOCATE(tmp_rot)
|
||||
ENDIF
|
||||
ENDDO ! End of the l loop
|
||||
ENDDO ! End of the isrt loop
|
||||
ENDDO ! End of the isym loop
|
||||
C
|
||||
C
|
||||
C =============================================================
|
||||
C Printing the matrix parameters in the file fort.17 for test :
|
||||
C =============================================================
|
||||
DO isym=1,nsym
|
||||
WRITE(17,'()')
|
||||
WRITE(17,'(a,i3)')' Sym. op.: ',isym
|
||||
DO i =1,3
|
||||
ALLOCATE(bufreal(3))
|
||||
bufreal(1:3)=srot(isym)%krotm(i,1:3)
|
||||
WRITE(17,'(3f10.4)') bufreal
|
||||
DEALLOCATE(bufreal)
|
||||
ENDDO
|
||||
WRITE(17,'(a,3f8.1,i4)')'a, b, g, iprop =',
|
||||
& srot(isym)%a*180d0/Pi,srot(isym)%b*180d0/Pi,
|
||||
& srot(isym)%g*180d0/Pi,srot(isym)%iprop
|
||||
C Printing the data relative to SP option
|
||||
IF (ifSP) THEN
|
||||
WRITE(17,*)'If DIR. magn. mom. is inverted :'
|
||||
& ,srot(isym)%timeinv
|
||||
WRITE(17,*)'phase = ',srot(isym)%phase
|
||||
ENDIF
|
||||
C Printing the rotational matrices for each orbital number l.
|
||||
WRITE(17,'()')
|
||||
DO l=1,lsym
|
||||
WRITE(17,'(a,a,i2)')'Rotation matrix ',
|
||||
& 'D(R[isym])_{lm} for l = ',l
|
||||
DO m=-l,l
|
||||
ALLOCATE(bufcomp(-l:l))
|
||||
bufcomp(-l:l)=srot(isym)%rotl(m,-l:l,l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ENDDO
|
||||
C Printing the matrices rotrep(l,isrt)%mat
|
||||
WRITE(17,'()')
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
DO l=1,lsym
|
||||
IF (lsort(l,isrt)==0) cycle
|
||||
WRITE(17,'(a,i2,a,i2)')'Representation for isrt = ',
|
||||
& isrt,' and l= ',l
|
||||
IF (reptrans(l,isrt)%ifmixing) THEN
|
||||
DO m=1,2*(2*l+1)
|
||||
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
||||
bufcomp(1:2*(2*l+1))=
|
||||
& srot(isym)%rotrep(l,isrt)%mat(m,1:2*(2*l+1))
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ELSE
|
||||
DO m=-l,l
|
||||
ALLOCATE(bufcomp(-l:l))
|
||||
bufcomp(-l:l)=
|
||||
& srot(isym)%rotrep(l,isrt)%mat(m,-l:l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
C
|
||||
C =================================================================================
|
||||
C Applying time-reversal operator if the system is spin-polarized with Spin Orbit :
|
||||
C =================================================================================
|
||||
C
|
||||
C If the calculation is spin-polarized with spin-orbit, the magnetic spacegroup of the compound
|
||||
C is of type III (black-and-white). The symmetry operations which reverse the z-axis must be
|
||||
C multiplied by the time-reversal operator.
|
||||
C If spin-orbit is not taken into account, all the field timeinv are .FALSE. and no time-reversal
|
||||
C is applied, since the magnetic spacegroup of the compound is of type I (ordinary).
|
||||
IF (ifSP) THEN
|
||||
C The modification of srot(isym)%rotl is done for each isym
|
||||
DO isym=1,nsym
|
||||
DO l=1,lsym
|
||||
IF (srot(isym)%timeinv) THEN
|
||||
C The field srot(isym)%rotl is multiplied by the time-reversal operator in the complex basis.
|
||||
ALLOCATE(tmpcomp(-l:l,-l:l))
|
||||
tmpcomp(-l:l,-l:l)=
|
||||
& srot(isym)%rotl(-l:l,-l:l,l)
|
||||
CALL timeinv_op(tmpcomp,(2*l+1),l,0)
|
||||
srot(isym)%rotl(-l:l,-l:l,l)=tmpcomp(-l:l,-l:l)
|
||||
DEALLOCATE(tmpcomp)
|
||||
C The field srot(isym)%phase must not be modified.
|
||||
END IF
|
||||
END DO
|
||||
END DO
|
||||
C
|
||||
C The other modification are done for each (isrt,l) included.
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
DO l=1,lsym
|
||||
C The considered orbital is not included, hence no computation
|
||||
IF (lsort(l,isrt)==0) cycle
|
||||
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
||||
IF (reptrans(l,isrt)%ifmixing) THEN
|
||||
DO isym=1,nsym
|
||||
IF (srot(isym)%timeinv) THEN
|
||||
C The field srot(isym)%rotrep(l,isrt)%mat is multiplied by the time-reversal operator in the corresponding basis of isrt.
|
||||
CALL timeinv_op(srot(isym)%rotrep(l,isrt)%mat,
|
||||
& 2*(2*l+1),l,isrt)
|
||||
END IF
|
||||
END DO ! End of the isym loop
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
||||
ELSE
|
||||
DO isym=1,nsym
|
||||
IF (srot(isym)%timeinv) THEN
|
||||
C The field srot(isym)%rotrep(l,isrt)%mat is multiplied by the time-reversal operator in the corresponding basis of isrt.
|
||||
CALL timeinv_op(srot(isym)%rotrep(l,isrt)%mat,
|
||||
& (2*l+1),l,isrt)
|
||||
END IF
|
||||
END DO ! End of the isym loop
|
||||
END IF ! End of the ifmixing if-then-else
|
||||
END DO ! End of the l loop
|
||||
END DO ! End of the isrt loop
|
||||
END IF ! End of the ifSP if-then-else
|
||||
C
|
||||
C
|
||||
C ======================================================================
|
||||
C Printing the time-reversal modification in the file fort.17 for test :
|
||||
C ======================================================================
|
||||
IF (ifSP.AND.ifSO) THEN
|
||||
WRITE(17,'()')
|
||||
WRITE(17,'(a)') '---With time-reversal operation---'
|
||||
WRITE(17,'()')
|
||||
C Printing the srot(isym) operations if necessary :
|
||||
DO isym=1,nsym
|
||||
IF (srot(isym)%timeinv) THEN
|
||||
WRITE(17,'()')
|
||||
WRITE(17,'(a,i3)')' Sym. op.: ',isym
|
||||
C Printing the new rotational matrices for each orbital number l.
|
||||
WRITE(17,'()')
|
||||
DO l=1,lsym
|
||||
WRITE(17,'(a,a,i2)')'T*Rotation matrix ',
|
||||
& 'D(T.R[isym])_{lm} for l = ',l
|
||||
DO m=-l,l
|
||||
ALLOCATE(bufcomp(-l:l))
|
||||
bufcomp(-l:l)=srot(isym)%rotl(m,-l:l,l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ENDDO
|
||||
C Printing the new matrices rotrep(l,isrt)%mat
|
||||
WRITE(17,'()')
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
DO l=1,lsym
|
||||
IF (lsort(l,isrt)==0) cycle
|
||||
WRITE(17,'(a,i2,a,i2)')
|
||||
& 'Representation for isrt = ',isrt,' and l= ',l
|
||||
IF (reptrans(l,isrt)%ifmixing) THEN
|
||||
DO m=1,2*(2*l+1)
|
||||
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
||||
bufcomp(1:2*(2*l+1))=
|
||||
& srot(isym)%rotrep(l,isrt)%mat(m,1:2*(2*l+1))
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ELSE
|
||||
DO m=-l,l
|
||||
ALLOCATE(bufcomp(-l:l))
|
||||
bufcomp(-l:l)=
|
||||
& srot(isym)%rotrep(l,isrt)%mat(m,-l:l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
END DO
|
||||
END IF
|
||||
END DO
|
||||
END DO
|
||||
END IF
|
||||
ENDDO
|
||||
END IF
|
||||
C
|
||||
C
|
||||
C ============================================================
|
||||
C Creation of the global->local coordinate rotation matrices :
|
||||
C ============================================================
|
||||
ALLOCATE(rotloc(natom))
|
||||
CALL printout(1)
|
||||
WRITE(buf,'(a)')'-------------------------------------'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')'Global-to-local-coordinates rotations'
|
||||
CALL printout(1)
|
||||
WRITE(buf,'(a)')'Properties of the symmetry operations :'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)') ' alpha, beta, gamma are their Euler angles.'
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)') ' iprop is the value of their determinant.'
|
||||
CALL printout(0)
|
||||
CALL printout(0)
|
||||
WRITE(buf,'(a)')' SORT alpha beta gamma iprop'
|
||||
CALL printout(0)
|
||||
READ(iusym,'()')
|
||||
DO isrt=1,nsort
|
||||
C Reading the data for the representative atom in case.dmftsym and printing them in case.outdmftpr :
|
||||
C --------------------------------------------------------------------------------------------------
|
||||
iatomref=SUM(nmult(0:isrt-1))+1
|
||||
READ(iusym,'()')
|
||||
DO i=1,3
|
||||
ALLOCATE(bufreal(3))
|
||||
READ(iusym,*) bufreal
|
||||
rotloc(iatomref)%krotm(i,1:3)=bufreal(1:3)
|
||||
DEALLOCATE(bufreal)
|
||||
ENDDO
|
||||
C the field rotloc(iatomref)%krotm = 3x3 matrices of rotation associated to the transformation Rloc
|
||||
C Rloc = <x_global | x_local >. The matrix was not multiplied by the value of iprop before being
|
||||
C written in case.dmftsym (cf. SRC_lapw2/rotmat_dmft.f).
|
||||
C rotloc(iatomref)%krotm can thus be either a proper or an improper rotation (with inversion).
|
||||
C This reading line was chosen to be consistent with the writing line in rotmat_dmft (in SRC_lapw2)
|
||||
READ(iusym,*)rotloc(iatomref)%a,rotloc(iatomref)%b,
|
||||
& rotloc(iatomref)%g, rotloc(iatomref)%iprop
|
||||
WRITE(buf,'(i5,3F10.1,5x,i3)')isrt,
|
||||
& rotloc(iatomref)%a, rotloc(iatomref)%b,
|
||||
& rotloc(iatomref)%g, rotloc(iatomref)%iprop
|
||||
CALL printout(0)
|
||||
rotloc(iatomref)%a=rotloc(iatomref)%a/180d0*Pi
|
||||
rotloc(iatomref)%b=rotloc(iatomref)%b/180d0*Pi
|
||||
rotloc(iatomref)%g=rotloc(iatomref)%g/180d0*Pi
|
||||
C the field rotloc%a is linked to the Euler precession angle (alpha)
|
||||
C the field rotloc%b is linked to the Euler nutation angle (beta)
|
||||
C the field rotloc%c is linked to the Euler intrinsic rotation angle (gamma)
|
||||
C They are read in case.dmftsym and printed in case.outdmftpr in degree and are then transformed into radians
|
||||
C the field rotloc%iprop = value of the transformation determinant (should be 1 in almost all the cases),
|
||||
C determines if there is an inversion in the transformation from global to local basis.
|
||||
rotloc(iatomref)%krotm(1:3,1:3)=rotloc(iatomref)%iprop*
|
||||
& rotloc(iatomref)%krotm(1:3,1:3)
|
||||
C Now, the field rotloc(iatomref)%krotm described only the proper rotation associated to the transformation.
|
||||
C
|
||||
C Use of the subroutine dmat to compute the rotational matrix
|
||||
C associated to the rotloc(iatomref) operation in a (2*l+1) orbital space :
|
||||
ALLOCATE(tmat(1:2*lsym+1,1:2*lsym+1))
|
||||
ALLOCATE(tmp_dmat(1:2*lsym+1,1:2*lsym+1,1:lsym))
|
||||
DO l=1,lsym
|
||||
tmat=0.d0
|
||||
CALL dmat(l,rotloc(iatomref)%a,rotloc(iatomref)%b,
|
||||
& rotloc(iatomref)%g,REAL(rotloc(iatomref)%iprop,KIND=8),
|
||||
& tmat,2*lsym+1)
|
||||
tmp_dmat(1:2*l+1,1:2*l+1,l)=tmat(1:2*l+1,1:2*l+1)
|
||||
C tmp_dmat = D(Rloc)_{lm}
|
||||
ENDDO
|
||||
DEALLOCATE(tmat)
|
||||
C
|
||||
C
|
||||
C Storing the rotloc matrix and initializing the other fields for all equivalent atoms :
|
||||
C --------------------------------------------------------------------------------------
|
||||
C All the equivalent atoms will have the same rotloc description. These data
|
||||
C will be correctly redifined in the subroutine set_rotloc, where the action of the
|
||||
C symmetry operation which transforms the representative atom in the considered one
|
||||
C will be added.
|
||||
DO imu=1,nmult(isrt)
|
||||
iatom=SUM(nmult(0:isrt-1))+imu
|
||||
IF(ifSP.AND.ifSO) THEN
|
||||
C In this case, we have to consider the spinor rotation matrix associated to rotloc
|
||||
C (the value of the Euler angle beta can be anything between 0 and Pi)
|
||||
ALLOCATE(rotloc(iatom)%rotl(1:2*(2*lsym+1),
|
||||
& 1:2*(2*lsym+1),lsym))
|
||||
rotloc(iatom)%rotl=0.d0
|
||||
DO l=1,lsym
|
||||
C For each orbital (from l=0 to lsym)
|
||||
C Calculation of the representation matrix of rotloc in the spin-space
|
||||
C in agreement with Wien conventions used for the definition of spmt (in SRC_lapwdm/sym.f)
|
||||
C Up/up and Dn/dn terms
|
||||
factor=(rotloc(iatomref)%a+rotloc(iatomref)%g)/2.d0
|
||||
spmt(1,1)=EXP(CMPLX(0.d0,factor))
|
||||
& *DCOS(rotloc(iatomref)%b/2.d0)
|
||||
spmt(2,2)=CONJG(spmt(1,1))
|
||||
C Up/dn and Dn/up terms
|
||||
factor=-(rotloc(iatomref)%a-rotloc(iatomref)%g)/2.d0
|
||||
spmt(1,2)=EXP(CMPLX(0.d0,factor))
|
||||
& *DSIN(rotloc(iatomref)%b/2.d0)
|
||||
spmt(2,1)=-CONJG(spmt(1,2))
|
||||
C Up/up block :
|
||||
rotloc(iatom)%rotl(1:2*l+1,1:2*l+1,l)=
|
||||
& spmt(1,1)*tmp_dmat(1:2*l+1,1:2*l+1,l)
|
||||
C Dn/dn block :
|
||||
rotloc(iatom)%rotl(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1),l)=
|
||||
& spmt(2,2)*tmp_dmat(1:2*l+1,1:2*l+1,l)
|
||||
C Up/dn block :
|
||||
rotloc(iatom)%rotl(1:2*l+1,2*l+2:2*(2*l+1),l)=
|
||||
& spmt(1,2)*tmp_dmat(1:2*l+1,1:2*l+1,l)
|
||||
C Dn/up block :
|
||||
rotloc(iatom)%rotl(2*l+2:2*(2*l+1),1:2*l+1,l)=
|
||||
& spmt(2,1)*tmp_dmat(1:2*l+1,1:2*l+1,l)
|
||||
C The fields rotloc(iatom)%rotl now contain D(rotloc)_{lm}xD(rotloc)_{1/2}
|
||||
ENDDO
|
||||
ELSE
|
||||
C In this case, we can consider the spatial rotation matrix only
|
||||
C since each spin space is independent (paramagnetic or spin-polarized without SO computation)
|
||||
ALLOCATE(rotloc(iatom)%rotl(-lsym:lsym,-lsym:lsym,lsym))
|
||||
rotloc(iatom)%rotl=0.d0
|
||||
DO l=1,lsym
|
||||
rotloc(iatom)%rotl(-l:l,-l:l,l)=
|
||||
= tmp_dmat(1:2*l+1,1:2*l+1,l)
|
||||
C The fields rotloc(iatom)%rotl now contain D(rotloc)_{lm}
|
||||
ENDDO
|
||||
ENDIF
|
||||
C The fields rotloc(iatom)%a,b and c will now contain the parameters linked to
|
||||
C the Euler angles of the local rotation rotloc.
|
||||
IF(imu.gt.1) THEN
|
||||
rotloc(iatom)%a=rotloc(iatomref)%a
|
||||
rotloc(iatom)%b=rotloc(iatomref)%b
|
||||
rotloc(iatom)%g=rotloc(iatomref)%g
|
||||
rotloc(iatom)%iprop=rotloc(iatomref)%iprop
|
||||
rotloc(iatom)%krotm(1:3,1:3)=
|
||||
= rotloc(iatomref)%krotm(1:3,1:3)
|
||||
ENDIF
|
||||
C The fields rotloc%phase, timeinv and srotnum are initialized to their
|
||||
C default value.
|
||||
rotloc(iatom)%phase=0.d0
|
||||
rotloc(iatom)%timeinv=.FALSE.
|
||||
rotloc(iatom)%srotnum=0
|
||||
C the field rotloc(iatom)%srotnum and timeinv will be recalculated in set_rotloc.
|
||||
ENDDO
|
||||
DEALLOCATE(tmp_dmat)
|
||||
ENDDO ! End of the isrt loop
|
||||
C
|
||||
C
|
||||
C ====================================================================
|
||||
C Printing the rotloc matrix parameters in the file fort.17 for test :
|
||||
C ====================================================================
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
DO imu=1,nmult(isrt)
|
||||
iatom=SUM(nmult(0:isrt-1))+imu
|
||||
WRITE(17,'()')
|
||||
WRITE(17,'(2(a,i3))')' SORT ',isrt,' IMU= ',imu
|
||||
DO i=1,3
|
||||
ALLOCATE(bufreal(3))
|
||||
bufreal(1:3)=rotloc(iatom)%krotm(i,1:3)
|
||||
WRITE(17,'(3f10.4)') bufreal
|
||||
DEALLOCATE(bufreal)
|
||||
ENDDO
|
||||
WRITE(17,'(a,3f8.1,i4)')'a, b, g, iprop ==',
|
||||
& rotloc(iatom)%a*180d0/Pi,rotloc(iatom)%b*180d0/Pi,
|
||||
& rotloc(iatom)%g*180d0/Pi,rotloc(iatom)%iprop
|
||||
C Printing the data relative to SP option
|
||||
IF (ifSP) THEN
|
||||
WRITE(17,*)'If DIR. magn. mom. is inverted :'
|
||||
& ,rotloc(iatom)%timeinv
|
||||
WRITE(17,*)'phase = ',rotloc(iatom)%phase
|
||||
ENDIF
|
||||
C Printing the rotloc matrices for each orbital number l.
|
||||
WRITE(17,'()')
|
||||
DO l=1,lsym
|
||||
WRITE(17,'(a,a,i2)')'Rotation matrix ',
|
||||
& 'D(R[isym])_{lm} for l = ',l
|
||||
IF(ifSP.AND.ifSO) THEN
|
||||
DO m=1,2*(2*l+1)
|
||||
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
||||
bufcomp(1:2*(2*l+1))=rotloc(iatom)%rotl(m,1:2*(2*l+1),l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ELSE
|
||||
DO m=-l,l
|
||||
ALLOCATE(bufcomp(-l:l))
|
||||
bufcomp(-l:l)=rotloc(iatom)%rotl(m,-l:l,l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
C
|
||||
C ==================================================================================
|
||||
C Computation of the true local rotation matrices for each non representative atom :
|
||||
C ==================================================================================
|
||||
CALL set_rotloc
|
||||
C
|
||||
C
|
||||
C ====================================================================
|
||||
C Printing the rotloc matrix parameters in the file fort.17 for test :
|
||||
C ====================================================================
|
||||
DO isrt=1,nsort
|
||||
IF (notinclude(isrt)) cycle
|
||||
DO imu=1,nmult(isrt)
|
||||
iatom=SUM(nmult(0:isrt-1))+imu
|
||||
WRITE(17,'()')
|
||||
WRITE(17,'(2(a,i3))')' SORT ',isrt,' IMU= ',imu
|
||||
DO i=1,3
|
||||
ALLOCATE(bufreal(3))
|
||||
bufreal(1:3)=rotloc(iatom)%krotm(i,1:3)
|
||||
WRITE(17,'(3f10.4)') bufreal
|
||||
DEALLOCATE(bufreal)
|
||||
ENDDO
|
||||
WRITE(17,'(a,3f8.1,i4)')'a, b, g, iprop ==',
|
||||
& rotloc(iatom)%a*180d0/Pi,rotloc(iatom)%b*180d0/Pi,
|
||||
& rotloc(iatom)%g*180d0/Pi,rotloc(iatom)%iprop
|
||||
C Printing the data relative to SP option
|
||||
IF (ifSP) THEN
|
||||
WRITE(17,*)'If DIR. magn. mom. is inverted :'
|
||||
& ,rotloc(iatom)%timeinv
|
||||
WRITE(17,*)'phase = ',rotloc(iatom)%phase
|
||||
ENDIF
|
||||
C Printing the rotloc matrices for each orbital number l.
|
||||
WRITE(17,'()')
|
||||
DO l=1,lsym
|
||||
WRITE(17,'(a,a,i2)')'Rotation matrix ',
|
||||
& 'D(R[isym])_{lm} for l = ',l
|
||||
IF(ifSP.AND.ifSO) THEN
|
||||
DO m=1,2*(2*l+1)
|
||||
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
||||
bufcomp(1:2*(2*l+1))=rotloc(iatom)%rotl(m,1:2*(2*l+1),l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ELSE
|
||||
DO m=-l,l
|
||||
ALLOCATE(bufcomp(-l:l))
|
||||
bufcomp(-l:l)=rotloc(iatom)%rotl(m,-l:l,l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDDO
|
||||
C Printing the matrices rotrep(l)%mat
|
||||
WRITE(17,'()')
|
||||
DO l=1,lsym
|
||||
IF (lsort(l,isrt)==0) cycle
|
||||
WRITE(17,'(a,i2)')'Representation for l= ',l
|
||||
IF (ifSP.AND.ifSO) THEN
|
||||
DO m=1,2*(2*l+1)
|
||||
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
||||
bufcomp(1:2*(2*l+1))=
|
||||
& rotloc(iatom)%rotrep(l)%mat(m,1:2*(2*l+1))
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ELSE
|
||||
DO m=-l,l
|
||||
ALLOCATE(bufcomp(-l:l))
|
||||
bufcomp(-l:l)=
|
||||
& rotloc(iatom)%rotrep(l)%mat(m,-l:l)
|
||||
WRITE(17,'(7(2f7.3,x))') bufcomp
|
||||
DEALLOCATE(bufcomp)
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
|
||||
|
||||
Subroutine dmat(l,a,b,c,det,DD,length)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine computes the inverse of the matrix of the %%
|
||||
C %% representation of size (2*l+1) associated to the rotation %%
|
||||
C %% described by (a,b,c) angles in Euler description and with %%
|
||||
C %% determinant det. %%
|
||||
C %% The obtained matrix is put in the variable DD. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
IMPLICIT REAL*8 (A-H,O-Z)
|
||||
INTEGER l,m,n,ifac,length
|
||||
COMPLEX*16 izero,imag, dd
|
||||
dimension DD(length,length)
|
||||
imag=(0d0,1d0)
|
||||
izero=(0d0,0d0)
|
||||
pi=acos(-1d0)
|
||||
|
||||
do m=-l,l
|
||||
do n=-l,l
|
||||
call d_matrix(l,m,n,b,dm)
|
||||
if (det.lt.-0.5) then
|
||||
dd(l+m+1,n+l+1)=(-1)**l*cdexp(imag*n*a)
|
||||
& *cdexp(imag*m*c)*dm
|
||||
else
|
||||
dd(l+m+1,n+l+1)=cdexp(imag*n*a)
|
||||
& *cdexp(imag*m*c)*dm
|
||||
end if
|
||||
3 format(2I3,2f10.6)
|
||||
end do
|
||||
end do
|
||||
do j=1,2*l+1
|
||||
end do
|
||||
5 format(7(2f6.3,1X))
|
||||
|
||||
end
|
||||
|
||||
|
||||
Subroutine d_matrix(l,m,n,b,dm)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine is called by the subroutine dmat to compute the %%
|
||||
C %% the value of the coefficient dm. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
IMPLICIT REAL*8 (A-H,O-Z)
|
||||
INTEGER l,m,n,t
|
||||
|
||||
sum=0d0
|
||||
|
||||
f1=dfloat(ifac(l+m)*ifac(l-m))/
|
||||
& dfloat(ifac(l+n)*ifac(l-n))
|
||||
|
||||
do t=0,2*l
|
||||
if ((l-m-t).ge.0.AND.(l-n-t).ge.0.AND.(t+n+m).ge.0) then
|
||||
C general factor
|
||||
f2=dfloat(ifac(l+n)*ifac(l-n))/dfloat(ifac(l-m-t)
|
||||
& *ifac(m+n+t)*ifac(l-n-t)*ifac(t))
|
||||
C factor with sin(b/2)
|
||||
if ((2*l-m-n-2*t).eq.0) then
|
||||
f3=1.
|
||||
else
|
||||
f3=(sin(b/2))**(2*l-m-n-2*t)
|
||||
end if
|
||||
C factor with cos(b/2)
|
||||
if ((2*t+n+m).eq.0) then
|
||||
f4=1.
|
||||
else
|
||||
f4=(cos(b/2))**(2*t+n+m)
|
||||
end if
|
||||
! write(12,*)f1,f2,f3,f4
|
||||
sum=sum+(-1)**(l-m-t)*f2*f3*f4
|
||||
end if
|
||||
end do
|
||||
|
||||
dm=sqrt(f1)*sum
|
||||
end
|
||||
|
||||
|
||||
Integer Function ifac(n)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine computes the factorial of the number n %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
if (n.eq.0) then
|
||||
ifac=1
|
||||
else
|
||||
ifac=1
|
||||
do j=1,n
|
||||
ifac=ifac*j
|
||||
end do
|
||||
end if
|
||||
end
|
||||
|
||||
|
||||
SUBROUTINE spinrotmat(spinrot,isym,l)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine sets up the complete spinor rotation matrix %%
|
||||
C %% associated to the symmetry operation isym for the orbital l. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definition of the variables :
|
||||
C -----------------------------
|
||||
USE common_data
|
||||
USE symm
|
||||
IMPLICIT NONE
|
||||
INTEGER :: l,isym
|
||||
COMPLEX(KIND=8) :: ephase, det
|
||||
REAL(KIND=8) :: factor
|
||||
COMPLEX(KIND=8), DIMENSION(1:2*(2*l+1),1:2*(2*l+1)) :: spinrot
|
||||
COMPLEX(KIND=8), DIMENSION(1:2,1:2) :: spmt
|
||||
C
|
||||
spinrot=0.d0
|
||||
C For a computation with spin polarized inputs :
|
||||
IF (ifSP) THEN
|
||||
IF (srot(isym)%timeinv) THEN
|
||||
C In this case, the Euler angle Beta is Pi. The spinor rotation matrix is block-antidiagonal and
|
||||
C the time reversal operation will be applied to keep the direction of the magnetization.
|
||||
C Up/dn block :
|
||||
factor=srot(isym)%phase/2.d0
|
||||
C We remind that the field phase is (g-a) in this case.
|
||||
C as a result, ephase = exp(+i(g-a)/2) = -exp(+i(alpha-gamma)/2)
|
||||
C in good agreement with Wien conventions for the definition of this phase factor.
|
||||
ephase=EXP(CMPLX(0.d0,factor))
|
||||
spinrot(1:2*l+1,2*l+2:2*(2*l+1))=
|
||||
= ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
C Dn/up block :
|
||||
ephase=-CONJG(ephase)
|
||||
C now, ephase = -exp(+i(a-g)/2) = exp(-i(alpha-gamma)/2)
|
||||
spinrot(2*l+2:2*(2*l+1),1:2*l+1)=
|
||||
= ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
ELSE
|
||||
C In this case, the Euler angle Beta is 0. The spinor rotation matrix is block-diagonal and
|
||||
C no time reversal operation will be applied.
|
||||
C Up/up block :
|
||||
factor=srot(isym)%phase/2.d0
|
||||
C We remind that the field phase is (a+g) in this case.
|
||||
C as a result, ephase = exp(+i(a+g)/2)=-exp(-i(alpha+gamma)/2)
|
||||
C in good agreement with Wien conventions for the definition of this phase factor.
|
||||
ephase=EXP(CMPLX(0.d0,factor))
|
||||
spinrot(1:2*l+1,1:2*l+1)=
|
||||
= ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
C Dn/dn block :
|
||||
ephase=CONJG(ephase)
|
||||
C now, ephase = exp(-i(a+g)/2) = -exp(+i(alpha+gamma)/2)
|
||||
spinrot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
|
||||
= ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
ENDIF
|
||||
ELSE
|
||||
C For a computation with paramagnetic treatment input files. (not used in this version)
|
||||
C
|
||||
C In this case, there is no restriction on the value of the Euler angle beta.
|
||||
C The general definition of a spinor rotation matrix is used.
|
||||
C
|
||||
C Calculation of the representation matrix of isym in the spin-space
|
||||
C in agreement with Wien conventions used for the definition of spmt (in SRC_lapwdm/sym.f)
|
||||
C Up/up and Dn/dn terms
|
||||
factor=(srot(isym)%a+srot(isym)%g)/2.d0
|
||||
spmt(1,1)=EXP(CMPLX(0.d0,factor))*DCOS(srot(isym)%b/2.d0)
|
||||
spmt(2,2)=CONJG(spmt(1,1))
|
||||
C Up/dn and Dn/up terms
|
||||
factor=-(srot(isym)%a-srot(isym)%g)/2.d0
|
||||
spmt(1,2)=EXP(CMPLX(0.d0,factor))*DSIN(srot(isym)%b/2.d0)
|
||||
spmt(2,1)=-CONJG(spmt(1,2))
|
||||
C Up/up block :
|
||||
spinrot(1:2*l+1,1:2*l+1)=
|
||||
& spmt(1,1)*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
C Dn/dn block :
|
||||
spinrot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
|
||||
& spmt(2,2)*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
C Up/dn block :
|
||||
spinrot(1:2*l+1,2*l+2:2*(2*l+1))=
|
||||
& spmt(1,2)*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
C Dn/up block :
|
||||
spinrot(2*l+2:2*(2*l+1),1:2*l+1)=
|
||||
& spmt(2,1)*srot(isym)%rotl(-l:l,-l:l,l)
|
||||
ENDIF
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
292
fortran/dmftproj/symmetrize_mat.f
Normal file
292
fortran/dmftproj/symmetrize_mat.f
Normal file
@ -0,0 +1,292 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE symmetrize_mat(Dmat,orbit,norbit)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine applies the symmetry operations to the %%
|
||||
C %% density matrices stored in Dmat and puts the resulting %%
|
||||
C %% density matrices into the local coordinate system. %%
|
||||
C %% %%
|
||||
C %% This version can be used for SO computations. %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definition of the variables :
|
||||
C ----------------------------
|
||||
USE common_data
|
||||
USE projections
|
||||
USE symm
|
||||
USE reps
|
||||
IMPLICIT NONE
|
||||
INTEGER :: norbit
|
||||
TYPE(matrix), DIMENSION(nsp,norbit) :: Dmat
|
||||
COMPLEX(KIND=8),DIMENSION(:,:,:,:), ALLOCATABLE :: sym_dmat
|
||||
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: tmp_mat
|
||||
COMPLEX(KIND=8):: ephase
|
||||
TYPE(orbital), DIMENSION(norbit) :: orbit
|
||||
INTEGER :: isym, iorb, iatom, jorb, is, is1, l, i, m
|
||||
INTEGER :: isrt, jatom, imult, asym
|
||||
C
|
||||
C =========================================
|
||||
C Computation of the symmetrized matrices :
|
||||
C =========================================
|
||||
C
|
||||
iorb=1
|
||||
C Initialization of the iorb index.
|
||||
DO WHILE (iorb.lt.(norbit+1))
|
||||
C The use of the while-loop was motivated by the idea of studying
|
||||
C all the orbitals iorb associated to a same atomic sort isrt together.
|
||||
C At the end, the index iorb is incremented by nmult(isrt) so that the
|
||||
C following studied orbitals are associated to another atomic sort.
|
||||
l=orbit(iorb)%l
|
||||
isrt=orbit(iorb)%sort
|
||||
C
|
||||
C -----------------------------------------------------------------------------------
|
||||
C The s-orbitals are a particular case of a "non-mixing" basis and are treated here :
|
||||
C -----------------------------------------------------------------------------------
|
||||
IF (l==0) THEN
|
||||
C The table sym_dmat will store the symmetrized value of the density matrices of Dmat
|
||||
C associated to a same atomic sort isrt.
|
||||
ALLOCATE(sym_dmat(1,1,nsp,1:nmult(isrt)))
|
||||
sym_dmat=0.d0
|
||||
C Its size is nmult(isrt) because symmetry operations can transform the representants
|
||||
C of a same atomic sort one into another.
|
||||
C
|
||||
C Loop on the representants of the atomic sort isrt
|
||||
DO imult=0,nmult(isrt)-1
|
||||
iatom=orbit(iorb+imult)%atom
|
||||
C Loop on the symmetry operations of the system
|
||||
DO isym=1,nsym
|
||||
DO is=1,nsp
|
||||
ALLOCATE(tmp_mat(1,1))
|
||||
C If the calculation uses spin-polarized input files, the application of the symmetry operation
|
||||
C depends on the field srot%timeinv.
|
||||
IF(ifSP.AND.srot(isym)%timeinv) THEN
|
||||
C In this case (spin-polarized computation), the symmetry operation is block-diagonal in spin-space but
|
||||
C the time reversal operator is included.
|
||||
tmp_mat(1,1)=CONJG(Dmat(is,iorb+imult)%mat(1,1))
|
||||
C because of the antiunitarity of the operator, the conjugate of Dmat must be use
|
||||
ELSE
|
||||
tmp_mat(1,1)=Dmat(is,iorb+imult)%mat(1,1)
|
||||
ENDIF
|
||||
C
|
||||
C Definition of the index where the transformed Dmat will be stored. [jorb = R[isym](iorb)]
|
||||
jorb=srot(isym)%perm(iatom)-iatom+(imult+1)
|
||||
C
|
||||
C Computation of the phase factors in the case of a SO computation :
|
||||
C ------------------------------------------------------------------
|
||||
C For up/up and dn/dn blocks, no phase factor is needed.
|
||||
ephase=1.d0
|
||||
C For the up/dn block, initialisation of the phase factor
|
||||
IF(is==3) THEN
|
||||
ephase=EXP(CMPLX(0d0,srot(isym)%phase))
|
||||
C if srot%timeinv = .TRUE. , phase= g-a = 2pi+(alpha-gamma) and ephase = exp(+i(g-a)) = exp(+i(alpha-gamma))
|
||||
C if srot%timeinv = .FALSE., phase= a+g = 2pi-(alpha+gamma) and ephase = exp(+i(a+g)) = exp(-i(alpha+gamma))
|
||||
ENDIF
|
||||
C For the dn/up block, initialisation of the phase factor
|
||||
IF(is==4) THEN
|
||||
ephase=EXP(CMPLX(0d0,-srot(isym)%phase))
|
||||
C if srot%timeinv = .TRUE. , phase= g-a = 2pi+(alpha-gamma) and ephase = exp(-i(g-a)) = exp(-i(alpha-gamma))
|
||||
C if srot%timeinv = .FALSE., phase= a+g = 2pi-(alpha+gamma) and ephase = exp(-i(a+g)) = exp(+i(alpha+gamma))
|
||||
ENDIF
|
||||
C
|
||||
C Application of the symmetry operation which changes iorb in jorb=R[isym](iorb) :
|
||||
C --------------------------------------------------------------------------------
|
||||
C That's why the result is stored in the jorb section of sym_dmat.
|
||||
sym_dmat(1,1,is,jorb)=
|
||||
= sym_dmat(1,1,is,jorb)+tmp_mat(1,1)*ephase
|
||||
DEALLOCATE(tmp_mat)
|
||||
ENDDO ! End of the is loop
|
||||
ENDDO ! End of the isym loop
|
||||
ENDDO ! End of the imult loop
|
||||
C
|
||||
C Renormalization of the symmetrized density matrices :
|
||||
C -----------------------------------------------------
|
||||
IF (nsym.gt.0) THEN
|
||||
DO imult=0,nmult(isrt)-1
|
||||
DO is=1,nsp
|
||||
Dmat(is,iorb+imult)%mat(1,1)=
|
||||
& sym_dmat(1,1,is,imult+1)/nsym
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDIF
|
||||
DEALLOCATE(sym_dmat)
|
||||
C Incrementation of the iorb index (for the while loop)
|
||||
iorb=iorb+nmult(isrt)
|
||||
C
|
||||
C -----------------------------------------------------------------------------------------------------
|
||||
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) :
|
||||
C -----------------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C The table sym_dmat will store the symmetrized value of the density matrices of Dmat
|
||||
C associated to a same atomic sort isrt.
|
||||
ALLOCATE(sym_dmat(1:2*(2*l+1),1:2*(2*l+1),1,1:nmult(isrt)))
|
||||
sym_dmat=0.d0
|
||||
C Its size is nmult(isrt) because symmetry operations can transform the representants
|
||||
C of a same atomic sort one into another.
|
||||
C
|
||||
C Loop on the representants of the atomic sort isrt
|
||||
DO imult=0,nmult(isrt)-1
|
||||
iatom=orbit(iorb+imult)%atom
|
||||
C Loop on the symmetry operations of the system
|
||||
DO isym=1,nsym
|
||||
ALLOCATE(tmp_mat(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
C We use the complete spin-space representation, so no trick on indices is necessary.
|
||||
tmp_mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
& Dmat(1,iorb+imult)%mat(1:2*(2*l+1),1:2*(2*l+1))
|
||||
C If the calculation is spin-polarized, the symmetry operator is antiunitary.
|
||||
IF(ifSP.AND.srot(isym)%timeinv) THEN
|
||||
tmp_mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
& CONJG(tmp_mat(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
ENDIF
|
||||
C Definition of the index where the transformed Dmat will be stored. [jorb = R[isym](iorb)]
|
||||
jorb=srot(isym)%perm(iatom)-iatom+(imult+1)
|
||||
C Application of the symmetry operation :
|
||||
C ---------------------------------------
|
||||
C The transformation is : srot%rotrep.tmpmat(iorb).inverse(sort%rotrep) = Dmat(jorb)
|
||||
C or in other words, if R is a simple symmetry D(R[isym]) tmpmat(iorb) D(inverse(R[isym])) = Dmat(R[isym](iorb))
|
||||
C if R is multiplied by Theta D(R[isym]) tmpmat(iorb)* D(inverse(R[isym]))* = Dmat(R[isym](iorb))
|
||||
tmp_mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= MATMUL(tmp_mat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& TRANSPOSE(CONJG(srot(isym)%rotrep(l,isrt)
|
||||
% %mat(1:2*(2*l+1),1:2*(2*l+1)) )) )
|
||||
sym_dmat(1:2*(2*l+1),1:2*(2*l+1),1,jorb)=
|
||||
= sym_dmat(1:2*(2*l+1),1:2*(2*l+1),1,jorb)+
|
||||
+ MATMUL( srot(isym)%rotrep(l,isrt)
|
||||
% %mat(1:2*(2*l+1),1:2*(2*l+1)) ,
|
||||
& tmp_mat(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
DEALLOCATE(tmp_mat)
|
||||
ENDDO ! End of the isym loop
|
||||
ENDDO ! End of the imult loop
|
||||
C Renormalization of the symmetrized density matrices :
|
||||
C -----------------------------------------------------
|
||||
IF (nsym.gt.0) THEN
|
||||
DO imult=0,nmult(isrt)-1
|
||||
Dmat(1,iorb+imult)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
||||
= sym_dmat(1:2*(2*l+1),1:2*(2*l+1),1,imult+1)/nsym
|
||||
ENDDO
|
||||
ENDIF
|
||||
DEALLOCATE(sym_dmat)
|
||||
C Incrementation of the iorb index (for the while loop)
|
||||
iorb=iorb+nmult(isrt)
|
||||
C
|
||||
C ----------------------------------------------------------------------------------------------
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
|
||||
C ----------------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
C The table sym_dmat will store the symmetrized value of the density matrices of Dmat
|
||||
C associated to a same atomic sort isrt.
|
||||
ALLOCATE(sym_dmat(-l:l,-l:l,nsp,1:nmult(isrt)))
|
||||
sym_dmat=0.d0
|
||||
C Its size is nmult(isrt) because symmetry operations can transform the representants
|
||||
C of a same atomic sort one into another.
|
||||
C
|
||||
C Loop on the representants of the atomic sort isrt
|
||||
DO imult=0,nmult(isrt)-1
|
||||
iatom=orbit(iorb+imult)%atom
|
||||
C Loop on the symmetry operations of the system
|
||||
asym=0
|
||||
DO isym=1,nsym
|
||||
DO is=1,nsp
|
||||
ALLOCATE(tmp_mat(-l:l,-l:l))
|
||||
C If the calculation uses spin-polarized input files, the application of the symmetry operation
|
||||
C depends on the field srot%timeinv.
|
||||
IF(ifSP.AND.srot(isym)%timeinv) THEN
|
||||
C In this case (spin-polarized computation), the symmetry operation is block-diagonal in spin-space but
|
||||
C the time reversal operatot is included.
|
||||
tmp_mat(-l:l,-l:l)=CONJG(
|
||||
& Dmat(is,iorb+imult)%mat(-l:l,-l:l))
|
||||
C because of antiunitarity of the operator, the conjugate of Dmat must be use
|
||||
ELSE
|
||||
tmp_mat(-l:l,-l:l)=
|
||||
& Dmat(is,iorb+imult)%mat(-l:l,-l:l)
|
||||
ENDIF
|
||||
C
|
||||
C Definition of the index where the transformed Dmat will be stored. [jorb = R[isym](iorb)]
|
||||
jorb=srot(isym)%perm(iatom)-iatom+(imult+1)
|
||||
C
|
||||
C Computation of the phase factors in the case of a SO computation :
|
||||
C ------------------------------------------------------------------
|
||||
C For up/up and dn/dn blocks, no phase factor is needed.
|
||||
ephase=1.d0
|
||||
C For the up/dn block, initialisation of the phase factor
|
||||
IF(is==3) THEN
|
||||
ephase=EXP(CMPLX(0d0,srot(isym)%phase))
|
||||
C if srot%timeinv = .TRUE. , phase= g-a = 2pi+(alpha-gamma) and ephase = exp(+i(g-a)) = exp(+i(alpha-gamma))
|
||||
C if srot%timeinv = .FALSE., phase= a+g = 2pi-(alpha+gamma) and ephase = exp(+i(a+g)) = exp(-i(alpha+gamma))
|
||||
ENDIF
|
||||
C For the dn/up block, initialisation of the phase factor
|
||||
IF(is==4) THEN
|
||||
ephase=EXP(CMPLX(0d0,-srot(isym)%phase))
|
||||
C if srot%timeinv = .TRUE. , phase= g-a = 2pi+(alpha-gamma) and ephase = exp(-i(g-a)) = exp(-i(alpha-gamma))
|
||||
C if srot%timeinv = .FALSE., phase= a+g = 2pi-(alpha+gamma) and ephase = exp(-i(a+g)) = exp(+i(alpha+gamma))
|
||||
ENDIF
|
||||
C
|
||||
C Application of the symmetry operation which changes iorb in jorb :
|
||||
C ------------------------------------------------------------------
|
||||
C The transformation is : srot%rotrep.tmpmat(iorb).inverse(sort%rotrep) = Dmat(jorb)
|
||||
C or in other words, if R is a simple symmetry D(R[isym]) tmpmat(iorb) D(inverse(R[isym])) = Dmat(R[isym](iorb))
|
||||
C if R is multiplied by T D(R[isym]) tmpmat(iorb)* D(inverse(R[isym]))* = Dmat(R[isym](iorb))
|
||||
tmp_mat(-l:l,-l:l)=
|
||||
= MATMUL(tmp_mat(-l:l,-l:l),
|
||||
& TRANSPOSE(CONJG( srot(isym)
|
||||
& %rotrep(l,isrt)%mat(-l:l,-l:l) )) )
|
||||
sym_dmat(-l:l,-l:l,is,jorb)=
|
||||
= sym_dmat(-l:l,-l:l,is,jorb)+
|
||||
+ MATMUL(srot(isym)%rotrep(l,isrt)%mat(-l:l,-l:l),
|
||||
& tmp_mat(-l:l,-l:l) )*ephase
|
||||
DEALLOCATE(tmp_mat)
|
||||
ENDDO ! End of the is loop
|
||||
ENDDO ! End of the isym loop
|
||||
ENDDO ! End of the imult loop
|
||||
C
|
||||
C Renormalization of the symmetrized density matrices :
|
||||
C -----------------------------------------------------
|
||||
IF (nsym.gt.0) THEN
|
||||
DO imult=0,nmult(isrt)-1
|
||||
DO is=1,nsp
|
||||
Dmat(is,iorb+imult)%mat(-l:l,-l:l)=
|
||||
= sym_dmat(-l:l,-l:l,is,imult+1)/(nsym-asym)
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDIF
|
||||
DEALLOCATE(sym_dmat)
|
||||
C Incrementation of the iorb index (for the while loop)
|
||||
iorb=iorb+nmult(isrt)
|
||||
ENDIF ! End of the type basis if-then-else
|
||||
C
|
||||
ENDDO ! End of the while(iorb) loop
|
||||
C
|
||||
C
|
||||
C =============================================================
|
||||
C Application of the time reversal operation if paramagnetism :
|
||||
C =============================================================
|
||||
C If the system is paramagnetic, the magnetic group of the system
|
||||
C is a type II Shubnikov group and time-reveral symmetry must be added
|
||||
C to achieve the complete symmetrization.
|
||||
IF (.not.ifSP) THEN
|
||||
CALL add_timeinv(Dmat,orbit,norbit)
|
||||
END IF
|
||||
C
|
||||
RETURN
|
||||
END
|
289
fortran/dmftproj/timeinv.f
Normal file
289
fortran/dmftproj/timeinv.f
Normal file
@ -0,0 +1,289 @@
|
||||
|
||||
c ******************************************************************************
|
||||
c
|
||||
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
c
|
||||
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||||
c
|
||||
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
c terms of the GNU General Public License as published by the Free Software
|
||||
c Foundation, either version 3 of the License, or (at your option) any later
|
||||
c version.
|
||||
c
|
||||
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
c details.
|
||||
c
|
||||
c You should have received a copy of the GNU General Public License along with
|
||||
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
c
|
||||
c *****************************************************************************/
|
||||
|
||||
SUBROUTINE timeinv_op(mat,lm,l,isrt)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine applies the time reversal operation to the %%
|
||||
C %% matrix mat which is associated to the l orbital of the atomic %%
|
||||
C %% isrt. (matrix size = lm) The matrix mat is assumed to already %%
|
||||
C %% be in the desired basis associated to isrt. %%
|
||||
C %% The calculation done is : %%
|
||||
C %% reptrans*T*conjg((inv(reptrans))*conjg(mat) %%
|
||||
C %% %%
|
||||
C %% If isrt=0, the matrix mat is assumed to be in the spherical %%
|
||||
C %% harmonics basis and no spin is considered. (lm = 2*l+1) %%
|
||||
C %% The calculation done is then : T*conjg(mat) %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data
|
||||
USE reps
|
||||
IMPLICIT NONE
|
||||
INTEGER :: lm,l,isrt
|
||||
COMPLEX(KIND=8), DIMENSION(1:lm,1:lm) :: mat
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tinv
|
||||
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_tinv
|
||||
COMPLEX(KIND=8), DIMENSION(-l:l,-l:l) :: tmat
|
||||
INTEGER :: m,n
|
||||
C
|
||||
C Definition of the complex conjugation operator in the spherical harmonic basis :
|
||||
C --------------------------------------------------------------------------------
|
||||
C
|
||||
tmat = CMPLX(0.d0,0.d0)
|
||||
DO m=-l,l
|
||||
tmat(m,-m)=(-1)**m
|
||||
END DO
|
||||
C
|
||||
C
|
||||
C Calculation of the Time-reversal operator in the desired representation basis :
|
||||
C -------------------------------------------------------------------------------
|
||||
C
|
||||
IF (isrt==0) THEN
|
||||
C The case isrt=0 is a "default case" :
|
||||
C mat is in the spherical harmonic basis (without spinor representation)
|
||||
ALLOCATE(tinv(1:2*l+1,1:2*l+1))
|
||||
tinv(1:2*l+1,1:2*l+1)=tmat(-l:l,-l:l)
|
||||
ELSE
|
||||
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
||||
IF (reptrans(l,isrt)%ifmixing) THEN
|
||||
ALLOCATE(tinv(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
ALLOCATE(tmp_tinv(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
tinv = CMPLX(0.d0,0.d0)
|
||||
tmp_tinv = CMPLX(0.d0,0.d0)
|
||||
C Definition of the time-reversal operator as a spinor-operator (multiplication by -i.sigma_y)
|
||||
tinv(1:2*l+1,2*l+2:2*(2*l+1))=-tmat(-l:l,-l:l)
|
||||
tinv(2*l+2:2*(2*l+1),1:2*l+1)=tmat(-l:l,-l:l)
|
||||
C The time reversal operator is put in the desired basis.
|
||||
tmp_tinv(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
||||
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& tinv(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
tinv(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
||||
& tmp_tinv(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& TRANSPOSE(reptrans(l,isrt)%transmat
|
||||
& (1:2*(2*l+1),1:2*(2*l+1)) ) )
|
||||
C the result tinv = (reptrans)*tinv*transpose(reptrans)
|
||||
C or tinv_{new_i} = <new_i|lm> tinv_{lm} (<lm|new_i>)*
|
||||
C which is exactly the expression of the spinor operator in the new basis.
|
||||
DEALLOCATE(tmp_tinv)
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
||||
ELSE
|
||||
ALLOCATE(tinv(1:2*l+1,1:2*l+1))
|
||||
ALLOCATE(tmp_tinv(-l:l,-l:l))
|
||||
tinv = CMPLX(0.d0,0.d0)
|
||||
tmp_tinv = CMPLX(0.d0,0.d0)
|
||||
C The time reversal operator is put in the desired basis.
|
||||
tmp_tinv(-l:l,-l:l)=MATMUL(
|
||||
& reptrans(l,isrt)%transmat(-l:l,-l:l),
|
||||
& tmat(-l:l,-l:l) )
|
||||
tinv(1:2*l+1,1:2*l+1)=MATMUL(
|
||||
& tmp_tinv(-l:l,-l:l),TRANSPOSE(
|
||||
& reptrans(l,isrt)%transmat(-l:l,-l:l)) )
|
||||
DEALLOCATE(tmp_tinv)
|
||||
END IF
|
||||
C the result tinv = (reptrans)*tinv*transpose(reptrans)
|
||||
C or tinv_{new_i} = <new_i|lm> tinv_{lm} (<lm|new_i>)*
|
||||
C which is exactly the expression of the operator in the new basis.
|
||||
END IF
|
||||
C
|
||||
C
|
||||
C Multiplication of the matrix mat by the time reversal operator :
|
||||
C ----------------------------------------------------------------
|
||||
C
|
||||
mat(1:lm,1:lm) = MATMUL(
|
||||
& tinv(1:lm,1:lm),CONJG(mat(1:lm,1:lm)) )
|
||||
DEALLOCATE(tinv)
|
||||
C The multiplication is the product of tinv and (mat)*
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
|
||||
SUBROUTINE add_timeinv(Dmat,orbit,norbit)
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
C %% %%
|
||||
C %% This subroutine calculates for each density matrix in Dmat %%
|
||||
C %% its image by the time-reversal operator and adds it to the %%
|
||||
C %% former one to get a time-symmetrized result. %%
|
||||
C %% %%
|
||||
C %% This operation is done only if the computation is paramagnetic %%
|
||||
C %% %%
|
||||
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
C Definiton of the variables :
|
||||
C ----------------------------
|
||||
USE common_data
|
||||
USE projections
|
||||
USE symm
|
||||
USE reps
|
||||
IMPLICIT NONE
|
||||
INTEGER :: norbit
|
||||
TYPE(matrix), DIMENSION(nsp,norbit) :: Dmat
|
||||
COMPLEX(KIND=8),DIMENSION(:,:,:), ALLOCATABLE :: rot_dmat
|
||||
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: time_op
|
||||
COMPLEX(KIND=8),DIMENSION(:,:,:), ALLOCATABLE :: tmp_mat
|
||||
COMPLEX(KIND=8):: ephase
|
||||
TYPE(orbital), DIMENSION(norbit) :: orbit
|
||||
INTEGER :: isym, iorb, iatom, jorb, is, is1, l, i
|
||||
INTEGER :: isrt, jatom, imult, m
|
||||
C
|
||||
C
|
||||
DO iorb=1,norbit
|
||||
l=orbit(iorb)%l
|
||||
isrt=orbit(iorb)%sort
|
||||
iatom=orbit(iorb)%atom
|
||||
C -----------------------------------------------------------------------------------
|
||||
C The s-orbitals are a particular case of a "non-mixing" basis and are treated here :
|
||||
C -----------------------------------------------------------------------------------
|
||||
IF(l==0) THEN
|
||||
IF (nsp==1) THEN
|
||||
Dmat(1,iorb)%mat(1,1) =
|
||||
& ( Dmat(1,iorb)%mat(1,1)+
|
||||
& CONJG(Dmat(1,iorb)%mat(1,1)) )/2.d0
|
||||
ELSE
|
||||
ALLOCATE(tmp_mat(1,1,nsp))
|
||||
tmp_mat=0.d0
|
||||
C Application of the time-reversal operation
|
||||
C ------------------------------------------
|
||||
DO is=1,nsp
|
||||
is1=is+(-1)**(is+1)
|
||||
C the time reversal operation transforms up/up -1- in dn/dn -2- and up/dn -3- in dn/up -4- (and vice versa)
|
||||
tmp_mat(1,1,is)=CONJG(Dmat(is1,iorb)%mat(1,1) )
|
||||
IF (is.gt.2) tmp_mat(1,1,is)=-tmp_mat(1,1,is)
|
||||
C Off diagonal blocks are multiplied by (-1).
|
||||
ENDDO
|
||||
C Symmetrization of Dmat :
|
||||
C ------------------------
|
||||
DO is=1,nsp
|
||||
Dmat(is,iorb)%mat(1,1) = (Dmat(is,iorb)%mat(1,1)+
|
||||
& tmp_mat(1,1,is) )/2.d0
|
||||
ENDDO
|
||||
DEALLOCATE(tmp_mat)
|
||||
ENDIF
|
||||
C -----------------------------------------------------------------------------------------------------
|
||||
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) :
|
||||
C -----------------------------------------------------------------------------------------------------
|
||||
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||||
C Calculation of the time-reversal operator :
|
||||
C -------------------------------------------
|
||||
ALLOCATE(time_op(1:2*(2*l+1),1:2*(2*l+1)))
|
||||
time_op(:,:)=0.d0
|
||||
DO m=1,2*(2*l+1)
|
||||
time_op(m,m)=1.d0
|
||||
ENDDO
|
||||
C time_op is Identity.
|
||||
CALL timeinv_op(time_op,2*(2*l+1),l,isrt)
|
||||
C time_op is now the time-reversal operator in the desired basis ({new_i})
|
||||
C
|
||||
C Application of the time-reversal operation
|
||||
C ------------------------------------------
|
||||
ALLOCATE(tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1))
|
||||
tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1)=
|
||||
= MATMUL(Dmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& TRANSPOSE(time_op(1:2*(2*l+1),1:2*(2*l+1)) ) )
|
||||
tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1)=
|
||||
= MATMUL(time_op(1:2*(2*l+1),1:2*(2*l+1)),
|
||||
& CONJG(tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1) ) )
|
||||
C The operation performed is : time_op.conjugate(Dmat).transpose(conjugate(time_op))
|
||||
C or in other words, D(T)_{new_i} . Dmat* . D(inverse(T))*_{new_i}
|
||||
C
|
||||
C Symmetrization of Dmat :
|
||||
C ------------------------
|
||||
Dmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1)) =
|
||||
& ( Dmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1)) +
|
||||
& tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1) )/2.d0
|
||||
DEALLOCATE(tmp_mat)
|
||||
DEALLOCATE(time_op)
|
||||
C ----------------------------------------------------------------------------------------------
|
||||
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
|
||||
C ----------------------------------------------------------------------------------------------
|
||||
ELSE
|
||||
C Calculation of the time-reversal operator :
|
||||
C -------------------------------------------
|
||||
ALLOCATE(time_op(-l:l,-l:l))
|
||||
time_op(:,:)=0.d0
|
||||
DO m=-l,l
|
||||
time_op(m,m)=1.d0
|
||||
ENDDO
|
||||
C time_op is Identity.
|
||||
CALL timeinv_op(time_op,(2*l+1),l,isrt)
|
||||
C time_op is now the time-reversal operator in the desired basis ({new_i})
|
||||
C
|
||||
IF (nsp==1) THEN
|
||||
C Application of the time-reversal operation and symmetrization :
|
||||
C ---------------------------------------------------------------
|
||||
ALLOCATE(tmp_mat(-l:l,-l:l,1))
|
||||
tmp_mat(-l:l,-l:l,1)=
|
||||
= MATMUL( Dmat(1,iorb)%mat(-l:l,-l:l),
|
||||
& TRANSPOSE(time_op(-l:l,-l:l) ) )
|
||||
tmp_mat(-l:l,-l:l,1)=
|
||||
= MATMUL(time_op(-l:l,-l:l),
|
||||
& CONJG(tmp_mat(-l:l,-l:l,1)) )
|
||||
C The operation performed is : time_op.conjugate(Dmat).transpose(conjugate(time_op))
|
||||
C or in other words, D(T)_{new_i} . Dmat* . D(inverse(T))*_{new_i}
|
||||
Dmat(1,iorb)%mat(-l:l,-l:l) =
|
||||
& ( Dmat(1,iorb)%mat(-l:l,-l:l) +
|
||||
& tmp_mat(-l:l,-l:l,1) )/2.d0
|
||||
DEALLOCATE(tmp_mat)
|
||||
ELSE
|
||||
C Application of the time-reversal operation
|
||||
C ------------------------------------------
|
||||
ALLOCATE(tmp_mat(-l:l,-l:l,nsp))
|
||||
DO is=1,nsp
|
||||
is1=is+(-1)**(is+1)
|
||||
C the time reversal operation transforms up/up -1- in dn/dn -2- and up/dn -3- in dn/up -4 (and vice versa)
|
||||
tmp_mat(-l:l,-l:l,is)=
|
||||
= MATMUL( Dmat(is1,iorb)%mat(-l:l,-l:l),
|
||||
& TRANSPOSE( time_op(-l:l,-l:l) ) )
|
||||
tmp_mat(-l:l,-l:l,is)=
|
||||
= MATMUL( time_op(-l:l,-l:l),
|
||||
& CONJG( tmp_mat(-l:l,-l:l,is) ) )
|
||||
C The operation performed is : time_op.conjugate(Dmat).transpose(conjugate(time_op))
|
||||
C or in other words, D(T)_{new_i} . Dmat* . D(inverse(T))*_{new_i}
|
||||
IF (is.gt.2) THEN
|
||||
tmp_mat(-l:l,-l:l,is)=-tmp_mat(-l:l,-l:l,is)
|
||||
ENDIF
|
||||
C Off diagonal terms are multiplied by (-1).
|
||||
ENDDO
|
||||
C Symmetrization of Dmat :
|
||||
C ------------------------
|
||||
DO is=1,nsp
|
||||
Dmat(is,iorb)%mat(-l:l,-l:l) =
|
||||
& (Dmat(is,iorb)%mat(-l:l,-l:l)+
|
||||
& tmp_mat(-l:l,-l:l,is) )/2.d0
|
||||
ENDDO
|
||||
DEALLOCATE(tmp_mat)
|
||||
ENDIF
|
||||
DEALLOCATE(time_op)
|
||||
C
|
||||
ENDIF ! End of the type basis if-then-else
|
||||
ENDDO ! End of the iorb loop
|
||||
C
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
||||
|
||||
|
18
python/CMakeLists.txt
Normal file
18
python/CMakeLists.txt
Normal file
@ -0,0 +1,18 @@
|
||||
|
||||
triqs_make_target_to_copy_all_py_files_from_python_dir_to_build_dir()
|
||||
|
||||
execute_process(COMMAND ln -fs ${CMAKE_BINARY_DIR}/fortran/F90/vertex.so ${CMAKE_CURRENT_BINARY_DIR} )
|
||||
|
||||
add_subdirectory(converters)
|
||||
|
||||
#installation
|
||||
SET(PYTHON_SOURCES
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/__init__.py
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/solver_multiband.py
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sumk_lda.py
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sumk_lda_tools.py
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/symmetry.py
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/U_matrix.py
|
||||
)
|
||||
install (FILES ${PYTHON_SOURCES} DESTINATION ${TRIQS_PYTHON_LIB_DEST}/applications/dft)
|
||||
|
100
python/U_matrix.py
Normal file
100
python/U_matrix.py
Normal file
@ -0,0 +1,100 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
# calculates the four index U matrix
|
||||
|
||||
import numpy
|
||||
from types import *
|
||||
from math import sqrt
|
||||
import copy
|
||||
from vertex import u4ind
|
||||
#from pytriqs.applications.dft.vertex import u4ind
|
||||
|
||||
class Umatrix:
|
||||
"""calculates, stores, and manipulates the four index U matrix"""
|
||||
|
||||
def __init__(self, l, U_interact=0, J_hund=0):
|
||||
|
||||
self.l = l
|
||||
self.U_av = U_interact
|
||||
self.J = J_hund
|
||||
|
||||
self.N = 2*l+1 # multiplicity
|
||||
|
||||
#self.Ucmplx = numpy.zeros([self.N,self.N,self.N,self.N],numpy.float_)
|
||||
#self.Ucubic = numpy.zeros([self.N,self.N,self.N,self.N],numpy.float_)
|
||||
|
||||
|
||||
def __call__(self, T = None, rcl = None):
|
||||
"""calculates the four index matrix. Slater parameters can be provided in rcl,
|
||||
and a transformation matrix from complex harmonics to a specified other representation (e.g. cubic).
|
||||
If T is not given, use standard complex harmonics."""
|
||||
|
||||
if rcl is None: rcl = self.get_rcl(self.U_av,self.J,self.l)
|
||||
|
||||
if (T is None):
|
||||
TM = numpy.identity(self.N,numpy.complex_)
|
||||
else:
|
||||
TM = T
|
||||
self.Nmat = len(TM)
|
||||
|
||||
self.Ufull = u4ind(rcl,TM)
|
||||
|
||||
|
||||
|
||||
def reduce_matrix(self):
|
||||
"""Reduces the four-index matrix to two-index matrices."""
|
||||
|
||||
if (self.N==self.Nmat):
|
||||
self.U = numpy.zeros([self.N,self.N],numpy.float_) # matrix for same spin
|
||||
self.Up = numpy.zeros([self.N,self.N],numpy.float_) # matrix for opposite spin
|
||||
|
||||
for m in range(self.N):
|
||||
for mp in range(self.N):
|
||||
self.U[m,mp] = self.Ufull[m,mp,m,mp].real - self.Ufull[m,mp,mp,m].real
|
||||
self.Up[m,mp] = self.Ufull[m,mp,m,mp].real
|
||||
else:
|
||||
self.U = numpy.zeros([self.Nmat,self.Nmat],numpy.float_) # matrix
|
||||
for m in range(self.Nmat):
|
||||
for mp in range(self.Nmat):
|
||||
self.U[m,mp] = self.Ufull[m,mp,m,mp].real - self.Ufull[m,mp,mp,m].real
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def get_rcl(self, U_int, J_hund, l):
|
||||
|
||||
#rcl = numpy.array([0.0, 0.0, 0.0, 0.0],numpy.float_)
|
||||
xx = l+1
|
||||
rcl = numpy.zeros([xx],numpy.float_)
|
||||
if(l==2):
|
||||
rcl[0] = U_int
|
||||
rcl[1] = J_hund * 14.0 / (1.0 + 0.63)
|
||||
rcl[2] = 0.630 * rcl[1]
|
||||
elif(l==3):
|
||||
rcl[0] = U_int
|
||||
rcl[1] = 6435.0 * J_hund / (286.0 + 195.0 * 451.0 / 675.0 + 250.0 * 1001.0 / 2025.0)
|
||||
rcl[2] = 451.0 * rcl[1] / 675.0
|
||||
rcl[3] = 1001.0 * rcl[1] / 2025.0
|
||||
|
||||
return rcl
|
31
python/__init__.py
Normal file
31
python/__init__.py
Normal file
@ -0,0 +1,31 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from sumk_lda import SumkLDA
|
||||
from symmetry import Symmetry
|
||||
from sumk_lda_tools import SumkLDATools
|
||||
from U_matrix import Umatrix
|
||||
from converters import *
|
||||
|
||||
__all__ =['SumkLDA','Symmetry','SumkLDATools','Umatrix','Wien2kConverter']
|
||||
|
||||
|
6
python/converters/CMakeLists.txt
Normal file
6
python/converters/CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
||||
SET(PYTHON_SOURCES
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/__init__.py
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/wien2k_converter.py
|
||||
)
|
||||
|
||||
install (FILES ${PYTHON_SOURCES} DESTINATION ${TRIQS_PYTHON_LIB_DEST}/applications/dft/converters)
|
27
python/converters/__init__.py
Normal file
27
python/converters/__init__.py
Normal file
@ -0,0 +1,27 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from wien2k_converter import Wien2kConverter
|
||||
|
||||
__all__ =['Wien2kConverter']
|
||||
|
||||
|
581
python/converters/wien2k_converter.py
Normal file
581
python/converters/wien2k_converter.py
Normal file
@ -0,0 +1,581 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from types import *
|
||||
import numpy
|
||||
from pytriqs.archive import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
import string
|
||||
|
||||
|
||||
def read_fortran_file (filename):
|
||||
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
|
||||
import os.path
|
||||
if not(os.path.exists(filename)) : raise IOError, "File %s does not exists"%filename
|
||||
for line in open(filename,'r') :
|
||||
for x in line.replace('D','E').split() :
|
||||
yield string.atof(x)
|
||||
|
||||
|
||||
|
||||
class Wien2kConverter:
|
||||
"""
|
||||
Conversion from Wien2k output to an hdf5 file, that can be used as input for the SumkLDA class.
|
||||
"""
|
||||
|
||||
def __init__(self, filename, lda_subgrp = 'SumK_LDA', symm_subgrp = 'SymmCorr', repacking = False):
|
||||
"""
|
||||
Init of the class. Variable filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so
|
||||
on.
|
||||
"""
|
||||
|
||||
assert type(filename)==StringType,"LDA_file must be a filename"
|
||||
self.hdf_file = filename+'.h5'
|
||||
self.lda_file = filename+'.ctqmcout'
|
||||
self.symm_file = filename+'.symqmc'
|
||||
self.parproj_file = filename+'.parproj'
|
||||
self.symmpar_file = filename+'.sympar'
|
||||
self.band_file = filename+'.outband'
|
||||
self.lda_subgrp = lda_subgrp
|
||||
self.symm_subgrp = symm_subgrp
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
import os.path
|
||||
if (os.path.exists(self.hdf_file) and repacking):
|
||||
self.__repack()
|
||||
|
||||
|
||||
|
||||
def convert_dmft_input(self):
|
||||
"""
|
||||
Reads the input files, and stores the data in the HDFfile
|
||||
"""
|
||||
|
||||
|
||||
if not (mpi.is_master_node()): return # do it only on master:
|
||||
mpi.report("Reading input from %s..."%self.lda_file)
|
||||
|
||||
# Read and write only on Master!!!
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
R = read_fortran_file(self.lda_file)
|
||||
try:
|
||||
energy_unit = R.next() # read the energy convertion factor
|
||||
n_k = int(R.next()) # read the number of k points
|
||||
k_dep_projection = 1
|
||||
SP = int(R.next()) # flag for spin-polarised calculation
|
||||
SO = int(R.next()) # flag for spin-orbit calculation
|
||||
charge_below = R.next() # total charge below energy window
|
||||
density_required = R.next() # total density required, for setting the chemical potential
|
||||
symm_op = 1 # Use symmetry groups for the k-sum
|
||||
|
||||
# the information on the non-correlated shells is not important here, maybe skip:
|
||||
n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ] # reads iatom, sort, l, dim
|
||||
#shells = numpy.array(shells)
|
||||
|
||||
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells:
|
||||
corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ] # reads iatom, sort, l, dim, SO flag, irep
|
||||
|
||||
self.inequiv_shells(corr_shells) # determine the number of inequivalent correlated shells, has to be known for further reading...
|
||||
#corr_shells = numpy.array(corr_shells)
|
||||
|
||||
use_rotations = 1
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
|
||||
|
||||
# read the matrices
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
for icrsh in xrange(n_corr_shells):
|
||||
for i in xrange(corr_shells[icrsh][3]): # read real part:
|
||||
for j in xrange(corr_shells[icrsh][3]):
|
||||
rot_mat[icrsh][i,j] = R.next()
|
||||
for i in xrange(corr_shells[icrsh][3]): # read imaginary part:
|
||||
for j in xrange(corr_shells[icrsh][3]):
|
||||
rot_mat[icrsh][i,j] += 1j * R.next()
|
||||
|
||||
if (SP==1): # read time inversion flag:
|
||||
rot_mat_time_inv[icrsh] = int(R.next())
|
||||
|
||||
|
||||
|
||||
# Read here the infos for the transformation of the basis:
|
||||
n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
|
||||
dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
|
||||
T = []
|
||||
for icrsh in range(self.n_inequiv_corr_shells):
|
||||
n_reps[icrsh] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
||||
dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])] # dimensions of the subsets
|
||||
|
||||
# The transformation matrix:
|
||||
# it is of dimension 2l+1, if no SO, and 2*(2l+1) with SO!!
|
||||
#T = []
|
||||
#for ish in xrange(self.n_inequiv_corr_shells):
|
||||
ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
|
||||
lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
|
||||
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
||||
|
||||
# now read it from file:
|
||||
for i in xrange(lmax):
|
||||
for j in xrange(lmax):
|
||||
T[icrsh][i,j] = R.next()
|
||||
for i in xrange(lmax):
|
||||
for j in xrange(lmax):
|
||||
T[icrsh][i,j] += 1j * R.next()
|
||||
|
||||
|
||||
# Spin blocks to be read:
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
|
||||
#n_orbitals = [ [0 for isp in range(n_spin_blocs)] for ik in xrange(n_k)]
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in xrange(n_k):
|
||||
#n_orbitals[ik][isp] = int(R.next())
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
#print n_orbitals
|
||||
|
||||
|
||||
# Initialise the projectors:
|
||||
#proj_mat = [ [ [numpy.zeros([corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
|
||||
# for icrsh in range (n_corr_shells)]
|
||||
# for isp in range(n_spin_blocs)]
|
||||
# for ik in range(n_k) ]
|
||||
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in xrange(n_k):
|
||||
for icrsh in range(n_corr_shells):
|
||||
no = corr_shells[icrsh][3]
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
for isp in range(n_spin_blocs):
|
||||
for i in xrange(no):
|
||||
for j in xrange(n_orbitals[ik][isp]):
|
||||
#proj_mat[ik][isp][icrsh][i,j] = R.next()
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(n_spin_blocs):
|
||||
for i in xrange(no):
|
||||
for j in xrange(n_orbitals[ik][isp]):
|
||||
#proj_mat[ik][isp][icrsh][i,j] += 1j * R.next()
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
||||
#hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
|
||||
# for isp in range(n_spin_blocs)] for ik in xrange(n_k) ]
|
||||
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# weights in the file
|
||||
for ik in xrange(n_k) : bz_weights[ik] = R.next()
|
||||
|
||||
# if the sum over spins is in the weights, take it out again!!
|
||||
sm = sum(bz_weights)
|
||||
bz_weights[:] /= sm
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian!!!!
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in xrange(n_k) :
|
||||
no = n_orbitals[ik][isp]
|
||||
for i in xrange(no):
|
||||
#hopping[ik][isp][i,i] = R.next() * energy_unit
|
||||
hopping[ik,isp,i,i] = R.next() * energy_unit
|
||||
|
||||
#keep some things that we need for reading parproj:
|
||||
self.n_shells = n_shells
|
||||
self.shells = shells
|
||||
self.n_corr_shells = n_corr_shells
|
||||
self.corr_shells = corr_shells
|
||||
self.n_spin_blocs = n_spin_blocs
|
||||
self.n_orbitals = n_orbitals
|
||||
self.n_k = n_k
|
||||
self.SO = SO
|
||||
self.SP = SP
|
||||
self.energy_unit = energy_unit
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "SumkLDA : reading file HMLT_file failed!"
|
||||
|
||||
R.close()
|
||||
|
||||
#print proj_mat[0]
|
||||
|
||||
#-----------------------------------------
|
||||
# Store the input into HDF5:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created.
|
||||
# If it exists, the data is overwritten!!!
|
||||
|
||||
ar[self.lda_subgrp]['energy_unit'] = energy_unit
|
||||
ar[self.lda_subgrp]['n_k'] = n_k
|
||||
ar[self.lda_subgrp]['k_dep_projection'] = k_dep_projection
|
||||
ar[self.lda_subgrp]['SP'] = SP
|
||||
ar[self.lda_subgrp]['SO'] = SO
|
||||
ar[self.lda_subgrp]['charge_below'] = charge_below
|
||||
ar[self.lda_subgrp]['density_required'] = density_required
|
||||
ar[self.lda_subgrp]['symm_op'] = symm_op
|
||||
ar[self.lda_subgrp]['n_shells'] = n_shells
|
||||
ar[self.lda_subgrp]['shells'] = shells
|
||||
ar[self.lda_subgrp]['n_corr_shells'] = n_corr_shells
|
||||
ar[self.lda_subgrp]['corr_shells'] = corr_shells
|
||||
ar[self.lda_subgrp]['use_rotations'] = use_rotations
|
||||
ar[self.lda_subgrp]['rot_mat'] = rot_mat
|
||||
ar[self.lda_subgrp]['rot_mat_time_inv'] = rot_mat_time_inv
|
||||
ar[self.lda_subgrp]['n_reps'] = n_reps
|
||||
ar[self.lda_subgrp]['dim_reps'] = dim_reps
|
||||
ar[self.lda_subgrp]['T'] = T
|
||||
ar[self.lda_subgrp]['n_orbitals'] = n_orbitals
|
||||
ar[self.lda_subgrp]['proj_mat'] = proj_mat
|
||||
ar[self.lda_subgrp]['bz_weights'] = bz_weights
|
||||
ar[self.lda_subgrp]['hopping'] = hopping
|
||||
|
||||
del ar
|
||||
|
||||
# Symmetries are used,
|
||||
# Now do the symmetries for correlated orbitals:
|
||||
self.read_symmetry_input(orbits=corr_shells,symm_file=self.symm_file,symm_subgrp=self.symm_subgrp,SO=SO,SP=SP)
|
||||
|
||||
|
||||
def convert_parproj_input(self, par_proj_subgrp='SumK_LDA_ParProj', symm_par_subgrp='SymmPar'):
|
||||
"""
|
||||
Reads the input for the partial charges projectors from case.parproj, and stores it in the symm_par_subgrp
|
||||
group in the HDF5.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
|
||||
self.par_proj_subgrp = par_proj_subgrp
|
||||
self.symm_par_subgrp = symm_par_subgrp
|
||||
|
||||
mpi.report("Reading parproj input from %s..."%self.parproj_file)
|
||||
|
||||
dens_mat_below = [ [numpy.zeros([self.shells[ish][3],self.shells[ish][3]],numpy.complex_) for ish in range(self.n_shells)]
|
||||
for isp in range(self.n_spin_blocs) ]
|
||||
|
||||
R = read_fortran_file(self.parproj_file)
|
||||
#try:
|
||||
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
#proj_mat_pc = [ [ [ [numpy.zeros([self.shells[ish][3], self.n_orbitals[ik][isp]], numpy.complex_)
|
||||
# for ir in range(n_parproj[ish])]
|
||||
# for ish in range (self.n_shells) ]
|
||||
# for isp in range(self.n_spin_blocs) ]
|
||||
# for ik in range(self.n_k) ]
|
||||
|
||||
proj_mat_pc = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max(numpy.array(self.shells)[:,3]),max(self.n_orbitals)],numpy.complex_)
|
||||
|
||||
rot_mat_all = [numpy.identity(self.shells[ish][3],numpy.complex_) for ish in xrange(self.n_shells)]
|
||||
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
#print ish
|
||||
# read first the projectors for this orbital:
|
||||
for ik in xrange(self.n_k):
|
||||
for ir in range(n_parproj[ish]):
|
||||
for isp in range(self.n_spin_blocs):
|
||||
|
||||
for i in xrange(self.shells[ish][3]): # read real part:
|
||||
for j in xrange(self.n_orbitals[ik][isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in xrange(self.shells[ish][3]): # read imaginary part:
|
||||
for j in xrange(self.n_orbitals[ik][isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
|
||||
# now read the Density Matrix for this orbital below the energy window:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in xrange(self.shells[ish][3]): # read real part:
|
||||
for j in xrange(self.shells[ish][3]):
|
||||
dens_mat_below[isp][ish][i,j] = R.next()
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in xrange(self.shells[ish][3]): # read imaginary part:
|
||||
for j in xrange(self.shells[ish][3]):
|
||||
dens_mat_below[isp][ish][i,j] += 1j * R.next()
|
||||
if (self.SP==0): dens_mat_below[isp][ish] /= 2.0
|
||||
|
||||
# Global -> local rotation matrix for this shell:
|
||||
for i in xrange(self.shells[ish][3]): # read real part:
|
||||
for j in xrange(self.shells[ish][3]):
|
||||
rot_mat_all[ish][i,j] = R.next()
|
||||
for i in xrange(self.shells[ish][3]): # read imaginary part:
|
||||
for j in xrange(self.shells[ish][3]):
|
||||
rot_mat_all[ish][i,j] += 1j * R.next()
|
||||
|
||||
#print Dens_Mat_below[0][ish],Dens_Mat_below[1][ish]
|
||||
|
||||
if (self.SP):
|
||||
rot_mat_all_time_inv[ish] = int(R.next())
|
||||
|
||||
#except StopIteration : # a more explicit error if the file is corrupted.
|
||||
# raise "Wien2kConverter: reading file for Projectors failed!"
|
||||
R.close()
|
||||
|
||||
#-----------------------------------------
|
||||
# Store the input into HDF5:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.par_proj_subgrp in ar): ar.create_group(self.par_proj_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created.
|
||||
# If it exists, the data is overwritten!!!
|
||||
thingstowrite = ['dens_mat_below','n_parproj','proj_mat_pc','rot_mat_all','rot_mat_all_time_inv']
|
||||
for it in thingstowrite: exec "ar['%s']['%s'] = %s"%(self.par_proj_subgrp,it,it)
|
||||
del ar
|
||||
|
||||
# Symmetries are used,
|
||||
# Now do the symmetries for all orbitals:
|
||||
self.read_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symm_par_subgrp,SO=self.SO,SP=self.SP)
|
||||
|
||||
|
||||
def convert_bands_input(self, bands_subgrp = 'SumK_LDA_Bands'):
|
||||
"""
|
||||
Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the
|
||||
HDF5.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
|
||||
self.bands_subgrp = bands_subgrp
|
||||
mpi.report("Reading bands input from %s..."%self.band_file)
|
||||
|
||||
R = read_fortran_file(self.band_file)
|
||||
try:
|
||||
n_k = int(R.next())
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int)
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in xrange(n_k):
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
|
||||
# Initialise the projectors:
|
||||
#proj_mat = [ [ [numpy.zeros([self.corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
|
||||
# for icrsh in range (self.n_corr_shells)]
|
||||
# for isp in range(self.n_spin_blocs)]
|
||||
# for ik in range(n_k) ]
|
||||
proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max(numpy.array(self.corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in xrange(n_k):
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
no = self.corr_shells[icrsh][3]
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in xrange(no):
|
||||
for j in xrange(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in xrange(no):
|
||||
for j in xrange(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
|
||||
#hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
|
||||
# for isp in range(self.n_spin_blocs)] for ik in xrange(n_k) ]
|
||||
hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian!!!!
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in xrange(n_k) :
|
||||
no = n_orbitals[ik,isp]
|
||||
for i in xrange(no):
|
||||
hopping[ik,isp,i,i] = R.next() * self.energy_unit
|
||||
|
||||
# now read the partial projectors:
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
#proj_mat_pc = [ [ [ [numpy.zeros([self.shells[ish][3], n_orbitals[ik][isp]], numpy.complex_)
|
||||
# for ir in range(n_parproj[ish])]
|
||||
# for ish in range (self.n_shells) ]
|
||||
# for isp in range(self.n_spin_blocs) ]
|
||||
# for ik in range(n_k) ]
|
||||
proj_mat_pc = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max(numpy.array(self.shells)[:,3]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
|
||||
for ik in xrange(n_k):
|
||||
for ir in range(n_parproj[ish]):
|
||||
for isp in range(self.n_spin_blocs):
|
||||
|
||||
for i in xrange(self.shells[ish][3]): # read real part:
|
||||
for j in xrange(n_orbitals[ik,isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
for i in xrange(self.shells[ish][3]): # read imaginary part:
|
||||
for j in xrange(n_orbitals[ik,isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "SumkLDA : reading file HMLT_file failed!"
|
||||
|
||||
R.close()
|
||||
# reading done!
|
||||
|
||||
#-----------------------------------------
|
||||
# Store the input into HDF5:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created.
|
||||
# If it exists, the data is overwritten!!!
|
||||
thingstowrite = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
|
||||
for it in thingstowrite: exec "ar['%s']['%s'] = %s"%(self.bands_subgrp,it,it)
|
||||
|
||||
#ar[self.bands_subgrp]['n_k'] = n_k
|
||||
#ar[self.bands_subgrp]['n_orbitals'] = n_orbitals
|
||||
#ar[self.bands_subgrp]['proj_mat'] = proj_mat
|
||||
#self.proj_mat = proj_mat
|
||||
#self.n_orbitals = n_orbitals
|
||||
#self.n_k = n_k
|
||||
#self.hopping = hopping
|
||||
del ar
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def read_symmetry_input(self, orbits, symm_file, symm_subgrp, SO, SP):
|
||||
"""
|
||||
Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
|
||||
mpi.report("Reading symmetry input from %s..."%symm_file)
|
||||
|
||||
n_orbits = len(orbits)
|
||||
R=read_fortran_file(symm_file)
|
||||
|
||||
try:
|
||||
n_s = int(R.next()) # Number of symmetry operations
|
||||
n_atoms = int(R.next()) # number of atoms involved
|
||||
perm = [ [int(R.next()) for i in xrange(n_atoms)] for j in xrange(n_s) ] # list of permutations of the atoms
|
||||
if SP:
|
||||
time_inv = [ int(R.next()) for j in xrange(n_s) ] # timeinversion for SO xoupling
|
||||
else:
|
||||
time_inv = [ 0 for j in xrange(n_s) ]
|
||||
|
||||
# Now read matrices:
|
||||
mat = []
|
||||
for in_s in xrange(n_s):
|
||||
|
||||
mat.append( [ numpy.zeros([orbits[orb][3], orbits[orb][3]],numpy.complex_) for orb in xrange(n_orbits) ] )
|
||||
for orb in range(n_orbits):
|
||||
for i in xrange(orbits[orb][3]):
|
||||
for j in xrange(orbits[orb][3]):
|
||||
mat[in_s][orb][i,j] = R.next() # real part
|
||||
for i in xrange(orbits[orb][3]):
|
||||
for j in xrange(orbits[orb][3]):
|
||||
mat[in_s][orb][i,j] += 1j * R.next() # imaginary part
|
||||
|
||||
# determine the inequivalent shells:
|
||||
#SHOULD BE FINALLY REMOVED, PUT IT FOR ALL ORBITALS!!!!!
|
||||
#self.inequiv_shells(orbits)
|
||||
mat_tinv = [numpy.identity(orbits[orb][3],numpy.complex_)
|
||||
for orb in range(n_orbits)]
|
||||
|
||||
if ((SO==0) and (SP==0)):
|
||||
# here we need an additional time inversion operation, so read it:
|
||||
for orb in range(n_orbits):
|
||||
for i in xrange(orbits[orb][3]):
|
||||
for j in xrange(orbits[orb][3]):
|
||||
mat_tinv[orb][i,j] = R.next() # real part
|
||||
for i in xrange(orbits[orb][3]):
|
||||
for j in xrange(orbits[orb][3]):
|
||||
mat_tinv[orb][i,j] += 1j * R.next() # imaginary part
|
||||
|
||||
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Symmetry : reading file failed!"
|
||||
|
||||
R.close()
|
||||
|
||||
# Save it to the HDF:
|
||||
ar=HDFArchive(self.hdf_file,'a')
|
||||
if not (symm_subgrp in ar): ar.create_group(symm_subgrp)
|
||||
thingstowrite = ['n_s','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
|
||||
for it in thingstowrite: exec "ar['%s']['%s'] = %s"%(symm_subgrp,it,it)
|
||||
del ar
|
||||
|
||||
|
||||
|
||||
def __repack(self):
|
||||
"""Calls the h5repack routine, in order to reduce the file size of the hdf5 archive.
|
||||
Should only be used BEFORE the first invokation of HDFArchive in the program, otherwise
|
||||
the hdf5 linking is broken!!!"""
|
||||
|
||||
import subprocess
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
|
||||
mpi.report("Repacking the file %s"%self.hdf_file)
|
||||
|
||||
retcode = subprocess.call(["h5repack","-i%s"%self.hdf_file, "-otemphgfrt.h5"])
|
||||
if (retcode!=0):
|
||||
mpi.report("h5repack failed!")
|
||||
else:
|
||||
subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
|
||||
|
||||
|
||||
|
||||
def inequiv_shells(self,lst):
|
||||
"""
|
||||
The number of inequivalent shells is calculated from lst, and a mapping is given as
|
||||
map(i_corr_shells) = i_inequiv_corr_shells
|
||||
invmap(i_inequiv_corr_shells) = i_corr_shells
|
||||
in order to put the Self energies to all equivalent shells, and for extracting Gloc
|
||||
"""
|
||||
|
||||
tmp = []
|
||||
self.shellmap = [0 for i in range(len(lst))]
|
||||
self.invshellmap = [0]
|
||||
self.n_inequiv_corr_shells = 1
|
||||
tmp.append( lst[0][1:3] )
|
||||
|
||||
if (len(lst)>1):
|
||||
for i in range(len(lst)-1):
|
||||
|
||||
fnd = False
|
||||
for j in range(self.n_inequiv_corr_shells):
|
||||
if (tmp[j]==lst[i+1][1:3]):
|
||||
fnd = True
|
||||
self.shellmap[i+1] = j
|
||||
if (fnd==False):
|
||||
self.shellmap[i+1] = self.n_inequiv_corr_shells
|
||||
self.n_inequiv_corr_shells += 1
|
||||
tmp.append( lst[i+1][1:3] )
|
||||
self.invshellmap.append(i+1)
|
||||
|
449
python/solver_multiband.py
Normal file
449
python/solver_multiband.py
Normal file
@ -0,0 +1,449 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
|
||||
#from pytriqs.applications.dft.U_matrix import *
|
||||
from U_matrix import *
|
||||
#from pytriqs.applications.impurity_solvers.operators import *
|
||||
from pytriqs.operators import *
|
||||
from pytriqs.applications.impurity_solvers.ctqmc_hyb import Solver
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from types import *
|
||||
import numpy
|
||||
|
||||
def sum_list(L):
|
||||
""" Can sum any list"""
|
||||
return reduce(lambda x, y: x+y, L) if len(L)>0 else []
|
||||
|
||||
#########################################
|
||||
#
|
||||
# Solver for the Multi-Band problem
|
||||
#
|
||||
#########################################
|
||||
|
||||
|
||||
class SolverMultiBand(Solver):
|
||||
"""
|
||||
This is a general solver for a multiband local Hamiltonian.
|
||||
Calling arguments:
|
||||
beta = inverse temperature
|
||||
n_orb = Number of local orbitals
|
||||
U_interact = Average Coulomb interaction
|
||||
J_hund = Hund coupling
|
||||
use_spinflip = true/false
|
||||
use_pairhop = true/false
|
||||
use_matrix: Use the interaction matrix calculated from the Slater integrals
|
||||
is use_matrix, you need also:
|
||||
l: angular momentum of the orbital, l=2 is d
|
||||
T: Transformation matrix for U vertex. If not present, use standard complex harmonics
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, beta, n_orb, gf_struct = False, map = False):
|
||||
|
||||
self.n_orb = n_orb
|
||||
|
||||
# either get or construct gf_struct
|
||||
if (gf_struct):
|
||||
assert map, "give also the mapping!"
|
||||
self.map = map
|
||||
else:
|
||||
# standard gf_struct and map
|
||||
gf_struct = [ ('%s'%(ud),[n for n in range(n_orb)]) for ud in ['up','down'] ]
|
||||
self.map = {'up' : ['up' for v in range(n_orb)], 'down' : ['down' for v in range(n_orb)]}
|
||||
|
||||
# now initialize the solver with the stuff given above:
|
||||
Solver.__init__(self, beta = beta, gf_struct = gf_struct)
|
||||
|
||||
|
||||
def solve(self, U_interact=None, J_hund=None, use_spinflip=False,
|
||||
use_matrix = True, l=2, T=None, dim_reps=None, irep=None, deg_orbs = [], sl_int = None, **params):
|
||||
|
||||
self.use_spinflip = use_spinflip
|
||||
self.U, self.Up, self.U4ind, self.offset = set_U_matrix(U_interact,J_hund,self.n_orb,l,use_matrix,T,sl_int,use_spinflip,dim_reps,irep)
|
||||
|
||||
# define mapping of indices:
|
||||
self.map_ind={}
|
||||
for nm in self.map:
|
||||
bl_names = self.map[nm]
|
||||
block = []
|
||||
for a,al in self.gf_struct:
|
||||
if a in bl_names: block.append(al)
|
||||
|
||||
self.map_ind[nm] = range(self.n_orb)
|
||||
i = 0
|
||||
for al in block:
|
||||
cnt = 0
|
||||
for a in range(len(al)):
|
||||
self.map_ind[nm][i] = cnt
|
||||
i = i+1
|
||||
cnt = cnt+1
|
||||
|
||||
# set the Hamiltonian
|
||||
if (use_spinflip==False):
|
||||
Hamiltonian = self.__set_hamiltonian_density()
|
||||
else:
|
||||
if (use_matrix):
|
||||
#Hamiltonian = self.__set_full_hamiltonian_slater()
|
||||
Hamiltonian = self.__set_spinflip_hamiltonian_slater()
|
||||
else:
|
||||
Hamiltonian = self.__set_full_hamiltonian_kanamori(J_hund = J_hund)
|
||||
|
||||
# set the Quantum numbers
|
||||
Quantum_Numbers = self.__set_quantum_numbers(self.gf_struct)
|
||||
|
||||
# Determine if there are only blocs of size 1:
|
||||
self.blocssizeone = True
|
||||
for ib in self.gf_struct:
|
||||
if (len(ib[1])>1): self.blocssizeone = False
|
||||
|
||||
nc = params.pop("n_cycles",10000)
|
||||
if ((self.blocssizeone) and (self.use_spinflip==False)):
|
||||
use_seg = True
|
||||
else:
|
||||
use_seg = False
|
||||
#gm = self.set_global_moves(deg_orbs)
|
||||
|
||||
Solver.solve(self,H_local = Hamiltonian, quantum_numbers = Quantum_Numbers, n_cycles = nc, use_segment_picture = use_seg, **params)
|
||||
|
||||
|
||||
def set_global_moves(self, deg_orbs, factor=0.05):
|
||||
# Sets some global moves given orbital degeneracies:
|
||||
|
||||
strbl = ''
|
||||
strind = ''
|
||||
inddone = []
|
||||
|
||||
for orbs in deg_orbs:
|
||||
ln = len(orbs)
|
||||
orbsorted = sorted(orbs)
|
||||
for ii in range(ln):
|
||||
if (strbl!=''): strbl += ','
|
||||
bl1 = orbsorted[ii]
|
||||
bl2 = orbsorted[(ii+1)%ln]
|
||||
ind1 = [ll for ll in self.Sigma[bl1].indices ]
|
||||
ind2 = [ll for ll in self.Sigma[bl2].indices ]
|
||||
|
||||
strbl += "'" + bl1 + "':'" + bl2 + "'"
|
||||
for kk, ind in enumerate(ind1):
|
||||
if not (ind in inddone):
|
||||
if (strind!=''): strind += ','
|
||||
strind += '%s:%s'%(ind1[kk],ind2[kk])
|
||||
inddone.append(ind)
|
||||
|
||||
|
||||
if len(deg_orbs)>0:
|
||||
str = 'Global_Moves = [ (%s, lambda (a,alpha,dag) : ({ '%factor + strbl + ' }[a], {' + strind + '}[alpha], dag) )]'
|
||||
exec str
|
||||
return Global_Moves
|
||||
else:
|
||||
return []
|
||||
|
||||
|
||||
def __set_hamiltonian_density(self):
|
||||
# density-density Hamiltonian:
|
||||
|
||||
spinblocs = [v for v in self.map]
|
||||
#print spinblocs
|
||||
Hamiltonian = N(self.map[spinblocs[0]][0],0) # initialize it
|
||||
|
||||
for sp1 in spinblocs:
|
||||
for sp2 in spinblocs:
|
||||
for i in range(self.n_orb):
|
||||
for j in range(self.n_orb):
|
||||
if (sp1==sp2):
|
||||
Hamiltonian += 0.5 * self.U[self.offset+i,self.offset+j] * N(self.map[sp1][i],self.map_ind[sp1][i]) * N(self.map[sp2][j],self.map_ind[sp2][j])
|
||||
else:
|
||||
Hamiltonian += 0.5 * self.Up[self.offset+i,self.offset+j] * N(self.map[sp1][i],self.map_ind[sp1][i]) * N(self.map[sp2][j],self.map_ind[sp2][j])
|
||||
|
||||
Hamiltonian -= N(self.map[spinblocs[0]][0],0) # substract the initializing value
|
||||
|
||||
return Hamiltonian
|
||||
|
||||
|
||||
def __set_full_hamiltonian_slater(self):
|
||||
|
||||
spinblocs = [v for v in self.map]
|
||||
Hamiltonian = N(self.map[spinblocs[0]][0],0) # initialize it
|
||||
#print "Starting..."
|
||||
# use the full 4-index U-matrix:
|
||||
#for sp1 in spinblocs:
|
||||
# for sp2 in spinblocs:
|
||||
for m1 in range(self.n_orb):
|
||||
for m2 in range(self.n_orb):
|
||||
for m3 in range(self.n_orb):
|
||||
for m4 in range(self.n_orb):
|
||||
if (abs(self.U4ind[self.offset+m1,self.offset+m2,self.offset+m3,self.offset+m4])>0.00001):
|
||||
for sp1 in spinblocs:
|
||||
for sp2 in spinblocs:
|
||||
#print sp1,sp2,m1,m2,m3,m4
|
||||
Hamiltonian += 0.5 * self.U4ind[self.offset+m1,self.offset+m2,self.offset+m3,self.offset+m4] * \
|
||||
Cdag(self.map[sp1][m1],self.map_ind[sp1][m1]) * Cdag(self.map[sp2][m2],self.map_ind[sp2][m2]) * C(self.map[sp2][m4],self.map_ind[sp2][m4]) * C(self.map[sp1][m3],self.map_ind[sp1][m3])
|
||||
#print "end..."
|
||||
Hamiltonian -= N(self.map[spinblocs[0]][0],0) # substract the initializing value
|
||||
|
||||
return Hamiltonian
|
||||
|
||||
|
||||
def __set_spinflip_hamiltonian_slater(self):
|
||||
"""Takes only spin-flip and pair-hopping terms"""
|
||||
|
||||
spinblocs = [v for v in self.map]
|
||||
Hamiltonian = N(self.map[spinblocs[0]][0],0) # initialize it
|
||||
#print "Starting..."
|
||||
# use the full 4-index U-matrix:
|
||||
#for sp1 in spinblocs:
|
||||
# for sp2 in spinblocs:
|
||||
for m1 in range(self.n_orb):
|
||||
for m2 in range(self.n_orb):
|
||||
for m3 in range(self.n_orb):
|
||||
for m4 in range(self.n_orb):
|
||||
if ((abs(self.U4ind[self.offset+m1,self.offset+m2,self.offset+m3,self.offset+m4])>0.00001) and
|
||||
( ((m1==m2)and(m3==m4)) or ((m1==m3)and(m2==m4)) or ((m1==m4)and(m2==m3)) ) ):
|
||||
for sp1 in spinblocs:
|
||||
for sp2 in spinblocs:
|
||||
#print sp1,sp2,m1,m2,m3,m4
|
||||
Hamiltonian += 0.5 * self.U4ind[self.offset+m1,self.offset+m2,self.offset+m3,self.offset+m4] * \
|
||||
Cdag(self.map[sp1][m1],self.map_ind[sp1][m1]) * Cdag(self.map[sp2][m2],self.map_ind[sp2][m2]) * C(self.map[sp2][m4],self.map_ind[sp2][m4]) * C(self.map[sp1][m3],self.map_ind[sp1][m3])
|
||||
#print "end..."
|
||||
Hamiltonian -= N(self.map[spinblocs[0]][0],0) # substract the initializing value
|
||||
|
||||
return Hamiltonian
|
||||
|
||||
|
||||
|
||||
def __set_full_hamiltonian_kanamori(self,J_hund):
|
||||
|
||||
spinblocs = [v for v in self.map]
|
||||
assert len(spinblocs)==2,"spinflips in Kanamori representation only implemented for up/down structure!"
|
||||
|
||||
Hamiltonian = N(self.map[spinblocs[0]][0],0) # initialize it
|
||||
|
||||
# density terms:
|
||||
for sp1 in spinblocs:
|
||||
for sp2 in spinblocs:
|
||||
for i in range(self.n_orb):
|
||||
for j in range(self.n_orb):
|
||||
if (sp1==sp2):
|
||||
Hamiltonian += 0.5 * self.U[self.offset+i,self.offset+j] * N(self.map[sp1][i],self.map_ind[sp1][i]) * N(self.map[sp2][j],self.map_ind[sp2][j])
|
||||
else:
|
||||
Hamiltonian += 0.5 * self.Up[self.offset+i,self.offset+j] * N(self.map[sp1][i],self.map_ind[sp1][i]) * N(self.map[sp2][j],self.map_ind[sp2][j])
|
||||
|
||||
# spinflip term:
|
||||
sp1 = spinblocs[0]
|
||||
sp2 = spinblocs[1]
|
||||
for i in range(self.n_orb-1):
|
||||
for j in range(i+1,self.n_orb):
|
||||
Hamiltonian -= J_hund * ( Cdag(self.map[sp1][i],self.map_ind[sp1][i]) * C(self.map[sp2][i],self.map_ind[sp2][i]) * Cdag(self.map[sp2][j],self.map_ind[sp2][j]) * C(self.map[sp1][j],self.map_ind[sp1][j]) ) # first term
|
||||
Hamiltonian -= J_hund * ( Cdag(self.map[sp2][i],self.map_ind[sp2][i]) * C(self.map[sp1][i],self.map_ind[sp1][i]) * Cdag(self.map[sp1][j],self.map_ind[sp1][j]) * C(self.map[sp2][j],self.map_ind[sp2][j]) ) # second term
|
||||
|
||||
# pairhop terms:
|
||||
for i in range(self.n_orb-1):
|
||||
for j in range(i+1,self.n_orb):
|
||||
Hamiltonian -= J_hund * ( Cdag(self.map[sp1][i],self.map_ind[sp1][i]) * Cdag(self.map[sp2][i],self.map_ind[sp2][i]) * C(self.map[sp1][j],self.map_ind[sp1][j]) * C(self.map[sp2][j],self.map_ind[sp2][j]) ) # first term
|
||||
Hamiltonian -= J_hund * ( Cdag(self.map[sp2][j],self.map_ind[sp2][j]) * Cdag(self.map[sp1][j],self.map_ind[sp1][j]) * C(self.map[sp2][i],self.map_ind[sp2][i]) * C(self.map[sp1][i],self.map_ind[sp1][i]) ) # second term
|
||||
|
||||
Hamiltonian -= N(self.map[spinblocs[0]][0],0) # substract the initializing value
|
||||
|
||||
return Hamiltonian
|
||||
|
||||
|
||||
def __set_quantum_numbers(self,gf_struct):
|
||||
|
||||
QN = {}
|
||||
spinblocs = [v for v in self.map]
|
||||
|
||||
# Define the quantum numbers:
|
||||
if (self.use_spinflip) :
|
||||
Ntot = sum_list( [ N(self.map[s][i],self.map_ind[s][i]) for s in spinblocs for i in range(self.n_orb) ] )
|
||||
QN['NtotQN'] = Ntot
|
||||
#QN['Ntot'] = sum_list( [ N(self.map[s][i],i) for s in spinblocs for i in range(self.n_orb) ] )
|
||||
if (len(spinblocs)==2):
|
||||
# Assuming up/down structure:
|
||||
Sz = sum_list( [ N(self.map[spinblocs[0]][i],self.map_ind[spinblocs[0]][i])-N(self.map[spinblocs[1]][i],self.map_ind[spinblocs[1]][i]) for i in range(self.n_orb) ] )
|
||||
QN['SzQN'] = Sz
|
||||
# new quantum number: works only if there are only spin-flip and pair hopping, not any more complicated things
|
||||
for i in range(self.n_orb):
|
||||
QN['Sz2_%s'%i] = (N(self.map[spinblocs[0]][i],self.map_ind[spinblocs[0]][i])-N(self.map[spinblocs[1]][i],self.map_ind[spinblocs[1]][i])) * (N(self.map[spinblocs[0]][i],self.map_ind[spinblocs[0]][i])-N(self.map[spinblocs[1]][i],self.map_ind[spinblocs[1]][i]))
|
||||
|
||||
else :
|
||||
for ibl in range(len(gf_struct)):
|
||||
QN['N%s'%gf_struct[ibl][0]] = sum_list( [ N(gf_struct[ibl][0],gf_struct[ibl][1][i]) for i in range(len(gf_struct[ibl][1])) ] )
|
||||
|
||||
return QN
|
||||
|
||||
|
||||
def fit_tails(self):
|
||||
"""Fits the tails using the constant value for the Re Sigma calculated from F=Sigma*G.
|
||||
Works only for blocks of size one."""
|
||||
|
||||
#if (len(self.gf_struct)==2*self.n_orb):
|
||||
if (self.blocssizeone):
|
||||
spinblocs = [v for v in self.map]
|
||||
mpi.report("Fitting tails manually")
|
||||
|
||||
known_coeff = numpy.zeros([1,1,2],numpy.float_)
|
||||
msh = [x.imag for x in self.G[self.map[spinblocs[0]][0]].mesh ]
|
||||
fit_start = msh[self.fitting_Frequency_Start]
|
||||
fit_stop = msh[self.N_Frequencies_Accumulated]
|
||||
|
||||
# Fit the tail of G just to get the density
|
||||
for n,g in self.G:
|
||||
g.fitTail([[[0,0,1]]],7,fit_start,2*fit_stop)
|
||||
densmat = self.G.density()
|
||||
|
||||
for sig1 in spinblocs:
|
||||
for i in range(self.n_orb):
|
||||
|
||||
coeff = 0.0
|
||||
|
||||
for sig2 in spinblocs:
|
||||
for j in range(self.n_orb):
|
||||
if (sig1==sig2):
|
||||
coeff += self.U[self.offset+i,self.offset+j] * densmat[self.map[sig1][j]][0,0].real
|
||||
else:
|
||||
coeff += self.Up[self.offset+i,self.offset+j] * densmat[self.map[sig2][j]][0,0].real
|
||||
|
||||
known_coeff[0,0,1] = coeff
|
||||
self.Sigma[self.map[sig1][i]].fitTail(fixed_coef = known_coeff, order_max = 3, fit_start = fit_start, fit_stop = fit_stop)
|
||||
|
||||
else:
|
||||
|
||||
for n,sig in self.Sigma:
|
||||
|
||||
known_coeff = numpy.zeros([sig.N1,sig.N2,1],numpy.float_)
|
||||
msh = [x.imag for x in sig.mesh]
|
||||
fit_start = msh[self.fitting_Frequency_Start]
|
||||
fit_stop = msh[self.N_Frequencies_Accumulated]
|
||||
|
||||
sig.fitTail(fixed_coef = known_coeff, order_max = 3, fit_start = fit_start, fit_stop = fit_stop)
|
||||
|
||||
|
||||
|
||||
|
||||
class SolverMultiBandOld(SolverMultiBand):
|
||||
"""
|
||||
Old MultiBand Solver construct
|
||||
"""
|
||||
|
||||
def __init__(self, Beta, Norb, U_interact=None, J_Hund=None, GFStruct=False, map=False, use_spinflip=False,
|
||||
useMatrix = True, l=2, T=None, dimreps=None, irep=None, deg_orbs = [], Sl_Int = None):
|
||||
|
||||
SolverMultiBand.__init__(self, beta=Beta, n_orb=Norb, gf_struct=GFStruct, map=map)
|
||||
self.U_interact = U_interact
|
||||
self.J_Hund = J_Hund
|
||||
self.use_spinflip = use_spinflip
|
||||
self.useMatrix = useMatrix
|
||||
self.l = l
|
||||
self.T = T
|
||||
self.dimreps = dimreps
|
||||
self.irep = irep
|
||||
self.deg_orbs = deg_orbs
|
||||
self.Sl_Int = Sl_Int
|
||||
self.gen_keys = copy.deepcopy(self.__dict__)
|
||||
|
||||
msg = """
|
||||
**********************************************************************************
|
||||
Warning: You are using the old constructor for the solver. Beware that this will
|
||||
be deprecated in future versions. Please check the documentation.
|
||||
**********************************************************************************
|
||||
"""
|
||||
mpi.report(msg)
|
||||
|
||||
|
||||
def Solve(self):
|
||||
|
||||
params = copy.deepcopy(self.__dict__)
|
||||
for i in self.gen_keys: self.params.pop(i)
|
||||
self.params.pop("gen_keys")
|
||||
self.solve(self, U_interact=self.U_interact, J_hund=self.J_Hund, use_spinflip=self.use_spinflip,
|
||||
use_matrix = self.useMatrix, l=self.l, T=self.T, dim_reps=self.dimreps, irep=self.irep,
|
||||
deg_orbs = self.deg_orbs, sl_int = self.Sl_Int, **params)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def set_U_matrix(U_interact,J_hund,n_orb,l,use_matrix=True,T=None,sl_int=None,use_spinflip=False,dim_reps=None,irep=None):
|
||||
""" Set up the interaction vertex"""
|
||||
|
||||
offset = 0
|
||||
U4ind = None
|
||||
U = None
|
||||
Up = None
|
||||
if (use_matrix):
|
||||
if not (sl_int is None):
|
||||
Umat = Umatrix(l=l)
|
||||
assert len(sl_int)==(l+1),"sl_int has the wrong length"
|
||||
if (type(sl_int)==ListType):
|
||||
Rcl = numpy.array(sl_int)
|
||||
else:
|
||||
Rcl = sl_int
|
||||
Umat(T=T,Rcl=Rcl)
|
||||
else:
|
||||
if ((U_interact==None)and(J_hund==None)):
|
||||
mpi.report("Give U,J or Slater integrals!!!")
|
||||
assert 0
|
||||
Umat = Umatrix(U_interact=U_interact, J_hund=J_hund, l=l)
|
||||
Umat(T=T)
|
||||
|
||||
Umat.reduce_matrix()
|
||||
if (Umat.N==Umat.Nmat):
|
||||
# Transformation T is of size 2l+1
|
||||
U = Umat.U
|
||||
Up = Umat.Up
|
||||
else:
|
||||
# Transformation is of size 2(2l+1)
|
||||
U = Umat.U
|
||||
# now we have the reduced matrices U and Up, we need it for tail fitting anyways
|
||||
|
||||
if (use_spinflip):
|
||||
#Take the 4index Umatrix
|
||||
# check for imaginary matrix elements:
|
||||
if (abs(Umat.Ufull.imag)>0.0001).any():
|
||||
mpi.report("WARNING: complex interaction matrix!! Ignoring imaginary part for the moment!")
|
||||
mpi.report("If you want to change this, look into Wien2k/solver_multiband.py")
|
||||
U4ind = Umat.Ufull.real
|
||||
|
||||
# this will be changed for arbitrary irep:
|
||||
# use only one subgroup of orbitals?
|
||||
if not (irep is None):
|
||||
#print irep, dim_reps
|
||||
assert not (dim_reps is None), "Dimensions of the representatives are missing!"
|
||||
assert n_orb==dim_reps[irep-1],"Dimensions of dimrep and n_orb do not fit!"
|
||||
for ii in range(irep-1):
|
||||
offset += dim_reps[ii]
|
||||
else:
|
||||
if ((U_interact==None)and(J_hund==None)):
|
||||
mpi.report("For Kanamori representation, give U and J!!")
|
||||
assert 0
|
||||
U = numpy.zeros([n_orb,n_orb],numpy.float_)
|
||||
Up = numpy.zeros([n_orb,n_orb],numpy.float_)
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orb):
|
||||
if (i==j):
|
||||
Up[i,i] = U_interact + 2.0*J_hund
|
||||
else:
|
||||
Up[i,j] = U_interact
|
||||
U[i,j] = U_interact - J_hund
|
||||
|
||||
return U, Up, U4ind, offset
|
1149
python/sumk_lda.py
Normal file
1149
python/sumk_lda.py
Normal file
File diff suppressed because it is too large
Load Diff
625
python/sumk_lda_tools.py
Normal file
625
python/sumk_lda_tools.py
Normal file
@ -0,0 +1,625 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from types import *
|
||||
import numpy
|
||||
import pytriqs.utility.dichotomy as dichotomy
|
||||
from pytriqs.gf.local import *
|
||||
#from pytriqs.applications.impurity_solvers.operators import *
|
||||
from pytriqs.operators import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from datetime import datetime
|
||||
|
||||
#from pytriqs.applications.dft.symmetry import *
|
||||
#from pytriqs.applications.dft.sumk_lda import SumkLDA
|
||||
from symmetry import *
|
||||
from sumk_lda import SumkLDA
|
||||
|
||||
import string
|
||||
|
||||
|
||||
def read_fortran_file (filename):
|
||||
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
|
||||
import os.path
|
||||
if not(os.path.exists(filename)) : raise IOError, "File %s does not exists"%filename
|
||||
for line in open(filename,'r') :
|
||||
for x in line.replace('D','E').split() :
|
||||
yield string.atof(x)
|
||||
|
||||
|
||||
class SumkLDATools(SumkLDA):
|
||||
"""Extends the SumkLDA class with some tools for analysing the data."""
|
||||
|
||||
|
||||
def __init__(self, hdf_file, mu = 0.0, h_field = 0.0, use_lda_blocks = False, lda_data = 'SumK_LDA', symm_corr_data = 'SymmCorr',
|
||||
par_proj_data = 'SumK_LDA_ParProj', symm_par_data = 'SymmPar', bands_data = 'SumK_LDA_Bands'):
|
||||
|
||||
self.Gupf_refreq = None
|
||||
SumkLDA.__init__(self,hdf_file=hdf_file,mu=mu,h_field=h_field,use_lda_blocks=use_lda_blocks,lda_data=lda_data,
|
||||
symm_corr_data=symm_corr_data,par_proj_data=par_proj_data,symm_par_data=symm_par_data,
|
||||
bands_data=bands_data)
|
||||
|
||||
|
||||
def downfold_pc(self,ik,ir,ish,sig,gf_to_downfold,gf_inp):
|
||||
"""Downfolding a block of the Greens function"""
|
||||
|
||||
gf_downfolded = gf_inp.copy()
|
||||
isp = self.names_to_ind[self.SO][sig] # get spin index for proj. matrices
|
||||
dim = self.shells[ish][3]
|
||||
n_orb = self.n_orbitals[ik,isp]
|
||||
L=self.proj_mat_pc[ik,isp,ish,ir,0:dim,0:n_orb]
|
||||
R=self.proj_mat_pc[ik,isp,ish,ir,0:dim,0:n_orb].conjugate().transpose()
|
||||
gf_downfolded.from_L_G_R(L,gf_to_downfold,R)
|
||||
|
||||
return gf_downfolded
|
||||
|
||||
|
||||
def rotloc_all(self,ish,gf_to_rotate,direction):
|
||||
"""Local <-> Global rotation of a GF block.
|
||||
direction: 'toLocal' / 'toGlobal' """
|
||||
|
||||
assert ((direction=='toLocal')or(direction=='toGlobal')),"Give direction 'toLocal' or 'toGlobal' in rotloc!"
|
||||
|
||||
|
||||
gf_rotated = gf_to_rotate.copy()
|
||||
if (direction=='toGlobal'):
|
||||
if ((self.rot_mat_all_time_inv[ish]==1) and (self.SO)):
|
||||
gf_rotated <<= gf_rotated.transpose()
|
||||
gf_rotated.from_L_G_R(self.rot_mat_all[ish].conjugate(),gf_rotated,self.rot_mat_all[ish].transpose())
|
||||
else:
|
||||
gf_rotated.from_L_G_R(self.rot_mat_all[ish],gf_rotated,self.rot_mat_all[ish].conjugate().transpose())
|
||||
|
||||
elif (direction=='toLocal'):
|
||||
if ((self.rot_mat_all_time_inv[ish]==1)and(self.SO)):
|
||||
gf_rotated <<= gf_rotated.transpose()
|
||||
gf_rotated.from_L_G_R(self.rot_mat_all[ish].transpose(),gf_rotated,self.rot_mat_all[ish].conjugate())
|
||||
else:
|
||||
gf_rotated.from_L_G_R(self.rot_mat_all[ish].conjugate().transpose(),gf_rotated,self.rot_mat_all[ish])
|
||||
|
||||
|
||||
return gf_rotated
|
||||
|
||||
|
||||
def lattice_gf_realfreq(self, ik, mu, broadening, mesh=None, beta=40, with_Sigma=True):
|
||||
"""Calculates the lattice Green function on the real frequency axis. If self energy is
|
||||
present and with_Sigma=True, the mesh is taken from Sigma. Otherwise, the mesh has to be given."""
|
||||
|
||||
ntoi = self.names_to_ind[self.SO]
|
||||
bln = self.blocnames[self.SO]
|
||||
|
||||
if (not hasattr(self,"Sigma_imp")): with_Sigma=False
|
||||
if (with_Sigma):
|
||||
assert type(self.Sigma_imp[0]) == GfReFreq, "Real frequency Sigma needed for lattice_gf_realfreq!"
|
||||
beta = self.Sigma_imp[0].mesh.beta
|
||||
stmp = self.add_dc()
|
||||
else:
|
||||
assert (not (mesh is None)),"Without Sigma, give the mesh for lattice_gf_realfreq!"
|
||||
|
||||
if (self.Gupf_refreq is None):
|
||||
# first setting up of Gupf_refreq
|
||||
BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
|
||||
gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
|
||||
a_list = [a for a,al in gf_struct]
|
||||
if (with_Sigma):
|
||||
glist = lambda : [ GfReFreq(indices = al, mesh =self.Sigma_imp[0].mesh) for a,al in gf_struct]
|
||||
else:
|
||||
glist = lambda : [ GfReFreq(indices = al, beta = beta, mesh_array = mesh) for a,al in gf_struct]
|
||||
self.Gupf_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
|
||||
self.Gupf_refreq.zero()
|
||||
|
||||
GFsize = [ gf.N1 for sig,gf in self.Gupf_refreq]
|
||||
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ib]]]==GFsize[ib]
|
||||
for ib in range(self.n_spin_blocks_gf[self.SO]) ] )
|
||||
|
||||
if (not unchangedsize):
|
||||
BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
|
||||
gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
|
||||
a_list = [a for a,al in gf_struct]
|
||||
if (with_Sigma):
|
||||
glist = lambda : [ GfReFreq(indices = al, mesh =self.Sigma_imp[0].mesh) for a,al in gf_struct]
|
||||
else:
|
||||
glist = lambda : [ GfReFreq(indices = al, beta = beta, mesh_array = mesh) for a,al in gf_struct]
|
||||
self.Gupf_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
|
||||
self.Gupf_refreq.zero()
|
||||
|
||||
idmat = [numpy.identity(self.n_orbitals[ik,ntoi[bl]],numpy.complex_) for bl in bln]
|
||||
|
||||
self.Gupf_refreq <<= Omega + 1j*broadening
|
||||
M = copy.deepcopy(idmat)
|
||||
for ibl in range(self.n_spin_blocks_gf[self.SO]):
|
||||
ind = ntoi[bln[ibl]]
|
||||
n_orb = self.n_orbitals[ik,ind]
|
||||
M[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb] - (idmat[ibl]*mu) - (idmat[ibl] * self.h_field * (1-2*ibl))
|
||||
self.Gupf_refreq -= M
|
||||
|
||||
if (with_Sigma):
|
||||
tmp = self.Gupf_refreq.copy() # init temporary storage
|
||||
for icrsh in xrange(self.n_corr_shells):
|
||||
for sig,gf in tmp: tmp[sig] <<= self.upfold(ik,icrsh,sig,stmp[icrsh][sig],gf)
|
||||
self.Gupf_refreq -= tmp # adding to the upfolded GF
|
||||
|
||||
self.Gupf_refreq.invert()
|
||||
|
||||
return self.Gupf_refreq
|
||||
|
||||
|
||||
|
||||
def check_input_dos(self, om_min, om_max, n_om, beta=10, broadening=0.01):
|
||||
|
||||
|
||||
delta_om = (om_max-om_min)/(n_om-1)
|
||||
mesh = numpy.zeros([n_om],numpy.float_)
|
||||
|
||||
DOS = {}
|
||||
for bn in self.block_names[self.SO]:
|
||||
DOS[bn] = numpy.zeros([n_om],numpy.float_)
|
||||
|
||||
DOSproj = [ {} for icrsh in range(self.n_inequiv_corr_shells) ]
|
||||
DOSproj_orb = [ {} for icrsh in range(self.n_inequiv_corr_shells) ]
|
||||
for icrsh in range(self.n_inequiv_corr_shells):
|
||||
for bn in self.block_names[self.corr_shells[self.invshellmap[icrsh]][4]]:
|
||||
dl = self.corr_shells[self.invshellmap[icrsh]][3]
|
||||
DOSproj[icrsh][bn] = numpy.zeros([n_om],numpy.float_)
|
||||
DOSproj_orb[icrsh][bn] = numpy.zeros([dl,dl,n_om],numpy.float_)
|
||||
|
||||
|
||||
for i in range(n_om): mesh[i] = om_min + delta_om * i
|
||||
|
||||
# init:
|
||||
Gloc = []
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
b_list = [a for a,al in self.gf_struct_corr[icrsh]]
|
||||
glist = lambda : [ GfReFreq(indices = al, beta = beta, mesh_array = mesh) for a,al in self.gf_struct_corr[icrsh]]
|
||||
Gloc.append(BlockGf(name_list = b_list, block_list = glist(),make_copies=False))
|
||||
for icrsh in xrange(self.n_corr_shells): Gloc[icrsh].zero() # initialize to zero
|
||||
|
||||
for ik in xrange(self.n_k):
|
||||
|
||||
Gupf=self.lattice_gf_realfreq(ik=ik,mu=self.chemical_potential,broadening=broadening,beta=beta,mesh=mesh,with_Sigma=False)
|
||||
Gupf *= self.bz_weights[ik]
|
||||
|
||||
# non-projected DOS
|
||||
for iom in range(n_om):
|
||||
for sig,gf in Gupf:
|
||||
asd = gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
||||
DOS[sig][iom] += asd
|
||||
|
||||
for icrsh in xrange(self.n_corr_shells):
|
||||
tmp = Gloc[icrsh].copy()
|
||||
for sig,gf in tmp: tmp[sig] <<= self.downfold(ik,icrsh,sig,Gupf[sig],gf) # downfolding G
|
||||
Gloc[icrsh] += tmp
|
||||
|
||||
|
||||
|
||||
if (self.symm_op!=0): Gloc = self.Symm_corr.symmetrize(Gloc)
|
||||
|
||||
if (self.use_rotations):
|
||||
for icrsh in xrange(self.n_corr_shells):
|
||||
for sig,gf in Gloc[icrsh]: Gloc[icrsh][sig] <<= self.rotloc(icrsh,gf,direction='toLocal')
|
||||
|
||||
# Gloc can now also be used to look at orbitally resolved quantities
|
||||
for ish in range(self.n_inequiv_corr_shells):
|
||||
for sig,gf in Gloc[self.invshellmap[ish]]: # loop over spins
|
||||
for iom in range(n_om): DOSproj[ish][sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
||||
|
||||
DOSproj_orb[ish][sig][:,:,:] += gf.data[:,:,:].imag/(-3.1415926535)
|
||||
|
||||
# output:
|
||||
if (mpi.is_master_node()):
|
||||
for bn in self.block_names[self.SO]:
|
||||
f=open('DOS%s.dat'%bn, 'w')
|
||||
for i in range(n_om): f.write("%s %s\n"%(mesh[i],DOS[bn][i]))
|
||||
f.close()
|
||||
|
||||
for ish in range(self.n_inequiv_corr_shells):
|
||||
f=open('DOS%s_proj%s.dat'%(bn,ish),'w')
|
||||
for i in range(n_om): f.write("%s %s\n"%(mesh[i],DOSproj[ish][bn][i]))
|
||||
f.close()
|
||||
|
||||
for i in range(self.corr_shells[self.invshellmap[ish]][3]):
|
||||
for j in range(i,self.corr_shells[self.invshellmap[ish]][3]):
|
||||
Fname = 'DOS'+bn+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat'
|
||||
f=open(Fname,'w')
|
||||
for iom in range(n_om): f.write("%s %s\n"%(mesh[iom],DOSproj_orb[ish][bn][i,j,iom]))
|
||||
f.close()
|
||||
|
||||
|
||||
|
||||
|
||||
def read_par_proj_input_from_hdf(self):
|
||||
"""
|
||||
Reads the data for the partial projectors from the HDF file
|
||||
"""
|
||||
|
||||
thingstoread = ['dens_mat_below','n_parproj','proj_mat_pc','rot_mat_all','rot_mat_all_time_inv']
|
||||
retval = self.read_input_from_hdf(subgrp=self.par_proj_data,things_to_read = thingstoread)
|
||||
return retval
|
||||
|
||||
|
||||
|
||||
def dos_partial(self,broadening=0.01):
|
||||
"""calculates the orbitally-resolved DOS"""
|
||||
|
||||
assert hasattr(self,"Sigma_imp"), "Set Sigma First!!"
|
||||
|
||||
#thingstoread = ['Dens_Mat_below','N_parproj','Proj_Mat_pc','rotmat_all']
|
||||
#retval = self.read_input_from_HDF(SubGrp=self.par_proj_data, thingstoread=thingstoread)
|
||||
retval = self.read_par_proj_input_from_hdf()
|
||||
if not retval: return retval
|
||||
if self.symm_op: self.Symm_par = Symmetry(self.hdf_file,subgroup=self.symm_par_data)
|
||||
|
||||
mu = self.chemical_potential
|
||||
|
||||
gf_struct_proj = [ [ (al, range(self.shells[i][3])) for al in self.block_names[self.SO] ] for i in xrange(self.n_shells) ]
|
||||
Gproj = [BlockGf(name_block_generator = [ (a,GfReFreq(indices = al, mesh = self.Sigma_imp[0].mesh)) for a,al in gf_struct_proj[ish] ], make_copies = False )
|
||||
for ish in xrange(self.n_shells)]
|
||||
for ish in range(self.n_shells): Gproj[ish].zero()
|
||||
|
||||
Msh = [x for x in self.Sigma_imp[0].mesh]
|
||||
n_om = len(Msh)
|
||||
|
||||
DOS = {}
|
||||
for bn in self.block_names[self.SO]:
|
||||
DOS[bn] = numpy.zeros([n_om],numpy.float_)
|
||||
|
||||
DOSproj = [ {} for ish in range(self.n_shells) ]
|
||||
DOSproj_orb = [ {} for ish in range(self.n_shells) ]
|
||||
for ish in range(self.n_shells):
|
||||
for bn in self.block_names[self.SO]:
|
||||
dl = self.shells[ish][3]
|
||||
DOSproj[ish][bn] = numpy.zeros([n_om],numpy.float_)
|
||||
DOSproj_orb[ish][bn] = numpy.zeros([dl,dl,n_om],numpy.float_)
|
||||
|
||||
ikarray=numpy.array(range(self.n_k))
|
||||
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
|
||||
S = self.lattice_gf_realfreq(ik=ik,mu=mu,broadening=broadening)
|
||||
S *= self.bz_weights[ik]
|
||||
|
||||
# non-projected DOS
|
||||
for iom in range(n_om):
|
||||
for sig,gf in S: DOS[sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
||||
|
||||
#projected DOS:
|
||||
for ish in xrange(self.n_shells):
|
||||
tmp = Gproj[ish].copy()
|
||||
for ir in xrange(self.n_parproj[ish]):
|
||||
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
|
||||
Gproj[ish] += tmp
|
||||
|
||||
# collect data from mpi:
|
||||
for sig in DOS:
|
||||
DOS[sig] = mpi.all_reduce(mpi.world,DOS[sig],lambda x,y : x+y)
|
||||
for ish in xrange(self.n_shells):
|
||||
Gproj[ish] <<= mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
|
||||
mpi.barrier()
|
||||
|
||||
if (self.symm_op!=0): Gproj = self.Symm_par.symmetrize(Gproj)
|
||||
|
||||
# rotation to local coord. system:
|
||||
if (self.use_rotations):
|
||||
for ish in xrange(self.n_shells):
|
||||
for sig,gf in Gproj[ish]: Gproj[ish][sig] <<= self.rotloc_all(ish,gf,direction='toLocal')
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
for sig,gf in Gproj[ish]:
|
||||
for iom in range(n_om): DOSproj[ish][sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
||||
DOSproj_orb[ish][sig][:,:,:] += gf.data[:,:,:].imag / (-3.1415926535)
|
||||
|
||||
|
||||
if (mpi.is_master_node()):
|
||||
# output to files
|
||||
for bn in self.block_names[self.SO]:
|
||||
f=open('./DOScorr%s.dat'%bn, 'w')
|
||||
for i in range(n_om): f.write("%s %s\n"%(Msh[i],DOS[bn][i]))
|
||||
f.close()
|
||||
|
||||
# partial
|
||||
for ish in range(self.n_shells):
|
||||
f=open('DOScorr%s_proj%s.dat'%(bn,ish),'w')
|
||||
for i in range(n_om): f.write("%s %s\n"%(Msh[i],DOSproj[ish][bn][i]))
|
||||
f.close()
|
||||
|
||||
for i in range(self.shells[ish][3]):
|
||||
for j in range(i,self.shells[ish][3]):
|
||||
Fname = './DOScorr'+bn+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat'
|
||||
f=open(Fname,'w')
|
||||
for iom in range(n_om): f.write("%s %s\n"%(Msh[iom],DOSproj_orb[ish][bn][i,j,iom]))
|
||||
f.close()
|
||||
|
||||
|
||||
|
||||
|
||||
def spaghettis(self,broadening,shift=0.0,plot_range=None, ishell=None, invert_Akw=False, fermi_surface=False):
|
||||
""" Calculates the correlated band structure with a real-frequency self energy.
|
||||
ATTENTION: Many things from the original input file are are overwritten!!!"""
|
||||
|
||||
assert hasattr(self,"Sigma_imp"), "Set Sigma First!!"
|
||||
thingstoread = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
|
||||
retval = self.read_input_from_hdf(subgrp=self.bands_data,things_to_read=thingstoread)
|
||||
if not retval: return retval
|
||||
|
||||
if fermi_surface: ishell=None
|
||||
|
||||
# print hamiltonian for checks:
|
||||
if ((self.SP==1)and(self.SO==0)):
|
||||
f1=open('hamup.dat','w')
|
||||
f2=open('hamdn.dat','w')
|
||||
|
||||
for ik in xrange(self.n_k):
|
||||
for i in xrange(self.n_orbitals[ik,0]):
|
||||
f1.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
|
||||
for i in xrange(self.n_orbitals[ik,1]):
|
||||
f2.write('%s %s\n'%(ik,self.hopping[ik,1,i,i].real))
|
||||
f1.write('\n')
|
||||
f2.write('\n')
|
||||
f1.close()
|
||||
f2.close()
|
||||
else:
|
||||
f=open('ham.dat','w')
|
||||
for ik in xrange(self.n_k):
|
||||
for i in xrange(self.n_orbitals[ik,0]):
|
||||
f.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
|
||||
f.write('\n')
|
||||
f.close()
|
||||
|
||||
|
||||
#=========================================
|
||||
# calculate A(k,w):
|
||||
|
||||
mu = self.chemical_potential
|
||||
bln = self.block_names[self.SO]
|
||||
|
||||
# init DOS:
|
||||
M = [x for x in self.Sigma_imp[0].mesh]
|
||||
n_om = len(M)
|
||||
|
||||
if plot_range is None:
|
||||
om_minplot = M[0]-0.001
|
||||
om_maxplot = M[n_om-1] + 0.001
|
||||
else:
|
||||
om_minplot = plot_range[0]
|
||||
om_maxplot = plot_range[1]
|
||||
|
||||
if (ishell is None):
|
||||
Akw = {}
|
||||
for ibn in bln: Akw[ibn] = numpy.zeros([self.n_k, n_om ],numpy.float_)
|
||||
else:
|
||||
Akw = {}
|
||||
for ibn in bln: Akw[ibn] = numpy.zeros([self.shells[ishell][3],self.n_k, n_om ],numpy.float_)
|
||||
|
||||
if fermi_surface:
|
||||
om_minplot = -2.0*broadening
|
||||
om_maxplot = 2.0*broadening
|
||||
Akw = {}
|
||||
for ibn in bln: Akw[ibn] = numpy.zeros([self.n_k,1],numpy.float_)
|
||||
|
||||
if not (ishell is None):
|
||||
GFStruct_proj = [ (al, range(self.shells[ishell][3])) for al in bln ]
|
||||
Gproj = BlockGf(name_block_generator = [ (a,GfReFreq(indices = al, mesh = self.Sigma_imp[0].mesh)) for a,al in GFStruct_proj ], make_copies = False)
|
||||
Gproj.zero()
|
||||
|
||||
for ik in xrange(self.n_k):
|
||||
|
||||
S = self.lattice_gf_realfreq(ik=ik,mu=mu,broadening=broadening)
|
||||
if (ishell is None):
|
||||
# non-projected A(k,w)
|
||||
for iom in range(n_om):
|
||||
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
|
||||
if fermi_surface:
|
||||
for sig,gf in S: Akw[sig][ik,0] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) * (M[1]-M[0])
|
||||
else:
|
||||
for sig,gf in S: Akw[sig][ik,iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
||||
Akw[sig][ik,iom] += ik*shift # shift Akw for plotting in xmgrace
|
||||
|
||||
|
||||
else:
|
||||
# projected A(k,w):
|
||||
Gproj.zero()
|
||||
tmp = Gproj.copy()
|
||||
for ir in xrange(self.n_parproj[ishell]):
|
||||
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ishell,sig,S[sig],gf)
|
||||
Gproj += tmp
|
||||
|
||||
# TO BE FIXED:
|
||||
# rotate to local frame
|
||||
#if (self.use_rotations):
|
||||
# for sig,gf in Gproj: Gproj[sig] <<= self.rotloc(0,gf,direction='toLocal')
|
||||
|
||||
for iom in range(n_om):
|
||||
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
|
||||
for ish in range(self.shells[ishell][3]):
|
||||
for ibn in bln:
|
||||
Akw[ibn][ish,ik,iom] = Gproj[ibn].data[iom,ish,ish].imag/(-3.1415926535)
|
||||
|
||||
|
||||
# END k-LOOP
|
||||
if (mpi.is_master_node()):
|
||||
if (ishell is None):
|
||||
|
||||
for ibn in bln:
|
||||
# loop over GF blocs:
|
||||
|
||||
if (invert_Akw):
|
||||
maxAkw=Akw[ibn].max()
|
||||
minAkw=Akw[ibn].min()
|
||||
|
||||
|
||||
# open file for storage:
|
||||
if fermi_surface:
|
||||
f=open('FS_'+ibn+'.dat','w')
|
||||
else:
|
||||
f=open('Akw_'+ibn+'.dat','w')
|
||||
|
||||
for ik in range(self.n_k):
|
||||
if fermi_surface:
|
||||
if (invert_Akw):
|
||||
Akw[ibn][ik,0] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,0] - maxAkw)
|
||||
f.write('%s %s\n'%(ik,Akw[ibn][ik,0]))
|
||||
else:
|
||||
for iom in range(n_om):
|
||||
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
|
||||
if (invert_Akw):
|
||||
Akw[ibn][ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,iom] - maxAkw)
|
||||
if (shift>0.0001):
|
||||
f.write('%s %s\n'%(M[iom],Akw[ibn][ik,iom]))
|
||||
else:
|
||||
f.write('%s %s %s\n'%(ik,M[iom],Akw[ibn][ik,iom]))
|
||||
|
||||
f.write('\n')
|
||||
|
||||
f.close()
|
||||
|
||||
else:
|
||||
for ibn in bln:
|
||||
for ish in range(self.shells[ishell][3]):
|
||||
|
||||
if (invert_Akw):
|
||||
maxAkw=Akw[ibn][ish,:,:].max()
|
||||
minAkw=Akw[ibn][ish,:,:].min()
|
||||
|
||||
f=open('Akw_'+ibn+'_proj'+str(ish)+'.dat','w')
|
||||
|
||||
for ik in range(self.n_k):
|
||||
for iom in range(n_om):
|
||||
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
|
||||
if (invert_Akw):
|
||||
Akw[ibn][ish,ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ish,ik,iom] - maxAkw)
|
||||
if (shift>0.0001):
|
||||
f.write('%s %s\n'%(M[iom],Akw[ibn][ish,ik,iom]))
|
||||
else:
|
||||
f.write('%s %s %s\n'%(ik,M[iom],Akw[ibn][ish,ik,iom]))
|
||||
|
||||
f.write('\n')
|
||||
|
||||
f.close()
|
||||
|
||||
|
||||
def constr_Sigma_ME(self, filename, beta, n_om, orb = 0):
|
||||
"""Uses Data from files to construct a GF object on the real axis."""
|
||||
|
||||
|
||||
#first get the mesh out of one of the files:
|
||||
if (len(self.gf_struct_solver[orb][0][1])==1):
|
||||
Fname = filename+'_'+self.gf_struct_solver[orb][0][0]+'.dat'
|
||||
else:
|
||||
Fname = filename+'_'+self.gf_struct_solver[orb][0][0]+'/'+str(self.gf_struct_solver[orb][0][1][0])+'_'+str(self.gf_struct_solver[orb][0][1][0])+'.dat'
|
||||
|
||||
R = read_fortran_file(Fname)
|
||||
mesh = numpy.zeros([n_om],numpy.float_)
|
||||
try:
|
||||
for i in xrange(n_om):
|
||||
mesh[i] = R.next()
|
||||
sk = R.next()
|
||||
sk = R.next()
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "SumkLDA.read_Sigma_ME : reading file failed!"
|
||||
R.close()
|
||||
|
||||
# now initialize the GF with the mesh
|
||||
a_list = [a for a,al in self.gf_struct_solver[orb]]
|
||||
glist = lambda : [ GfReFreq(indices = al, beta = beta, mesh_array = mesh) for a,al in self.gf_struct_solver[orb] ]
|
||||
SigmaME = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
|
||||
SigmaME.load(filename)
|
||||
|
||||
return SigmaME
|
||||
|
||||
|
||||
|
||||
|
||||
def partial_charges(self,beta=40):
|
||||
"""Calculates the orbitally-resolved density matrix for all the orbitals considered in the input.
|
||||
The theta-projectors are used, hence case.parproj data is necessary"""
|
||||
|
||||
|
||||
#thingstoread = ['Dens_Mat_below','N_parproj','Proj_Mat_pc','rotmat_all']
|
||||
#retval = self.read_input_from_HDF(SubGrp=self.par_proj_data,thingstoread=thingstoread)
|
||||
retval = self.read_par_proj_input_from_hdf()
|
||||
if not retval: return retval
|
||||
if self.symm_op: self.Symm_par = Symmetry(self.hdf_file,subgroup=self.symm_par_data)
|
||||
|
||||
# Density matrix in the window
|
||||
bln = self.block_names[self.SO]
|
||||
ntoi = self.names_to_ind[self.SO]
|
||||
self.dens_mat_window = [ [numpy.zeros([self.shells[ish][3],self.shells[ish][3]],numpy.complex_) for ish in range(self.n_shells)]
|
||||
for isp in range(len(bln)) ] # init the density matrix
|
||||
|
||||
mu = self.chemical_potential
|
||||
GFStruct_proj = [ [ (al, range(self.shells[i][3])) for al in bln ] for i in xrange(self.n_shells) ]
|
||||
if hasattr(self,"Sigma_imp"):
|
||||
Gproj = [BlockGf(name_block_generator = [ (a,GfImFreq(indices = al, mesh = self.Sigma_imp[0].mesh)) for a,al in GFStruct_proj[ish] ], make_copies = False)
|
||||
for ish in xrange(self.n_shells)]
|
||||
beta = self.Sigma_imp[0].mesh.beta
|
||||
else:
|
||||
Gproj = [BlockGf(name_block_generator = [ (a,GfImFreq(indices = al, beta = beta)) for a,al in GFStruct_proj[ish] ], make_copies = False)
|
||||
for ish in xrange(self.n_shells)]
|
||||
|
||||
for ish in xrange(self.n_shells): Gproj[ish].zero()
|
||||
|
||||
ikarray=numpy.array(range(self.n_k))
|
||||
#print mpi.rank, mpi.slice_array(ikarray)
|
||||
#print "K-Sum starts on node",mpi.rank," at ",datetime.now()
|
||||
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
#print mpi.rank, ik, datetime.now()
|
||||
S = self.lattice_gf_matsubara(ik=ik,mu=mu,beta=beta)
|
||||
S *= self.bz_weights[ik]
|
||||
|
||||
for ish in xrange(self.n_shells):
|
||||
tmp = Gproj[ish].copy()
|
||||
for ir in xrange(self.n_parproj[ish]):
|
||||
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
|
||||
Gproj[ish] += tmp
|
||||
|
||||
#print "K-Sum done on node",mpi.rank," at ",datetime.now()
|
||||
#collect data from mpi:
|
||||
for ish in xrange(self.n_shells):
|
||||
Gproj[ish] <<= mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
|
||||
mpi.barrier()
|
||||
|
||||
#print "Data collected on node",mpi.rank," at ",datetime.now()
|
||||
|
||||
# Symmetrisation:
|
||||
if (self.symm_op!=0): Gproj = self.Symm_par.symmetrize(Gproj)
|
||||
#print "Symmetrisation done on node",mpi.rank," at ",datetime.now()
|
||||
|
||||
for ish in xrange(self.n_shells):
|
||||
|
||||
# Rotation to local:
|
||||
if (self.use_rotations):
|
||||
for sig,gf in Gproj[ish]: Gproj[ish][sig] <<= self.rotloc_all(ish,gf,direction='toLocal')
|
||||
|
||||
isp = 0
|
||||
for sig,gf in Gproj[ish]: #dmg.append(Gproj[ish].density()[sig])
|
||||
self.dens_mat_window[isp][ish] = Gproj[ish].density()[sig]
|
||||
isp+=1
|
||||
|
||||
# add Density matrices to get the total:
|
||||
dens_mat = [ [ self.dens_mat_below[ntoi[bln[isp]]][ish]+self.dens_mat_window[isp][ish] for ish in range(self.n_shells)]
|
||||
for isp in range(len(bln)) ]
|
||||
|
||||
return dens_mat
|
||||
|
||||
|
||||
|
176
python/symmetry.py
Normal file
176
python/symmetry.py
Normal file
@ -0,0 +1,176 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
|
||||
import copy,numpy
|
||||
import string
|
||||
from types import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.archive import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
|
||||
|
||||
class Symmetry:
|
||||
"""This class provides the routines for applying symmetry operations for the k sums.
|
||||
It contains the permutations of the atoms in the unti cell, and the corresponding
|
||||
rotational matrices for each symmetry operation."""
|
||||
|
||||
def __init__(self, hdf_file, subgroup = None):
|
||||
"""Initialises the class.
|
||||
Reads the permutations and rotation matrizes from the file, and constructs the mapping for
|
||||
the given orbitals. For each orbit a matrix is read!!!
|
||||
SO: Flag for SO coupled calculations.
|
||||
SP: Spin polarisation yes/no
|
||||
"""
|
||||
|
||||
assert type(hdf_file)==StringType,"hdf_file must be a filename"; self.hdf_file = hdf_file
|
||||
thingstoread = ['n_s','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
|
||||
for it in thingstoread: exec "self.%s = 0"%it
|
||||
|
||||
if (mpi.is_master_node()):
|
||||
#Read the stuff on master:
|
||||
ar = HDFArchive(hdf_file,'a')
|
||||
if (subgroup is None):
|
||||
ar2 = ar
|
||||
else:
|
||||
ar2 = ar[subgroup]
|
||||
|
||||
for it in thingstoread: exec "self.%s = ar2['%s']"%(it,it)
|
||||
del ar2
|
||||
del ar
|
||||
|
||||
#broadcasting
|
||||
for it in thingstoread: exec "self.%s = mpi.bcast(self.%s)"%(it,it)
|
||||
|
||||
# now define the mapping of orbitals:
|
||||
# self.map[iorb]=jorb gives the permutation of the orbitals as given in the list, when the
|
||||
# permutation of the atoms is done:
|
||||
self.n_orbits = len(self.orbits)
|
||||
|
||||
self.map = [ [0 for iorb in range(self.n_orbits)] for in_s in range(self.n_s) ]
|
||||
for in_s in range(self.n_s):
|
||||
for iorb in range(self.n_orbits):
|
||||
|
||||
srch = copy.deepcopy(self.orbits[iorb])
|
||||
srch[0] = self.perm[in_s][self.orbits[iorb][0]-1]
|
||||
self.map[in_s][iorb] = self.orbits.index(srch)
|
||||
|
||||
|
||||
|
||||
def symmetrize(self,obj):
|
||||
|
||||
assert isinstance(obj,list),"obj has to be a list of objects!"
|
||||
assert len(obj)==self.n_orbits,"obj has to be a list of the same length as defined in the init"
|
||||
|
||||
if (isinstance(obj[0],BlockGf)):
|
||||
symm_obj = [ obj[i].copy() for i in range(len(obj)) ] # here the result is stored, it is a BlockGf!
|
||||
for iorb in range(self.n_orbits): symm_obj[iorb].zero() # set to zero
|
||||
else:
|
||||
# if not a BlockGf, we assume it is a matrix (density matrix), has to be complex since self.mat is complex!
|
||||
#symm_obj = [ numpy.zeros([self.orbits[iorb][3],self.orbits[iorb][3]],numpy.complex_) for iorb in range(self.n_orbits) ]
|
||||
symm_obj = [ copy.deepcopy(obj[i]) for i in range(len(obj)) ]
|
||||
|
||||
for iorb in range(self.n_orbits):
|
||||
if (type(symm_obj[iorb])==DictType):
|
||||
for ii in symm_obj[iorb]: symm_obj[iorb][ii] *= 0.0
|
||||
else:
|
||||
symm_obj[iorb] *= 0.0
|
||||
|
||||
|
||||
for in_s in range(self.n_s):
|
||||
|
||||
for iorb in range(self.n_orbits):
|
||||
|
||||
l = self.orbits[iorb][2] # s, p, d, or f
|
||||
dim = self.orbits[iorb][3]
|
||||
jorb = self.map[in_s][iorb]
|
||||
|
||||
|
||||
if (isinstance(obj[0],BlockGf)):
|
||||
|
||||
#if l==0:
|
||||
# symm_obj[jorb] += obj[iorb]
|
||||
#else:
|
||||
|
||||
tmp = obj[iorb].copy()
|
||||
if (self.time_inv[in_s]): tmp <<= tmp.transpose()
|
||||
for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat[in_s][iorb],tmp[sig],self.mat[in_s][iorb].conjugate().transpose())
|
||||
tmp *= 1.0/self.n_s
|
||||
symm_obj[jorb] += tmp
|
||||
|
||||
else:
|
||||
|
||||
if (type(obj[iorb])==DictType):
|
||||
|
||||
for ii in obj[iorb]:
|
||||
#if (l==0):
|
||||
# symm_obj[jorb][ii] += obj[iorb][ii]/self.n_s
|
||||
#else:
|
||||
if (self.time_inv[in_s]==0):
|
||||
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb][ii]),
|
||||
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
|
||||
else:
|
||||
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb][ii].conjugate()),
|
||||
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
|
||||
|
||||
|
||||
|
||||
else:
|
||||
#if (l==0):
|
||||
# symm_obj[jorb] += obj[iorb]/self.n_s
|
||||
#else:
|
||||
if (self.time_inv[in_s]==0):
|
||||
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb]),self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
|
||||
else:
|
||||
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb].conjugate()),
|
||||
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
|
||||
|
||||
|
||||
# This does not what it is supposed to do, check how this should work:
|
||||
# if ((self.SO==0) and (self.SP==0)):
|
||||
# # add time inv:
|
||||
#mpi.report("Add time inversion")
|
||||
# for iorb in range(self.n_orbits):
|
||||
# if (isinstance(symm_obj[0],BlockGf)):
|
||||
# tmp = symm_obj[iorb].copy()
|
||||
# tmp <<= tmp.transpose()
|
||||
# for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat_tinv[iorb],tmp[sig],self.mat_tinv[iorb].transpose().conjugate())
|
||||
# symm_obj[iorb] += tmp
|
||||
# symm_obj[iorb] /= 2.0
|
||||
#
|
||||
# else:
|
||||
# if (type(symm_obj[iorb])==DictType):
|
||||
# for ii in symm_obj[iorb]:
|
||||
# symm_obj[iorb][ii] += numpy.dot(numpy.dot(self.mat_tinv[iorb],symm_obj[iorb][ii].conjugate()),
|
||||
# self.mat_tinv[iorb].transpose().conjugate())
|
||||
# symm_obj[iorb][ii] /= 2.0
|
||||
# else:
|
||||
# symm_obj[iorb] += numpy.dot(numpy.dot(self.mat_tinv[iorb],symm_obj[iorb].conjugate()),
|
||||
# self.mat_tinv[iorb].transpose().conjugate())
|
||||
# symm_obj[iorb] /= 2.0
|
||||
|
||||
|
||||
return symm_obj
|
||||
|
||||
|
||||
|
||||
|
10
test/CMakeLists.txt
Normal file
10
test/CMakeLists.txt
Normal file
@ -0,0 +1,10 @@
|
||||
# load triqs helper to set up tests
|
||||
find_package(TriqsTest)
|
||||
|
||||
FILE(COPY SrVO3.h5 SrVO3.ctqmcout SrVO3.symqmc SrVO3.sympar SrVO3.parproj DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
||||
triqs_add_test_hdf(wien2k_convert " -p 1.e-6" )
|
||||
triqs_add_test_hdf(sumklda_basic " -d 1.e-6" )
|
||||
triqs_add_test_hdf(srvo3_Gloc " -d 1.e-6" )
|
||||
triqs_add_test_hdf(U_mat " -d 1.e-6" )
|
||||
|
||||
|
144
test/SrVO3.ctqmcout
Normal file
144
test/SrVO3.ctqmcout
Normal file
@ -0,0 +1,144 @@
|
||||
13.605698
|
||||
10
|
||||
0
|
||||
0
|
||||
40.000000558793545
|
||||
40.999999999899998
|
||||
4
|
||||
2 2 2 5
|
||||
3 3 1 3
|
||||
4 3 1 3
|
||||
5 3 1 3
|
||||
1
|
||||
2 2 2 3 0 2
|
||||
0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 2.44921262381177494E-016
|
||||
0.0000000000000000 2.44921262381177494E-016 0.0000000000000000
|
||||
2 2 3
|
||||
0.0000000000000000 0.0000000000000000 1.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.70710676908493042 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.70710676908493042
|
||||
-0.70710676908493042 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.70710676908493042
|
||||
0.0000000000000000 0.70710676908493042 0.0000000000000000 -0.70710676908493042 0.0000000000000000
|
||||
0.0000000000000000 0.70710676908493042 0.0000000000000000 0.70710676908493042 0.0000000000000000
|
||||
-0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000
|
||||
-0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000
|
||||
-0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000
|
||||
-0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000
|
||||
-0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000 -0.0000000000000000
|
||||
5
|
||||
4
|
||||
4
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
3
|
||||
-0.46708618649548778 0.19645730518187726 -0.63056665528388278 6.83053983665041654E-003 -9.08691151343342385E-003
|
||||
0.33935797752807517 -0.32538794744732463 -0.35267852306925346 -3.23618480665549069E-003 -7.59881871370310900E-003
|
||||
0.46708618649568096 0.64431539484614131 -0.14514631059489275 1.12847661308980683E-002 1.37196526338472175E-003
|
||||
-0.33935797752757074 0.14273458662350322 -0.45813349010965299 4.96267764149193984E-003 -6.60202761075715308E-003
|
||||
-0.46708618649618328 0.44785808966386337 0.48542034468820755 4.45422629424984794E-003 1.04588767768159212E-002
|
||||
0.33935797752771030 0.46812253407111870 -0.10545496703983014 8.19886244814681947E-003 9.96791102947829641E-004
|
||||
0.99826715704840852 5.88445536524223808E-002 -3.49963547724430057E-013 -4.08006961549745029E-015
|
||||
-5.73331637397004314E-017 -2.22963225794033998E-016 6.67419027347909574E-016 -5.52608570410996464E-017
|
||||
-4.16093832710137529E-002 0.70588146512886052 0.70589348533334861 -4.14051797814691258E-002
|
||||
-2.37410433123357658E-016 -1.15179437842109803E-016 5.46535311198398768E-017 1.62250970413085672E-018
|
||||
4.16093832710091732E-002 -0.70588146512038852 0.70589348534182028 -4.14051797814873335E-002
|
||||
-4.60501593104564975E-017 2.25474017253259800E-016 -2.24885400355293418E-016 -1.23616057093388723E-017
|
||||
-0.80901699302050045 5.28329945561139539E-015 -1.00485967602252993E-014 3.28854063015805595E-016
|
||||
-2.41765092694703728E-015 0.41562693759835523 0.41562693091774439 -1.14174156173996546E-015
|
||||
-1.07540656458753083E-014 -0.57206140619004631 0.57206139701899683 1.67465711372787897E-014
|
||||
0.58778524906798113 -3.70392842145962037E-015 7.30564534122176327E-015 -3.94624875618954910E-016
|
||||
-3.46340437064908524E-015 0.57206140619033075 0.57206139701871328 -1.53174293258064799E-015
|
||||
7.90499832123160669E-015 0.41562693759814934 -0.41562693091795117 -1.20899404781238648E-014
|
||||
-0.57178804263232708 -0.57206141562539525 -1.76831731114629846E-002
|
||||
-0.41542832776788530 0.41562694478460188 -1.28475772191668849E-002
|
||||
2.50077774151022392E-002 3.10030734639631734E-014 -0.80863039610344722
|
||||
0.41542832776748106 0.41562694478500528 1.28475772191862844E-002
|
||||
-0.57178804263288330 0.57206141562483992 -1.76831731114364156E-002
|
||||
-1.81692137263105395E-002 -2.24502870808414751E-014 0.58750436871445022
|
||||
-0.30901699755010820 8.30685616456098959E-015 1.13094225530553555E-014
|
||||
2.77559360298106587E-014 0.94947206837583287 5.48754814934267268E-002
|
||||
1.06369999682261657E-014 -1.78301216293698939E-002 0.30850216700265437
|
||||
0.95105652571985522 -2.58598085453039374E-014 -3.45268162554044509E-014
|
||||
9.10854694143261225E-015 0.30850217616971171 1.78301247853450730E-002
|
||||
-3.30338201117143659E-014 5.48754717811704498E-002 -0.94947204014807729
|
||||
-1.48156062447880746E-003 0.30901343690548655 4.10927180414781041E-015
|
||||
0.95104556712349397 4.55977474133240947E-003 -5.97388470915485219E-015
|
||||
-1.75496203951254199E-015 4.25836636595950224E-015 -0.30901699312287373
|
||||
-4.55977474133809502E-003 0.95104556712349708 1.29149252058973871E-014
|
||||
-0.30901343690548577 -1.48156062447705691E-003 2.19628991981426472E-015
|
||||
-6.18552465852348384E-015 1.28342536232335992E-014 -0.95105651199665908
|
||||
0.17841104221945517 0.24977702070023830 3.56713339103273616E-002
|
||||
0.54909272726567093 -0.47944397783425541 0.61085117483420970
|
||||
-0.17841104221968385 9.39962289969131642E-002 0.23414891216298114
|
||||
-0.54909272726562619 -0.76873462425507377 -0.10978507707937714
|
||||
0.17841104221946952 -0.15578079170319165 0.19847757825293733
|
||||
0.54909272726632985 -0.28929064642040853 -0.72063625191271308
|
||||
-0.30901699537826771 -2.11675140892306026E-014 3.44721631930676906E-015
|
||||
-5.37370006947479601E-014 0.67249851215815792 -0.67249852437822588
|
||||
-1.26814506226421840E-014 0.21850801238703932 0.21850801635742351
|
||||
-0.95105651898278010 -6.54767957184185343E-014 1.05752817797426024E-014
|
||||
1.75281540921277077E-014 -0.21850801238656717 0.21850801635789530
|
||||
-3.87720729467512397E-014 0.67249851215961043 0.67249852437677304
|
||||
7.19230203862877421E-002 0.80581361060730794 1.37190868566293966E-015
|
||||
0.58545785368647119 -5.22551326903864244E-002 8.46043775456040912E-015
|
||||
-1.17881563119053437E-014 -3.96851412450703462E-016 0.80901698213359652
|
||||
5.22551326903867436E-002 0.58545785368647141 1.07178199520420086E-015
|
||||
-0.80581361060730761 7.19230203862874784E-002 -1.18435083685779214E-014
|
||||
-8.70172955532340337E-015 -2.00759389631078690E-016 0.58778523914547964
|
||||
-0.76240262055144414 0.60075375721974744 -0.24049351322467949
|
||||
8.00999090849681899E-017 -5.62259099552636245E-017 2.83358748161481193E-017
|
||||
-0.38253927615517225 -0.11866388983419603 0.91628737085512313
|
||||
-2.63580298927137477E-017 -1.00122764526663028E-016 1.81720663439987169E-017
|
||||
0.52192519475061538 0.79057812199445354 0.32028157400755408
|
||||
-7.72358669497583500E-019 -1.16991835722606990E-018 -4.73961120967276270E-019
|
||||
0.12800000607967377
|
||||
0.38400000333786011
|
||||
0.19200000166893005
|
||||
0.38400000333786011
|
||||
0.38400000333786011
|
||||
9.60000008344650269E-002
|
||||
0.12800000607967377
|
||||
0.19200000166893005
|
||||
9.60000008344650269E-002
|
||||
1.60000007599592209E-002
|
||||
-4.74549500865790730E-002
|
||||
-4.11531615285409824E-002
|
||||
-4.11531615285409824E-002
|
||||
0.12907948625126198
|
||||
0.12907948625126198
|
||||
-3.93779894118470031E-002
|
||||
2.74007323726870311E-002
|
||||
2.82756371285759478E-002
|
||||
0.12939984622214795
|
||||
-3.65958535778190264E-002
|
||||
6.68520221825620320E-002
|
||||
6.85164156244559841E-002
|
||||
0.12896064023265197
|
||||
2.57618807855359844E-002
|
||||
3.43283643776219893E-002
|
||||
5.13251111589240194E-002
|
||||
3.17279643821369861E-002
|
||||
6.86994690914339845E-002
|
||||
7.79247028501099948E-002
|
||||
6.95685007827629986E-002
|
||||
6.95685007827629986E-002
|
||||
9.40738009384869400E-002
|
||||
5.71698495686069341E-002
|
||||
6.18165727833269729E-002
|
||||
6.18165727833269729E-002
|
||||
6.56165915190369819E-002
|
||||
8.52776906906369536E-002
|
||||
8.74546342278249567E-002
|
||||
9.18198298086789766E-002
|
||||
9.18198298086789766E-002
|
||||
0.10357757356761899
|
||||
0.11030741646618503
|
||||
0.11030741646618503
|
||||
0.11030741646622499
|
BIN
test/SrVO3.h5
Normal file
BIN
test/SrVO3.h5
Normal file
Binary file not shown.
620
test/SrVO3.parproj
Normal file
620
test/SrVO3.parproj
Normal file
@ -0,0 +1,620 @@
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1.12192725451350996E-014 6.61073466263034214E-003 -2.12183957288695213E-002 -0.31091873505993201 0.41362631664894800
|
||||
1.04360964314764715E-014 -2.12183953657400642E-002 -6.61073454948429839E-003 0.41362630957003543 0.31091872973878382
|
||||
-0.38765847172758239 0.16202659294907901 -0.52005481134111453 5.63343316101602709E-003 -7.49435767526351881E-003
|
||||
0.28165036505177354 -0.26836111012912139 -0.29086879434858337 -2.66901756537143379E-003 -6.26706502707642232E-003
|
||||
0.38765847172774071 0.53139397445624725 -0.11970826008758886 9.30702071233161302E-003 1.13151739033028140E-003
|
||||
-1.54083428710300797E-014 -9.09889570516930583E-003 2.92046163733298385E-002 0.42794292907813802 -0.56930778859766096
|
||||
-1.46549439250520663E-014 2.92046158735241451E-002 9.09889554943746348E-003 -0.56930777885437389 -0.42794292175420651
|
||||
-0.28165036505135904 0.11771921000947748 -0.37784193593421012 4.09292873793165590E-003 -5.44496952829737202E-003
|
||||
-0.38765847172815388 0.36936738150683501 0.40034655125287377 3.67358755131741172E-003 8.62587506559191024E-003
|
||||
0.28165036505147351 0.38608032013884064 -8.69731415851523193E-002 6.76194630330257795E-003 8.22095498780636702E-004
|
||||
4.26769777578522545E-016 3.77981355810454124E-004 -1.21320222260026659E-003 -3.73225730009532353E-002 4.96515541119442530E-002
|
||||
2.94902990916057206E-016 -1.21320220183724920E-003 -3.77981349341560344E-004 4.96515532621950098E-002 3.73225723622038347E-002
|
||||
-2.07657547403230780E-002 9.04791573770536914E-003 -2.90409865834865000E-002 6.68904153342864127E-004 -8.89867125843057244E-004
|
||||
1.50872035787772939E-002 -1.49858650828965916E-002 -1.62427428729717063E-002 -3.16914544739255719E-004 -7.44140497865150921E-004
|
||||
2.07657547403318037E-002 2.96741900011138690E-002 -6.68476841156730346E-003 1.10509961364398113E-003 1.34354426570527648E-004
|
||||
-5.87398220320796958E-016 -5.20246717040900647E-004 1.66982964559507377E-003 5.13701159509106706E-002 -6.83395030618155486E-002
|
||||
-4.11996825544491685E-016 1.66982961701722709E-003 5.20246708137233130E-004 -6.83395018922359626E-002 -5.13701150717472618E-002
|
||||
-1.50872035787543157E-002 6.57369541368531263E-003 -2.10995112959769457E-002 4.85987302766416329E-004 -6.46526295505302218E-004
|
||||
-2.07657547403547089E-002 2.06262742633910832E-002 2.23562181718840423E-002 4.36195460301456680E-004 1.02422155241345186E-003
|
||||
1.50872035787606544E-002 2.15595604965945660E-002 -4.85676842297969036E-003 8.02901847505403383E-004 9.76142023598206769E-005
|
||||
4.38558201034523900E-017 5.01022241662824700E-017 4.05146406197567194E-017 1.02071487715999598E-017
|
||||
0.0000000000000000 0.0000000000000000 8.62167273785022528E-017 3.41993018601457798E-016
|
||||
0.83570562902110612 4.82982532177768861E-002 -2.86896737200228569E-013 -3.44504753214828034E-015
|
||||
-5.89805981832114412E-017 0.0000000000000000 7.21644966006351751E-016 -5.55111512312578270E-017
|
||||
-3.46259351716538405E-002 0.57584904099953071 0.57088641994100753 -3.34861496013032708E-002
|
||||
-2.57998102479547915E-002 1.02827532877326107E-002 -7.80009446007697982E-014 -1.78747719386812387E-014
|
||||
1.01734485776558272E-014 4.21735882978209737E-013 7.22791578786721456E-002 0.88157167326580477
|
||||
-2.00225103946549423E-016 -6.99661828217457239E-017 6.93889390390722838E-017 0.0000000000000000
|
||||
3.46259351716506972E-002 -0.57584904099268142 0.57088641994792111 -3.34861496013182727E-002
|
||||
-6.24500451351650554E-017 0.0000000000000000 0.0000000000000000 -2.08166817117216851E-017
|
||||
-6.33608870479360267E-018 1.64479862787327824E-017 1.48328853860066325E-017 3.73695695015249611E-018
|
||||
0.0000000000000000 0.0000000000000000 4.98280720033578408E-017 4.18555804828206514E-017
|
||||
4.72039233350999149E-002 3.90414630826862834E-003 -2.33335588244030838E-014 -5.08178996989620493E-016
|
||||
-1.08420217248550443E-018 -3.46944695195361419E-018 3.46944695195361419E-018 -5.20417042793042128E-018
|
||||
-1.95576235435646843E-003 4.65484343086274427E-002 4.63309671677722690E-002 -3.98015727584843070E-003
|
||||
-1.49208288743942603E-003 8.45966747000719390E-004 -7.25322352371600908E-015 -2.61998300409755365E-015
|
||||
8.02038957998634593E-017 3.44487697891673635E-014 5.96195185599895493E-003 0.10592900356543820
|
||||
-7.41701108731754904E-018 -3.30662688923062122E-018 1.64798730217796674E-017 0.0000000000000000
|
||||
1.95576235435593934E-003 -4.65484343080733165E-002 4.63309671683329594E-002 -3.98015727584998501E-003
|
||||
-1.08420217248550443E-018 -3.46944695195361419E-018 -2.77555756156289135E-017 -2.29850860566926940E-017
|
||||
1.38656832596730697E-002 -3.38337557135760494E-015 -6.70493115624216766E-015 7.72216159242709066E-017
|
||||
-4.99600361081320443E-016 9.13122747886696336E-015 -6.39440728057347999E-015 0.52033860917403696
|
||||
-0.68281754277829076 6.70515996073356992E-015 -7.38671007488757673E-015 2.77555756156289135E-016
|
||||
-3.66995869541228752E-015 0.34177439239247137 0.33930610124645921 -9.71375128464644466E-016
|
||||
-7.98079506433822847E-015 -0.47041209754485619 0.46701478623514603 1.37257029986602042E-014
|
||||
1.90844758280409692E-002 -4.63960397717473802E-015 -9.26450064325020046E-015 9.75430937990790438E-017
|
||||
-1.11022302462515654E-015 1.25685951276451106E-014 -8.73088059253134132E-015 0.71618465988796653
|
||||
0.49609598180560627 -4.77046600177331782E-015 5.36711575423840322E-015 -3.33066907387546962E-016
|
||||
-5.17875142453636804E-015 0.47041209754508645 0.46701478623491077 -1.30474647432824904E-015
|
||||
5.87998080721498534E-015 0.34177439239230462 -0.33930610124663074 -9.90917586670443632E-015
|
||||
8.15812744693330725E-004 -7.12042724006876118E-016 -1.74575577399174521E-015 3.03010406606225961E-016
|
||||
6.93889390390722838E-018 1.15401986210711216E-015 -8.76974067259100996E-016 6.24370406492669588E-002
|
||||
-3.92553044254847563E-002 2.33392024193263174E-016 -6.31775550728609874E-016 -4.57966997657877073E-016
|
||||
-2.19243516814775052E-017 3.26125716232898641E-002 3.25868728146177372E-002 -1.23573618568327792E-016
|
||||
-6.75668656365534830E-016 -4.48873550519190215E-002 4.48519836754704693E-002 9.54705859584339764E-016
|
||||
1.12286993954185824E-003 -9.76153219244981137E-016 -2.41017865184983730E-015 4.17167815606711277E-016
|
||||
1.21430643318376497E-017 1.58837211262422452E-015 -1.21181871112166680E-015 8.59372160033720495E-002
|
||||
2.85206474226156331E-002 -1.69319449328971503E-016 4.62591992038069604E-016 2.22044604925031308E-016
|
||||
-3.48796504023506168E-017 4.48873550519407610E-002 4.48519836754481191E-002 -1.71408567691551422E-016
|
||||
4.97284158593512979E-016 3.26125716232740087E-002 -3.25868728146337175E-002 -6.87627393646340688E-016
|
||||
1.61323597853321003E-002 7.01333942218092341E-003 1.01608814684605898E-002
|
||||
-2.79420663159793137E-002 4.04915333400110433E-003 -1.75991626518636132E-002
|
||||
-0.46943247729306226 -0.46960202192573863 -1.13755925423107054E-002
|
||||
-0.34106265696638938 0.34118583827977700 -8.26485171410307196E-003
|
||||
2.54089624599350972E-002 2.88657986402540701E-014 -0.67791724006563969
|
||||
2.22042884631573900E-002 9.65303363702076263E-003 1.39852536335692799E-002
|
||||
-3.84589551059224821E-002 5.57318147342938941E-003 -2.42231694355196508E-002
|
||||
0.34106265696605775 0.34118583828010790 8.26485171411840171E-003
|
||||
-0.46943247729351906 0.46960202192528255 -1.13755925422902582E-002
|
||||
-1.84606917214297783E-002 -2.11775041947248610E-014 0.49253570244774048
|
||||
1.31597929556344687E-003 5.93973436698259070E-004 9.24106558550324866E-004
|
||||
-2.27934296261714936E-003 3.42930717699606313E-004 -1.60059948362375223E-003
|
||||
-3.76634711142005557E-002 -3.91578409108100309E-002 -1.01994345770417658E-003
|
||||
-2.73641128525740490E-002 2.84498360359687341E-002 -7.41032280194699883E-004
|
||||
2.03869403823715538E-003 2.65759636519646847E-015 -6.07835774850491173E-002
|
||||
1.81129015409427978E-003 8.17534319356023041E-004 1.27192359065154644E-003
|
||||
-3.13724652045142653E-003 4.72003651273126060E-004 -2.20303624465065196E-003
|
||||
2.73641128525452179E-002 2.84498360359944150E-002 7.41032280195465221E-004
|
||||
-3.76634711142402462E-002 3.91578409107747050E-002 -1.01994345770325262E-003
|
||||
-1.48119788441640823E-003 -1.93248195223816310E-015 4.41618529752342698E-002
|
||||
2.50183733195353114E-002 5.12716962291341332E-015 -9.16009753726071989E-016
|
||||
-2.78635800559031283E-002 -2.77760005298557899E-015 -2.54804072536051984E-015
|
||||
-0.25516531095992645 7.05351834078361871E-015 9.24712014948801768E-015
|
||||
2.23013934819102222E-014 0.78508897164047187 4.25859031543667915E-002
|
||||
9.05850415656971646E-015 -1.60152254032029373E-002 0.26142131879933317
|
||||
8.12896226224197466E-003 1.59468967401852701E-015 -2.21492125352624190E-016
|
||||
-9.05342597108665936E-003 -9.70779256150601460E-016 -9.12003918640951924E-016
|
||||
0.78531807651267882 -2.19072995549732822E-014 -2.82818535581966809E-014
|
||||
7.33416960899934009E-015 0.25509087028988320 1.38369987228253999E-002
|
||||
-2.81871220709504228E-014 4.92897955465944060E-002 -0.80457208878039466
|
||||
2.09521755935312146E-003 1.95071562794472258E-015 2.78135724042629284E-017
|
||||
-2.33396039423676080E-003 3.02414801719625602E-016 -3.44162469583541548E-016
|
||||
-2.10326056562136730E-002 7.19854738876179965E-016 6.02536352999948676E-016
|
||||
2.40769243920226030E-015 7.54534326753910911E-002 4.23907570996588136E-003
|
||||
1.00453393158769761E-015 -1.53921363715101706E-003 2.60225424008792769E-002
|
||||
6.80777454031507192E-004 6.37607039234237397E-016 8.68613907343628788E-018
|
||||
-7.58349703545685427E-004 9.82097437030617104E-017 -1.12930819606734392E-016
|
||||
6.47317040669934535E-002 -2.22971284847583078E-015 -1.84564422621464205E-015
|
||||
7.93262906293459792E-016 2.45163064643986045E-002 1.37735919422533187E-003
|
||||
-3.08136797268765954E-015 4.73721246356812765E-003 -8.00891502126776234E-002
|
||||
1.10888144558322605E-014 4.99232797086386184E-015 1.04208491056554194E-014
|
||||
-1.64578637176782117E-014 -6.66133814775093924E-015 -2.48014175064181655E-014
|
||||
-1.23035111670592679E-003 0.25661793442132258 3.86651493571252647E-015
|
||||
0.78978879177487649 3.78663137520820082E-003 -5.46784839627889596E-015
|
||||
-1.44328993201270350E-015 3.19709536622525548E-015 -0.26632298856281256
|
||||
-3.56552443356260273E-015 -1.55930211481793202E-015 -3.41722516033444606E-015
|
||||
5.39021952072893384E-015 2.66453525910037570E-015 8.13586111393910537E-015
|
||||
-3.78663137521277789E-003 0.78978879177487926 1.21551379697344064E-014
|
||||
-0.25661793442132186 -1.23035111670452470E-003 2.10942374678779743E-015
|
||||
-4.74620343027254421E-015 9.64007519643761412E-015 -0.81965787708755611
|
||||
2.96468037622837458E-015 6.41448801955727705E-016 1.74612622719173991E-015
|
||||
-2.68448457907410898E-015 -9.83588210878849623E-016 -3.33986538948440408E-015
|
||||
-1.18644473567049464E-004 2.47460251986617100E-002 6.73482511653182856E-016
|
||||
7.61604342408613855E-002 3.65150142479693529E-004 -6.47051856539349046E-016
|
||||
6.93889390390722838E-018 -4.21212544010618473E-017 -2.81169662282370059E-002
|
||||
-9.60934541438567721E-016 -2.07059796679228235E-016 -5.66986646549486291E-016
|
||||
8.70776974831732886E-016 2.35922392732845765E-016 1.08628897279541059E-015
|
||||
-3.65150142481637287E-004 7.61604342408660345E-002 2.07860329480731411E-015
|
||||
-2.47460251986602077E-002 -1.18644473566424679E-004 2.35922392732845765E-016
|
||||
-1.59594559789866253E-016 -1.27068494615301120E-016 -8.65351239355447166E-002
|
||||
6.48361767119616621E-015 -2.85555318175357911E-002 -4.07809296304074368E-003
|
||||
-1.08385522779030907E-014 -4.07809289324570501E-003 2.85555313288339205E-002
|
||||
0.15072177669527320 0.20796328367520334 2.96998006953149082E-002
|
||||
0.46387393064009752 -0.39918301407066803 0.50859208665089817
|
||||
-0.15072177669546352 7.82608599481372791E-002 0.19495138706466059
|
||||
2.00625217625967697E-015 -9.27825472782249812E-003 -1.32505272731767393E-003
|
||||
-3.60822483003175876E-015 -1.32505270464039482E-003 9.27825456903350748E-003
|
||||
-0.46387393064005866 -0.64004517423870588 -9.14065876194578852E-002
|
||||
0.15072177669528516 -0.12970242372695423 0.16525158636958581
|
||||
0.46387393064064497 -0.24086216016769291 -0.59999867426961684
|
||||
6.93245607662720090E-016 -2.70800641183694020E-003 -3.86737741833876832E-004
|
||||
-1.51875040321769461E-015 -3.86737735214946060E-004 2.70800636549285972E-003
|
||||
1.38404184898647496E-002 1.94551447964928653E-002 2.77844200544907077E-003
|
||||
4.25964280647588706E-002 -3.73439156778900688E-002 4.75792288971765842E-002
|
||||
-1.38404184898824716E-002 7.32137103858686300E-003 1.82378706307781274E-002
|
||||
2.25249152622060020E-016 -8.79884622158535351E-004 -1.25658709802360533E-004
|
||||
-4.89192020225459601E-016 -1.25658707651667145E-004 8.79884607100430739E-004
|
||||
-4.25964280647551791E-002 -5.98767787563698750E-002 -8.55116520529155752E-003
|
||||
1.38404184898658095E-002 -1.21337737578957362E-002 1.54594286253511397E-002
|
||||
4.25964280648093857E-002 -2.25328630784483487E-002 -5.61303941023996167E-002
|
||||
-2.25471023417728698E-002 -1.20323679784540392E-015 -5.63962776351218616E-018
|
||||
3.13638004456606723E-015 -3.10086930611804109E-015 -5.77517452996175711E-015
|
||||
-0.25809045768868732 -1.79825830132884581E-014 3.14964962349297934E-015
|
||||
-4.42579200543063407E-014 0.57002522289177071 -0.56617703023692956
|
||||
-1.07368564495382163E-014 0.18521242235144922 0.18396206876229104
|
||||
7.32599764694656739E-003 4.39544999587100910E-016 -3.63392704316965123E-019
|
||||
-1.27675647831893002E-015 1.00701647833182521E-015 1.77839952217441931E-015
|
||||
-0.79432075239618971 -5.56224350767323085E-014 9.66060773360039847E-015
|
||||
1.44384279449892882E-014 -0.18521242235105181 0.18396206876269133
|
||||
-3.28313297857399991E-014 0.57002522289299284 0.56617703023569743
|
||||
-2.17045470729172957E-003 -1.32734703584162609E-016 -1.39018318217815842E-016
|
||||
-3.98986399474665632E-017 -5.31127456443959083E-017 -4.31566417438699871E-016
|
||||
-2.45088316485976496E-002 -1.49693813473881108E-015 1.94648193694425881E-016
|
||||
-5.10438769602399561E-015 5.83056552055562574E-002 -5.83723788026307977E-002
|
||||
-1.04638951207051939E-015 1.89446558088305836E-002 1.89663356196768072E-002
|
||||
7.05223485324816190E-004 4.30446776835130279E-017 4.53616424898868208E-017
|
||||
1.38777878078144568E-017 1.72573772088727439E-017 1.39300129313490486E-016
|
||||
-7.54304275578944750E-002 -4.60574070430158638E-015 6.02180501672679329E-016
|
||||
1.65827823627175473E-015 -1.89446558087896406E-002 1.89663356197179687E-002
|
||||
-3.20494159125598931E-015 5.83056552056815808E-002 5.83723788025042739E-002
|
||||
-5.88715134610011246E-016 3.46228286711041296E-015 -1.63443903984480105E-015
|
||||
3.15719672627778891E-016 3.77475828372553224E-015 2.81807723123217306E-015
|
||||
6.05867336011169377E-002 0.67880373065265420 8.22900075458416348E-016
|
||||
0.49317977506331839 -4.40188382884854693E-002 6.88338275267597055E-015
|
||||
-1.04360964314764715E-014 -6.66133814775093924E-016 0.69386707443556817
|
||||
8.23772368050386913E-016 -4.68088723461457117E-015 2.26058592550034199E-015
|
||||
-4.09394740330526474E-016 -5.27355936696949357E-015 -3.89151333882548254E-015
|
||||
4.40188382884859064E-002 0.49317977506331839 6.39346064969465703E-016
|
||||
-0.67880373065265420 6.05867336011164867E-002 -9.76996261670137756E-015
|
||||
-7.60502771868232230E-015 -3.95516952522712018E-016 0.50412393471233163
|
||||
-3.53089262582016655E-016 7.78866127290165149E-016 -4.19813202229787951E-016
|
||||
4.20670442924375720E-017 2.70616862252381907E-016 7.04981432017994359E-016
|
||||
6.34533375078095811E-003 7.10920686139553948E-002 3.59975954041923670E-016
|
||||
5.16514099981528890E-002 -4.61015471242496450E-003 9.71445146547011973E-016
|
||||
-9.61036805691151130E-016 3.14852310889790488E-016 7.57264512500950837E-002
|
||||
4.84826329869395993E-016 -1.07133136093573334E-015 5.78572944320415573E-016
|
||||
-5.76795555762288359E-017 -5.30825383648902971E-016 -9.68335574006863446E-016
|
||||
4.61015471242552308E-003 5.16514099981528890E-002 2.59349335896442881E-016
|
||||
-7.10920686139553948E-002 6.34533375078019570E-003 -1.20736753927985774E-015
|
||||
-7.28583859910258980E-016 2.31585584042903747E-016 5.50184859926274930E-002
|
||||
-8.71195572540541111E-031 -3.24969884813390093E-031 -1.16010963677714894E-030
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
-0.65037657163083196 0.51248009710711162 -0.20515583553134853
|
||||
0.0000000000000000 6.93889390390722838E-018 0.0000000000000000
|
||||
-0.32632965343165832 -0.10122763454160452 0.78164977771764110
|
||||
-4.16779314099982603E-015 -3.14947355565427692E-015 -4.09534183218605394E-015
|
||||
-2.72285557082974741E-015 -9.87490886795515299E-016 -3.06374604643844848E-015
|
||||
2.68852339823548375E-017 -1.29547973506905880E-017 3.99859782958334687E-017
|
||||
0.44523445966664904 0.67441201634012471 0.27321998435537126
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
-1.74198715827041609E-031 -2.47376728670618130E-031 -5.05347189241515802E-031
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
-7.26241597714078896E-002 5.72259796484475489E-002 -2.29086821813164129E-002
|
||||
-6.93889390390722838E-018 8.67361737988403547E-018 0.0000000000000000
|
||||
-3.64395304547060483E-002 -1.13035620053111002E-002 8.72827540510988514E-002
|
||||
-5.88529434125788411E-016 -8.17727565077062364E-016 -1.68536697768549449E-015
|
||||
-8.35867871562259447E-016 -4.26884282982102447E-016 -1.08805949604943179E-015
|
||||
7.47562799363042497E-018 -3.78115859630573455E-018 1.53626994728239038E-017
|
||||
4.97170100292624456E-002 7.53080725273167773E-002 3.05090506978301854E-002
|
||||
0.0000000000000000 0.0000000000000000 -6.93889390390722838E-018
|
||||
0.41817867075133863 -2.89120564485163549E-019 -2.69094067099371175E-058 1.15011257050450273E-016 -4.25949569859629402E-036
|
||||
-2.89120564485163597E-019 0.41817861349675745 -8.64049795617284125E-036 -1.22297992498118223E-016 6.26211089345960796E-036
|
||||
-8.07282199988879703E-058 -8.71250211458908545E-036 0.23694791318277272 1.13650710051734720E-035 1.16551721574012134E-018
|
||||
1.15020292068090411E-016 -1.22803953459989879E-016 1.13650710051734720E-035 0.23694791318277281 1.00919019337563083E-035
|
||||
-4.18692902289996420E-036 6.22610882546187290E-036 1.16551721574012134E-018 1.00919019337563083E-035 0.23694791318277281
|
||||
0.0000000000000000 -5.49348095123475589E-043 8.31944424306175295E-017 -1.57059059526142817E-036 -1.05434138351877840E-016
|
||||
1.64804428269766238E-042 3.62511435074819255E-042 -3.22999699855629360E-015 -4.32024897948764843E-037 -1.33320713453179212E-016
|
||||
-8.30498821483749372E-017 3.23006927869370371E-015 6.76169999827390752E-052 -4.35849228583720016E-017 -2.03886359996511426E-036
|
||||
1.58859163548163833E-036 5.40031122260795479E-037 4.35849228583720016E-017 3.38808232136927840E-051 5.58364061494068534E-017
|
||||
1.05253437999074584E-016 1.33465273727999671E-016 2.03886359996511426E-036 -5.58364061494068410E-017 2.58482446071429651E-051
|
||||
1.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -4.89842524762354989E-016 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 -4.89842524762354989E-016 0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 2.44921262381177494E-016
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000 2.44921262381177494E-016 0.0000000000000000
|
||||
-2.07797077872564455E-002 2.05410266584096432E-002 -8.64578310216322643E-002 -0.10457207919524197 -3.24952655729267709E-002
|
||||
5.66597153129049652E-002 -7.73878777470444479E-002 -6.66463941706798429E-002 2.00801732266639096E-002 -1.78841754458678101E-002
|
||||
-8.95083138632063596E-002 5.99190081241931655E-002 -9.53285933442331174E-002 7.49659361434691501E-002 -1.06676160102681904E-002
|
||||
8.73628745130652917E-002 -5.63283894381524791E-002 7.21425624304153773E-002 -0.11280137917334043 6.58243221882444797E-004
|
||||
7.79854079928449656E-002 -0.10651527610617767 -9.17308922690443646E-002 2.76379875705640848E-002 -2.46154559074702045E-002
|
||||
-7.23393667751476288E-003 -2.12924746508222351E-003 5.99330054994748063E-002 0.13431150104935075 3.07014256740454732E-002
|
||||
-2.70315510644238567E-004 5.25280061682239108E-004 -3.40274195212106507E-003 -1.06846153157256762E-002 -3.07967256492031310E-003
|
||||
2.16713503149908128E-003 -3.10930199855847557E-003 -2.67424807090518813E-003 1.81115727513137177E-003 -1.60942109020046601E-003
|
||||
-3.94800855063443500E-003 2.71036090590835894E-003 -3.89497979934590090E-003 8.01254126850473036E-003 -8.06532912748049013E-004
|
||||
4.06335104259474608E-003 -2.67916827650575579E-003 2.98980618561361716E-003 -1.18965267626283296E-002 -1.52607456171693597E-004
|
||||
2.98280554897820951E-003 -4.27958715998135245E-003 -3.68078678499440988E-003 2.49284418913072120E-003 -2.21517814474706930E-003
|
||||
-9.98559289560734973E-004 3.28337565257673727E-004 2.31229889567622412E-003 1.38379021487897609E-002 2.97610093972906081E-003
|
||||
-9.83675599390266761E-003 4.29526763736691741E-002 -2.09045606335887986E-002 0.13361696819317317
|
||||
1.48139085889470098E-003 3.27612204520540407E-002 -4.41770541624951496E-002 -9.30071322510488303E-003
|
||||
9.29847088731313859E-002 -2.68397187849785460E-002 3.59620051436917165E-002 -0.11526521181750425
|
||||
-0.14465590240777693 -1.34568302243756755E-002 -3.24095581760059925E-002 1.21929119585056176E-002
|
||||
4.81333067976499884E-004 1.06447658005582209E-002 -1.43539950231005003E-002 -3.02198491718699835E-003
|
||||
-0.11124718326787206 -3.61337540670073135E-002 -1.39324908910119297E-002 -6.86738104093583962E-002
|
||||
-1.18474463532241767E-003 3.11546698964290918E-003 -1.70454629511681633E-003 1.37978720662982959E-002
|
||||
6.43064657801538982E-005 1.93393885073834745E-003 -2.62997010606225634E-003 -8.45390491388064037E-004
|
||||
4.56205784628266331E-003 -2.14499730942053872E-003 2.61642737351435980E-003 -1.21422027308622556E-002
|
||||
-6.13077528602718608E-003 -6.38785044216270189E-004 -2.10522541620601243E-003 1.66640749430961273E-003
|
||||
2.08944373610029169E-005 6.28374824934529877E-004 -8.54529089349943816E-004 -2.74684022105704719E-004
|
||||
-4.26352596636372407E-003 -2.34801350908543129E-003 -7.01255962085883203E-004 -6.76203374271877079E-003
|
||||
9.09736185598007119E-002 6.48005954451136290E-015 -3.92047505570758403E-016 0.11058997393287555
|
||||
-7.32747196252603317E-015 -1.42146021515280746E-002 -1.64837071121163511E-002 -3.85282084014448856E-015
|
||||
-8.61100727208410563E-003 -3.65939917257307457E-015 2.60381993744118745E-015 -0.13041179765476915
|
||||
0.11056452320210131 2.60316941613769615E-015 3.86127761708987549E-015 -6.96557614872087838E-002
|
||||
2.10942374678779743E-015 4.61860421469256245E-003 5.35588110947372679E-003 1.28716481917479086E-015
|
||||
0.14292152958579168 5.93730793696511938E-015 2.92496062093139386E-015 8.65046096828617217E-003
|
||||
4.52848747532721106E-003 2.12666256133031695E-016 2.54191199339226515E-016 1.16452530364722605E-002
|
||||
3.30681662608078852E-016 -9.78143338557296241E-004 -1.14655056517422868E-003 -1.96240593219876303E-016
|
||||
-1.11778030109720432E-003 -2.04643160056638962E-016 -3.76489204395591415E-016 -1.34307927650927222E-002
|
||||
4.33124684473911326E-003 -5.61481200075930609E-017 -2.87828571740589290E-016 -6.82151370830913484E-003
|
||||
-1.07119174641567838E-016 3.17818036951975210E-004 3.72536861956560949E-004 6.48352899146331652E-017
|
||||
6.16583045848140276E-003 8.03529335083319474E-017 -8.30769914667017773E-017 1.32618748947837465E-003
|
||||
8.74601389463915968E-002 1.27162586379921949E-002 2.43680424053171162E-003
|
||||
5.93863232581116687E-002 -5.53475385811665610E-002 2.08649552273506185E-002
|
||||
-6.01717765203201027E-002 1.27162586379238780E-002 7.15076456374988054E-003
|
||||
1.80082133128973455E-002 3.91366198527594369E-002 1.55195806088568068E-002
|
||||
-1.92957861189678032E-002 1.79835054284242339E-002 -6.77943491659489632E-003
|
||||
6.59767304581252434E-002 3.91366198527816345E-002 1.39879220519925976E-002
|
||||
6.34201471112452557E-003 7.83648978218010354E-004 1.34647443155688036E-004
|
||||
3.51233851737402930E-003 -3.41083358190284345E-003 1.39843485103202333E-003
|
||||
-4.72807464387209504E-003 7.83648978213096533E-004 5.07941540326711251E-004
|
||||
6.85153345288747116E-004 2.41182355526396242E-003 1.04948806864004754E-003
|
||||
-1.14122796598407905E-003 1.10824701313112458E-003 -4.54379027736117474E-004
|
||||
4.28204342162174199E-003 2.41182355526555836E-003 9.28197463784893916E-004
|
||||
9.07799005162825551E-002 2.17187379192296248E-015 -1.34072440649557478E-015
|
||||
2.06085148946044683E-015 -2.94666473661206914E-002 -4.17109128898674256E-003
|
||||
2.49556078829755654E-002 -1.16573417585641437E-015 8.79721642754738298E-016
|
||||
-3.25629916771322941E-003 -1.92901250528620949E-015 1.31969088434935600E-015
|
||||
-2.79637424327461304E-015 4.05573609017660791E-002 5.74101466966779259E-003
|
||||
8.73430676465513089E-002 2.66106581214842208E-015 -1.71607519861005642E-015
|
||||
6.05681964141315237E-003 -2.24646690138996519E-016 -1.82457673102154327E-016
|
||||
-2.13804668414141474E-016 -2.09745616400605368E-003 -3.08140380813099032E-004
|
||||
1.00649735709771085E-003 -1.19262238973405488E-017 2.73124079776254636E-016
|
||||
-9.09686194889612739E-004 6.07153216591882483E-017 3.45481022262505988E-016
|
||||
2.94902990916057206E-016 2.88690081319395182E-003 4.24118859413101740E-004
|
||||
6.04148625852415390E-003 -2.31585584042903747E-016 -2.82163615389352529E-016
|
||||
-2.27090105550003629E-004 4.73648481504733709E-002 -2.16370174009247789E-015
|
||||
9.13440330319037486E-018 -2.08166817117216851E-017 -4.55335373460501719E-018
|
||||
-2.27090105549971049E-004 4.73648481504733432E-002 -2.16370174009247867E-015
|
||||
4.08700850940135751E-015 2.60896989776049359E-015 4.96037486572978596E-015
|
||||
6.69840106341425545E-002 3.21153907156119232E-004 6.99730726515255170E-016
|
||||
-4.06619182768963583E-015 -2.62496187980465479E-015 -4.96520442668410788E-015
|
||||
-1.62935033321088020E-005 3.39838369140103586E-003 1.38419107489534012E-017
|
||||
2.55126323712995262E-018 -1.73472347597680709E-018 1.27462229859215202E-018
|
||||
-1.62935033321119495E-005 3.39838369140103933E-003 1.38419107489534474E-017
|
||||
8.25945214999457278E-016 1.76309907970982616E-016 5.40322998952743292E-016
|
||||
4.80604030652744853E-003 2.30424933922251649E-005 2.34537855237281228E-016
|
||||
-8.22909448916497865E-016 -1.79914880194496918E-016 -5.38520410811171122E-016
|
||||
-4.97681909375340473E-002 -4.82602650487707896E-002 -1.46021088389601678E-002
|
||||
-0.13306352760101450 0.11808066001021725 -0.16555133387992260
|
||||
-1.13752772521286127E-002 -4.35373620716415638E-002 -2.83714117859083098E-003
|
||||
-8.78528157666330078E-002 -0.14049474072151610 -2.49249114707128933E-002
|
||||
4.32349609821794864E-002 -3.83667321945202339E-002 5.37908891334768491E-002
|
||||
-0.10032742962390717 -0.14202930492284091 -2.87475811907503889E-002
|
||||
-3.70753929738527411E-003 -3.40982281634516233E-003 -1.12762486019539303E-003
|
||||
-9.09477845258517548E-003 8.23454020777469181E-003 -1.15496522113857115E-002
|
||||
-4.71564531820597380E-004 -2.99331262005517488E-003 -9.00788819465864546E-005
|
||||
-5.90526354743614503E-003 -9.78574606013009676E-003 -1.70529381481935444E-003
|
||||
2.95507265691450065E-003 -2.67556430726921275E-003 3.75270949420835817E-003
|
||||
-6.95669548698683859E-003 -9.92107842680614235E-003 -2.04241293944664544E-003
|
||||
-0.16549551573140581 -7.44196371194050244E-015 3.06352165857504133E-015
|
||||
5.63438184997266944E-015 -7.05599611135910298E-002 7.31096210246516415E-002
|
||||
-0.14791088193959218 -1.02591546369268372E-014 2.96637714392034013E-015
|
||||
-0.10174995154926955 -8.34055047249648851E-015 2.08860706507607574E-015
|
||||
-7.74380559676046687E-015 9.71174553254823270E-002 -0.10062676115457860
|
||||
-0.12595312373213546 -4.46864767411625508E-015 2.21350715534640585E-015
|
||||
-1.18811414602991612E-002 -1.36739577993871819E-015 2.76688394418300732E-016
|
||||
4.97865637605343636E-016 -5.38578883027934514E-003 5.62696066361230082E-003
|
||||
-1.03469397124761608E-002 -3.16587034365767295E-016 1.67400815431761885E-016
|
||||
-7.01899914832604388E-003 1.11455983331509856E-016 8.19656842399041352E-017
|
||||
-6.87817858224804013E-016 7.41290255340920114E-003 -7.74484711259303387E-003
|
||||
-9.13064674764198225E-003 -1.33443603389515886E-015 2.33753988387874756E-016
|
||||
1.26488672483826697E-002 0.14171581411306849 3.09586375006299123E-015
|
||||
6.93889390390722838E-018 -7.07767178198537295E-016 -1.70750765047714769E-017
|
||||
1.26488672483826940E-002 0.14171581411306849 3.09586375006299202E-015
|
||||
-9.15933995315754146E-016 1.32706345912225743E-016 -1.99695422954461413E-015
|
||||
0.20041642632144666 -1.78881996113155681E-002 1.42050566637746718E-015
|
||||
9.15933995315754146E-016 -1.22298005056364900E-016 1.98246554668165074E-015
|
||||
9.91996630582853275E-004 1.11141659833950916E-002 2.43359219856367378E-016
|
||||
-8.67361737988403547E-019 5.20417042793042128E-018 -1.27462229859222444E-018
|
||||
9.91996630582853058E-004 1.11141659833950916E-002 2.43359219856367378E-016
|
||||
5.11743425413158093E-017 -2.74194729421584071E-016 -6.11955931208841114E-018
|
||||
1.57178042681822179E-002 -1.40289508879840432E-003 1.68499356284896464E-016
|
||||
-5.11743425413158093E-017 2.77013655070046383E-016 4.31697117051619789E-018
|
||||
-0.14977258725759401 0.11801696649264197 -4.72445066732259389E-002
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
-0.14977258725759401 0.11801696649264198 -4.72445066732259389E-002
|
||||
-2.08166817117216851E-016 -4.57966997657877073E-016 6.03683769639928869E-016
|
||||
-0.14500107148885677 -0.21963813193500981 -8.89805126794487311E-002
|
||||
2.08166817117216851E-016 4.57966997657877073E-016 -5.75928194024299955E-016
|
||||
-1.25726996218183448E-002 9.90696560137734397E-003 -3.96595266236427543E-003
|
||||
-1.73472347597680709E-018 0.0000000000000000 1.73472347597680709E-018
|
||||
-1.25726996218183448E-002 9.90696560137734744E-003 -3.96595266236427543E-003
|
||||
2.03830008427274834E-016 -8.67361737988403547E-019 1.55257751099924235E-016
|
||||
-1.21721534631411919E-002 -1.84375813283295040E-002 -7.46949277300029517E-003
|
||||
-2.05564731903251641E-016 8.67361737988403547E-019 -1.55257751099924235E-016
|
||||
1.2482676900126699 5.55111512312578270E-017 1.11022302462515654E-016
|
||||
-5.55111512312578270E-017 1.2546793328920534 5.55111512312578270E-017
|
||||
1.11022302462515654E-016 -5.55111512312578270E-017 1.2482676900126699
|
||||
-7.66646708341677054E-019 -4.06572133302594693E-017 -3.60835050726154072E-017
|
||||
4.05166614337302473E-017 0.0000000000000000 4.05166614337302411E-017
|
||||
3.60835050726154072E-017 -4.06572133302594755E-017 7.66646708341677825E-019
|
||||
-0.50000000000000011 -0.70710678118654757 -0.49999999999999989
|
||||
0.70710678118654757 -2.22044604925031308E-016 -0.70710678118654757
|
||||
-0.49999999999999989 0.70710678118654757 -0.50000000000000011
|
||||
-1.22460635382237750E-016 -8.65927457071935541E-017 0.0000000000000000
|
||||
8.65927457071935541E-017 0.0000000000000000 8.65927457071935541E-017
|
||||
0.0000000000000000 -8.65927457071935541E-017 1.22460635382237750E-016
|
||||
-7.23393667748174068E-003 -3.22883468892037825E-002 5.05367341458976826E-002 -6.68203298548044194E-002 -0.12048734527179344
|
||||
5.66597153128270623E-002 0.10154733296234247 -1.08979193606268676E-002 1.15988203030693345E-002 -2.42595229913602495E-002
|
||||
-8.73628745130365508E-002 -5.38501056846820564E-003 -9.13697894924953014E-002 -3.07179510424373525E-002 -0.10854027782948107
|
||||
8.95083138631868058E-002 -4.82898478244610935E-003 0.11249226262082226 1.05875234170278304E-002 7.49772896356132590E-002
|
||||
7.79854079927378430E-002 0.13976791356999854 -1.49996992223005651E-002 1.59644066683986632E-002 -3.33903690636822015E-002
|
||||
-2.07797077872818141E-002 3.22002810376368007E-002 -8.28253114829508585E-002 6.02781852261610601E-002 9.14210173740812038E-002
|
||||
-9.98559289559889512E-004 -1.58357726347470740E-003 1.71662890291182256E-003 -6.70474266049944818E-003 -1.24655982022292729E-002
|
||||
2.16713503149542708E-003 4.07800717161719076E-003 -4.34993300214066118E-004 1.04264973150577684E-003 -2.18710046825328942E-003
|
||||
-4.06335104259296104E-003 -5.06914181742375508E-004 -3.98245171894527020E-003 -3.45293084332606425E-003 -1.13854251848937733E-002
|
||||
3.94800855063283471E-003 1.84656332040936035E-005 4.74516415922476148E-003 1.45212325220534714E-003 7.92102587921776624E-003
|
||||
2.98280554897317838E-003 5.61289547881033482E-003 -5.98716928473685310E-004 1.43508427466320070E-003 -3.01028561582804277E-003
|
||||
-2.70315510644548703E-004 1.50036526931015537E-003 -3.09894756241104212E-003 5.92785835477908571E-003 9.40775652734730100E-003
|
||||
-0.11124718326789813 -3.61337540668439650E-002 1.39324908914463079E-002 6.86738104093560509E-002
|
||||
1.48139085888879599E-003 3.27612204525930886E-002 4.41770541621010204E-002 9.30071322510593601E-003
|
||||
0.14465590240778986 1.34568302239894463E-002 -3.24095581761701390E-002 1.21929119585050105E-002
|
||||
-9.29847088731175081E-002 2.68397187854108391E-002 3.59620051433731241E-002 -0.11526521181750028
|
||||
4.81333067974334949E-004 1.06447658007333777E-002 1.43539950229724812E-002 3.02198491718731754E-003
|
||||
-9.83675599387604654E-003 4.29526763739229017E-002 2.09045606330756778E-002 -0.13361696819316862
|
||||
-4.26352596636396866E-003 -2.34801350907664491E-003 7.01255962113849331E-004 6.76203374271841604E-003
|
||||
6.43064657801489109E-005 1.93393885076870056E-003 2.62997010603967761E-003 8.45390491387986082E-004
|
||||
6.13077528602741766E-003 6.38785044190189597E-004 -2.10522541621358710E-003 1.66640749430960731E-003
|
||||
-4.56205784628272402E-003 2.14499730945281455E-003 2.61642737348875354E-003 -1.21422027308617664E-002
|
||||
2.08944373610050853E-005 6.28374824944392322E-004 8.54529089342605393E-004 2.74684022105676313E-004
|
||||
-1.18474463532232139E-003 3.11546698966385510E-003 1.70454629507966549E-003 -1.37978720662976905E-002
|
||||
0.14292152958578991 4.02152269818323305E-015 1.70956998557514339E-015 -8.65046096828107729E-003
|
||||
-2.18228213277882332E-015 -1.42146021515185232E-002 1.64837071121287267E-002 1.77982628635220408E-015
|
||||
-0.11056452320209906 -2.95119831350554307E-015 8.64325971905444135E-016 -6.96557614872116565E-002
|
||||
8.61100727208556280E-003 4.36282954208166984E-016 3.86843335142827982E-015 -0.13041179765476693
|
||||
6.80011602582908381E-016 4.61860421468946424E-003 -5.35588110947775396E-003 -5.79397640976253570E-016
|
||||
9.09736185598006702E-002 2.72785266597352916E-015 4.13731549020468492E-015 -0.11058997393287072
|
||||
6.16583045848150338E-003 -1.95969542676754926E-016 3.23281982780865285E-016 -1.32618748947850671E-003
|
||||
4.26308294221300343E-016 -9.78143338557119300E-004 1.14655056517537555E-003 -2.71592644207618861E-016
|
||||
-4.33124684473912280E-003 -9.37021727570597207E-017 1.38235776991901815E-018 -6.82151370830896657E-003
|
||||
1.11778030109732727E-003 -4.30645102911242361E-016 4.46257614195033625E-016 -1.34307927650926164E-002
|
||||
-1.39211558947138769E-016 3.17818036951914604E-004 -3.72536861956934348E-004 8.71698546678345565E-017
|
||||
4.52848747532736979E-003 -4.61328024392582137E-016 5.48823139712162344E-016 -1.16452530364722570E-002
|
||||
0.16735768665965786 0.19249437142024067 7.14582922943898455E-003
|
||||
-1.04414994163611052E-003 -3.74636467818307423E-003 -0.21237417108479634
|
||||
-0.17612074529228414 -0.19434382010184931 7.63364973426352428E-004
|
||||
6.92864145419245930E-002 6.56916827382872798E-002 -1.11341042163357745E-002
|
||||
-3.39264881965103959E-004 -1.21726767358626420E-003 -6.90045511789277172E-002
|
||||
-4.23164932627057219E-002 -5.99996649802401888E-002 -1.32078925642908213E-002
|
||||
9.87499473115223923E-003 1.19076973511338322E-002 5.42021079353118863E-004
|
||||
-6.79213491091368651E-005 -2.36050357327317276E-004 -1.41304936039820875E-002
|
||||
-1.05238165057809120E-002 -1.20539548689669700E-002 1.15983183688934564E-004
|
||||
4.31242182623335808E-003 4.11787356365975448E-003 -9.43350390301065690E-004
|
||||
-2.20689841560805025E-005 -7.66974105229113745E-005 -4.59127569687675478E-003
|
||||
-2.31555373513800053E-003 -3.66773920956698762E-003 -1.08177849416859432E-003
|
||||
0.25745109348442474 -1.05479860956769755E-014 -1.03632380454854456E-014
|
||||
7.79931674799172470E-015 -9.82039353108784749E-003 0.12532506723377224
|
||||
-0.24944725335581133 9.16974829401340230E-015 1.05332409461311727E-014
|
||||
-7.00339849682093674E-002 1.06512021424975956E-015 3.73312492030208887E-015
|
||||
-2.85882428840977809E-015 3.19083928411979497E-003 -4.07205827905833678E-002
|
||||
9.46672719570883781E-002 -5.32820315646276299E-015 -3.13638004456606723E-015
|
||||
1.58033667267171336E-002 -3.05501067152103012E-016 -8.17922118923064545E-016
|
||||
-3.20923843055709312E-016 -7.02808569980538215E-004 9.24576506543691064E-003
|
||||
-1.51932332775242315E-002 3.40493692269072668E-016 8.34401991944844212E-016
|
||||
-4.09680410247950221E-003 1.59486139572617702E-016 2.94902990916057206E-016
|
||||
1.02348685082631619E-016 2.28356347438493537E-004 -3.00413118137712399E-003
|
||||
5.97460177149350749E-003 -4.94396190653390022E-017 -2.42861286636752993E-016
|
||||
-1.36924776914605097E-003 0.28558801585901250 4.09741685025721836E-015
|
||||
4.45514935706881055E-015 -2.44249065417534439E-015 0.20930386747707047
|
||||
1.36924776914760810E-003 -0.28558801585901250 -1.33573707650214146E-015
|
||||
4.44895569377440326E-004 -9.27931713932656638E-002 3.24740234702858288E-015
|
||||
-1.44860252265788247E-015 6.66133814775093924E-016 -6.80069490671225962E-002
|
||||
-4.44895569372682630E-004 9.27931713932654972E-002 5.21804821573823574E-015
|
||||
-9.88515197648512280E-005 2.06177508778895881E-002 2.79941000935757245E-016
|
||||
5.22416040548562277E-017 -6.07153216591882483E-017 1.65088928407490440E-002
|
||||
9.88515197652019132E-005 -2.06177508778896817E-002 2.79724160501260144E-017
|
||||
3.21188058268702379E-005 -6.69911336311985670E-003 4.34548230732190177E-016
|
||||
-1.65205306032478738E-017 1.73472347597680709E-017 -5.36406445566158484E-003
|
||||
-3.21188058257895729E-005 6.69911336311956353E-003 5.14345510627123303E-016
|
||||
-0.10032742962392399 -0.14439851476441501 -1.21579527475881057E-002
|
||||
-0.13306352760119203 6.70197792007354298E-002 0.19198602973578399
|
||||
8.78528157666487591E-002 0.14185526777724500 1.53982591896807998E-002
|
||||
1.13752772521324430E-002 4.25910913602506117E-002 9.46309690148613991E-003
|
||||
4.32349609822370515E-002 -2.17760463068868981E-002 -6.23800424838870937E-002
|
||||
-4.97681909375411319E-002 -5.04184007402754958E-002 5.09540886466139376E-004
|
||||
-6.95669548698783606E-003 -1.00961820379056079E-002 -8.16306329463770434E-004
|
||||
-9.09477845259757181E-003 4.67242230180037275E-003 1.33929305408054880E-002
|
||||
5.90526354743657264E-003 9.87189449521493415E-003 1.10206715927220716E-003
|
||||
4.71564531819949895E-004 2.89886764770599980E-003 7.51399366138332143E-004
|
||||
2.95507265691852868E-003 -1.51816203743622338E-003 -4.35162693004794311E-003
|
||||
-3.70753929738638303E-003 -3.58915372431850652E-003 1.28082033905575245E-004
|
||||
-0.12595312373213746 -6.69603261727047538E-015 1.78329573330415769E-015
|
||||
3.49720252756924310E-015 -7.05599611137471272E-002 -7.31096210244965988E-002
|
||||
0.10174995154927152 6.98746616123457898E-015 7.63278329429795122E-017
|
||||
0.14791088193959567 9.59649026910369685E-015 -5.82867087928207184E-016
|
||||
-4.89885909615850323E-015 9.71174553256971274E-002 0.10062676115436511
|
||||
-0.16549551573140930 -9.38138455808257277E-015 1.90819582357448780E-015
|
||||
-9.13064674764183307E-003 -8.29197821516913791E-016 6.16260514840760720E-016
|
||||
1.92554305833425587E-016 -5.38578883029163479E-003 -5.62696066360074063E-003
|
||||
7.01899914832559285E-003 5.61183044478497095E-016 3.90746462963775798E-016
|
||||
1.03469397124756370E-002 8.57170237567039806E-016 2.10768902331182062E-016
|
||||
-2.64545330086463082E-016 7.41290255342612510E-003 7.74484711257712125E-003
|
||||
-1.18811414602988542E-002 -1.05232662861443060E-015 5.18682319317065321E-016
|
||||
1.28873396408269274E-002 0.14438761930909616 1.13797860024078545E-015
|
||||
3.55271367880050093E-015 5.55111512312578270E-017 -0.14937971605056932
|
||||
-1.28873396408220701E-002 -0.14438761930909583 8.32667268468867405E-017
|
||||
-1.77379013861425697E-002 -0.19873250989457386 -1.10328413072124931E-015
|
||||
-4.90059381963448004E-015 -5.55111512312578270E-017 0.20560354168230310
|
||||
1.77379013861461120E-002 0.19873250989457414 1.96370697480574563E-015
|
||||
1.01352428808786435E-003 1.13553582932923638E-002 9.71445146547011973E-017
|
||||
3.66243493865603398E-016 1.90819582357448780E-017 -1.22289414573233668E-002
|
||||
-1.01352428808754690E-003 -1.13553582932931444E-002 -2.49800180540660222E-016
|
||||
-1.39499653994367518E-003 -1.56293102347389717E-002 -2.94035629178068803E-016
|
||||
-5.04587691074753764E-016 -2.94902990916057206E-017 1.68316943369245034E-002
|
||||
1.39499653994390590E-003 1.56293102347384028E-002 1.86482773667506763E-016
|
||||
-9.78384040450919201E-016 -1.73472347597680709E-015 -3.37230243729891299E-015
|
||||
0.0000000000000000 0.0000000000000000 2.08166817117216851E-017
|
||||
-9.92261828258733658E-016 -1.73472347597680709E-015 -3.37230243729891299E-015
|
||||
0.14977258725760201 -0.11801696649264498 4.72445066732283189E-002
|
||||
-0.10627692528922106 -3.29671595585876998E-002 0.25456263062599588
|
||||
-0.14977258725760201 0.11801696649264498 -4.72445066732283189E-002
|
||||
-4.50160742015981441E-016 -2.00143721040824119E-016 -4.40619762898109002E-016
|
||||
-1.73472347597680709E-018 -8.67361737988403547E-019 1.73472347597680709E-018
|
||||
-4.50160742015981441E-016 -1.98408997564847311E-016 -4.44089209850062616E-016
|
||||
1.25726996218184766E-002 -9.90696560137710631E-003 3.96595266236452002E-003
|
||||
-8.92144472401773699E-003 -2.76743696629797638E-003 2.13693276480291239E-002
|
||||
-1.25726996218184783E-002 9.90696560137710458E-003 -3.96595266236452089E-003
|
||||
1.2482676900126699 0.0000000000000000 0.0000000000000000
|
||||
5.55111512312578270E-017 1.2546793328920531 -5.55111512312578270E-017
|
||||
0.0000000000000000 0.0000000000000000 1.2482676900126699
|
||||
1.69940020349077541E-018 5.89190682441513498E-017 -5.37036019193351980E-017
|
||||
-5.85868546705368215E-017 0.0000000000000000 -5.85868546705368338E-017
|
||||
5.37036019193351980E-017 5.89190682441513745E-017 -1.69940020349080469E-018
|
||||
-2.14306111918916069E-016 1.29889118560790344E-016 3.06151588455594253E-017
|
||||
0.70710678118654757 2.22044604925031308E-016 -0.70710678118654757
|
||||
3.06151588455594253E-017 -1.29889118560790344E-016 -2.14306111918916069E-016
|
||||
0.50000000000000011 -0.70710678118654757 0.49999999999999989
|
||||
1.73185491414387108E-016 0.0000000000000000 1.73185491414387108E-016
|
||||
-0.49999999999999989 -0.70710678118654757 -0.50000000000000011
|
||||
-1.50795419074140850E-002 -0.13640829624214801 -2.55365402000995133E-002 -2.42589879031426710E-002 -2.41533808958149104E-002
|
||||
4.85984634178143818E-002 8.49000853202113749E-003 -2.72502785192462495E-002 7.68429249915899004E-002 -0.10222689224139500
|
||||
-9.52084797431169139E-002 -5.12563176472887461E-002 9.11270423682219860E-002 1.36543429529967821E-002 -2.71018584309838696E-002
|
||||
9.52084797431361485E-002 9.57233921067532530E-003 -0.10411396770641200 -2.22392489885207198E-002 2.06486710545183486E-002
|
||||
6.68900466714981434E-002 1.16854942953190308E-002 -3.75067908331889674E-002 0.10576521347628901 -0.14070324733359801
|
||||
-1.50795419075361748E-002 0.12677398338326101 5.64596785875912111E-002 2.99439744889411393E-002 1.65904398551926409E-002
|
||||
-5.76766154120704846E-004 -5.47524608870895556E-003 -1.02411926324771376E-003 -2.18311290934133017E-003 -2.17496598129218559E-003
|
||||
2.60052168770015957E-003 4.71109851752039442E-004 -1.51211563863431131E-003 8.00245117028562832E-003 -1.06459470867530884E-002
|
||||
-3.64155790716051003E-003 -2.05890375040413028E-003 3.66281239333306457E-003 1.23279186791963938E-003 -2.44449964221066067E-003
|
||||
3.64155790716125163E-003 3.85844097444244718E-004 -4.18406544100883519E-003 -2.00557052825278822E-003 1.86360970875878301E-003
|
||||
3.57931112162610931E-003 6.48427098246959210E-004 -2.08124867719718977E-003 1.10144293775933273E-002 -1.46528894521766959E-002
|
||||
-5.76766154125398032E-004 5.08803604016589816E-003 2.26694271018153563E-003 2.69601916334438535E-003 1.49262844190716990E-003
|
||||
4.67727687377428444E-004 -4.32867160218594060E-002 -0.27964380753549600 3.49486817857128235E-002
|
||||
-6.57161750847209264E-003 1.10597303328769797E-002 -6.71579126216509295E-014 -4.35948368810047473E-015
|
||||
2.95311636916156719E-003 -0.27330156517026899 -4.42912285422496985E-002 5.53532751638176421E-003
|
||||
-2.95311636916046087E-003 0.27330156516973902 -4.42912285455315247E-002 5.53532751639198694E-003
|
||||
-9.04505556290319084E-003 1.52224129587035604E-002 -9.24375954339986104E-014 -5.99992455891819387E-015
|
||||
4.67727687370654945E-004 -4.32867160185103142E-002 0.27964380753601598 -3.49486817857144680E-002
|
||||
1.79945995248569212E-005 -2.59307575247800463E-003 -1.68287033270216983E-002 3.14739886416364693E-003
|
||||
-3.59231478871621288E-004 8.30895790715511628E-004 -5.56953262770313752E-015 -4.63265152384079569E-016
|
||||
1.13613421518616559E-004 -1.63720347361626210E-002 -2.66540495686490601E-003 4.98499044819294230E-004
|
||||
-1.13613421518626073E-004 1.63720347361306882E-002 -2.66540495706033215E-003 4.98499044819903986E-004
|
||||
-4.94439724784803301E-004 1.14362997189634006E-003 -7.66443578532712122E-015 -6.38116202116591903E-016
|
||||
1.79945995249208587E-005 -2.59307575227637858E-003 1.68287033270526527E-002 -3.14739886416373930E-003
|
||||
6.00512529280325162E-016 4.83014513826511976E-002 -0.31420171782806899 -4.19205890835067794E-015
|
||||
6.10936521215701793E-003 -2.63057094519514910E-015 -4.43792170088951939E-015 2.50493228164118907E-015
|
||||
3.29588044886067713E-015 0.30496335694996701 -4.97646640291250358E-002 -5.96450777858650638E-015
|
||||
-3.27334409626018095E-015 -0.30496335694999099 -4.97646640289804432E-002 4.88993046625007088E-015
|
||||
8.40881985734547033E-003 -3.62568372926905519E-015 -6.11715846071092585E-015 3.45152622868811582E-015
|
||||
4.38164886777023389E-016 4.83014513828051509E-002 0.31420171782804601 2.46629579400662043E-015
|
||||
3.96335830974985890E-016 3.44922957355754114E-003 -2.25986677342188934E-002 -6.23695496984013556E-016
|
||||
3.37139145093812316E-004 -2.37625076780027879E-016 -2.30806864970610415E-016 3.65024098668389593E-017
|
||||
-2.07969827579228295E-016 2.17775768176256650E-002 -3.57927760856407463E-003 -1.31138287299384324E-016
|
||||
3.47019668792166565E-016 -2.17775768176274170E-002 -3.57927760855265321E-003 -6.46678495789060771E-017
|
||||
4.64032235253920313E-004 -3.27974205429721047E-016 -3.11306605978022447E-016 5.22750561055965201E-017
|
||||
-4.83826429817133529E-016 3.44922957356861258E-003 2.25986677342170823E-002 6.14682556276152213E-016
|
||||
0.17197911247482200 -0.19427983398739401 5.19848181993564501E-002
|
||||
1.90706142246010284E-002 -4.02486435533055097E-003 -1.72123909911998003E-002
|
||||
-0.17149931947750000 0.19255835753436601 4.56023539433592154E-002
|
||||
5.50631283980561118E-002 -6.01965939904634262E-002 -0.14913432234896901
|
||||
6.19641818306470703E-003 -1.30775770421586303E-003 -5.59264485456664739E-003
|
||||
-5.65397794066978474E-002 6.54947537279569891E-002 -0.15120811069691800
|
||||
1.02150107468288003E-002 -1.20350593691208162E-002 3.45954112739013100E-003
|
||||
1.41199896834820590E-003 -3.18293054222637864E-004 -1.43198236698535123E-003
|
||||
-1.01838004901271626E-002 1.19265928509594728E-002 3.03350323172712089E-003
|
||||
3.26596013414648997E-003 -3.72589357824092832E-003 -9.92255379695554905E-003
|
||||
4.58786276621309444E-004 -1.03419682658873054E-004 -4.65279276446727030E-004
|
||||
-3.36201542723227852E-003 4.05971919497914550E-003 -1.00609819008226995E-002
|
||||
-1.13092219013684804E-014 -0.28810618702164897 -8.56436428999100829E-002
|
||||
1.02782933167652607E-002 3.25512408321239305E-015 2.47917462321814324E-016
|
||||
8.15068903724250446E-015 0.29119866673636402 -5.07555641147239833E-002
|
||||
1.69396850472811028E-015 -9.88726155394779177E-002 0.20422888489774799
|
||||
3.33961994349149483E-003 1.05183812950983999E-015 8.25049996363180725E-017
|
||||
8.00902191591575448E-015 8.93549416357163340E-002 0.21556470886290099
|
||||
-7.12022315921056252E-017 -2.07299530819920821E-002 -6.37966165574329214E-003
|
||||
7.68748091380159386E-004 -1.86117225617339309E-016 9.14813481847939072E-017
|
||||
-3.00581572607179827E-016 2.09478957552860848E-002 -3.77363027084409415E-003
|
||||
6.07246880192166345E-016 -7.10635629118965429E-003 1.52009342162795786E-002
|
||||
2.49781396736166786E-004 -6.09500115369131805E-017 3.04186748890324537E-017
|
||||
5.32664795834612852E-016 6.43559771463311867E-003 1.60476851436083916E-002
|
||||
-0.28558801585901300 -1.36924776915090494E-003 4.80881748531702818E-002
|
||||
6.00779394287980520E-015 1.75020211270886506E-015 6.54870816005769512E-015
|
||||
0.28558801585901300 1.36924776914961409E-003 4.80881748531675202E-002
|
||||
9.27931713932659830E-002 4.44895569374169505E-004 0.14800018402160101
|
||||
-1.94804349069185405E-015 -5.63731050215842007E-016 -2.12823270212489800E-015
|
||||
-9.27931713932654140E-002 -4.44895569378162188E-004 0.14800018402160200
|
||||
-2.06177508778895499E-002 -9.88515197656002898E-005 3.79296635132005512E-003
|
||||
6.12396823600567392E-016 1.32033494470117687E-017 1.77913883040690966E-016
|
||||
2.06177508778897407E-002 9.88515197653758870E-005 3.79296635131991374E-003
|
||||
6.69911336312000328E-003 3.21188058261303444E-005 1.16735500775755185E-002
|
||||
-1.98540563895858818E-016 -4.82733065298246439E-018 -5.73517972903385152E-017
|
||||
-6.69911336311942822E-003 -3.21188058268280353E-005 1.16735500775755601E-002
|
||||
-0.12466185679016900 0.11324725201916699 -6.64056967088707123E-002
|
||||
-2.71478896164634095E-002 8.87434026305112221E-003 1.26736860686911795E-003
|
||||
6.35183886004177523E-002 -7.44965129321115971E-002 0.15143105766846399
|
||||
-6.35183886005671744E-002 2.91304323014038961E-002 0.16623030283178900
|
||||
8.82088405116335586E-003 -2.88344794377531303E-003 -4.11793022935740308E-004
|
||||
-0.12466185679024500 9.01320793997051894E-002 9.54508507471238110E-002
|
||||
-8.52053143181878345E-003 7.90161177013297064E-003 -4.63115363095057374E-003
|
||||
-2.28817970048057458E-003 7.82623149960785195E-004 1.11768535110055690E-004
|
||||
4.34142760260679793E-003 -5.19740972845290656E-003 1.05616036255323370E-002
|
||||
-4.34142760261753500E-003 2.03327399909753511E-003 1.15942371837379869E-002
|
||||
7.43474654412823238E-004 -2.54289676562712203E-004 -3.63157985352822101E-005
|
||||
-8.52053143182424956E-003 6.28940409227242078E-003 6.65781110301136292E-003
|
||||
1.79756689860263513E-014 -0.20809014417360799 0.10958647151514002
|
||||
-9.28143401042499060E-003 2.59061047644929014E-015 -2.72844718194727288E-015
|
||||
-1.39940969384627796E-014 0.10602722421651199 -0.21507556031533800
|
||||
9.21903494137304094E-016 -0.10602722421697601 -0.21507556031511499
|
||||
3.01572072051816418E-003 -8.45172856407111179E-016 8.86619853018173467E-016
|
||||
1.13172540098759310E-014 -0.20809014417384400 -0.10958647151470098
|
||||
6.92324402537856718E-016 -1.59523355059288871E-002 8.47502403109675999E-003
|
||||
-7.87540339117633482E-004 5.22514257383202247E-016 -4.05641199356195283E-016
|
||||
-2.55755380696690675E-016 8.12812090954843046E-003 -1.66331712174236784E-002
|
||||
5.18776090108323751E-016 -8.12812090958543211E-003 -1.66331712174066816E-002
|
||||
2.55887368172468476E-004 -1.69355139519552566E-016 1.31903961147217203E-016
|
||||
8.26556814828890593E-016 -1.59523355059477435E-002 -8.47502403106339605E-003
|
||||
-0.14438761930909799 1.28873396408254112E-002 -0.14538365855953500
|
||||
6.66086226493359972E-016 2.91844622307080418E-015 8.70592432422673456E-016
|
||||
0.14438761930909200 -1.28873396408256576E-002 -0.14538365855953100
|
||||
0.19873250989457100 -1.77379013861458587E-002 -0.10562741019108002
|
||||
-9.16457586453385841E-016 -4.04394056326882176E-015 -1.18054310431887391E-015
|
||||
-0.19873250989457500 1.77379013861456714E-002 -0.10562741019108499
|
||||
-1.13553582932925355E-002 1.01352428808768177E-003 -1.19018052044983537E-002
|
||||
2.48973932497921740E-017 4.48518204211582205E-016 -4.04312430957292107E-018
|
||||
1.13553582932924106E-002 -1.01352428808752738E-003 -1.19018052044983103E-002
|
||||
1.56293102347382570E-002 -1.39499653994359690E-003 -8.64716743120648446E-003
|
||||
-3.40567994557545713E-017 -6.16856010767378209E-016 6.80540823116269591E-018
|
||||
-1.56293102347383438E-002 1.39499653994370814E-003 -8.64716743120654170E-003
|
||||
7.51491345556577622E-002 2.33113020803429917E-002 -0.18000296235232099
|
||||
3.26486110657078499E-018 -2.57262701321034599E-018 1.02987305728525806E-018
|
||||
7.51491345556577761E-002 2.33113020803429917E-002 -0.18000296235232099
|
||||
-0.10253124092908200 -0.15530761249839301 -6.29187239090966549E-002
|
||||
-8.07890843330895009E-016 -2.51547589515145494E-015 -2.93762381528901684E-015
|
||||
0.10253124092908200 0.15530761249839301 6.29187239090966827E-002
|
||||
6.30841406233379788E-003 1.95687344537574500E-003 -1.51103964893183878E-002
|
||||
1.08874058558177154E-018 -8.57899723577699479E-019 3.43434087657616159E-019
|
||||
6.30841406233380048E-003 1.95687344537574760E-003 -1.51103964893183895E-002
|
||||
-8.60701225543038240E-003 -1.30373387859403344E-002 -5.28172899181251869E-003
|
||||
-3.34930091441267792E-016 -4.93822588672297332E-016 1.97136808569230149E-016
|
||||
8.60701225543038066E-003 1.30373387859403327E-002 5.28172899181251869E-003
|
||||
1.2482676900126695 -2.00216001185656475E-017 -3.46944695195361573E-018
|
||||
-2.13407127617563436E-017 1.2546793328920545 2.13407127617563436E-017
|
||||
-3.46944695195361573E-018 2.00216001185656475E-017 1.2482676900126695
|
||||
2.41827906441238332E-019 1.40946282423115692E-018 -6.64977332457776001E-018
|
||||
-3.77663756749117481E-018 0.0000000000000000 -3.77663756749117481E-018
|
||||
6.64977332457776001E-018 1.40946282423115692E-018 -2.41827906441238332E-019
|
||||
-6.12303176911188629E-017 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 -1.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -6.12303176911188629E-017
|
||||
1.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -1.0000000000000000
|
1421
test/SrVO3.sympar
Normal file
1421
test/SrVO3.sympar
Normal file
File diff suppressed because it is too large
Load Diff
343
test/SrVO3.symqmc
Normal file
343
test/SrVO3.symqmc
Normal file
@ -0,0 +1,343 @@
|
||||
48 5
|
||||
1 2 3 4 5
|
||||
1 2 3 4 5
|
||||
1 2 3 5 4
|
||||
1 2 3 5 4
|
||||
1 2 3 5 4
|
||||
1 2 3 5 4
|
||||
1 2 3 4 5
|
||||
1 2 3 4 5
|
||||
1 2 4 3 5
|
||||
1 2 4 3 5
|
||||
1 2 4 5 3
|
||||
1 2 4 5 3
|
||||
1 2 4 5 3
|
||||
1 2 4 5 3
|
||||
1 2 4 3 5
|
||||
1 2 4 3 5
|
||||
1 2 5 3 4
|
||||
1 2 5 3 4
|
||||
1 2 5 4 3
|
||||
1 2 5 4 3
|
||||
1 2 5 4 3
|
||||
1 2 5 4 3
|
||||
1 2 5 3 4
|
||||
1 2 5 3 4
|
||||
1 2 5 3 4
|
||||
1 2 5 3 4
|
||||
1 2 5 4 3
|
||||
1 2 5 4 3
|
||||
1 2 5 4 3
|
||||
1 2 5 4 3
|
||||
1 2 5 3 4
|
||||
1 2 5 3 4
|
||||
1 2 4 3 5
|
||||
1 2 4 3 5
|
||||
1 2 4 5 3
|
||||
1 2 4 5 3
|
||||
1 2 4 5 3
|
||||
1 2 4 5 3
|
||||
1 2 4 3 5
|
||||
1 2 4 3 5
|
||||
1 2 3 4 5
|
||||
1 2 3 4 5
|
||||
1 2 3 5 4
|
||||
1 2 3 5 4
|
||||
1 2 3 5 4
|
||||
1 2 3 5 4
|
||||
1 2 3 4 5
|
||||
1 2 3 4 5
|
||||
0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -1.39659329664039914E-014
|
||||
0.0000000000000000 -1.39659329664039914E-014 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 6.98296648320199568E-015
|
||||
0.0000000000000000 6.98296648320199568E-015 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 -1.04744497248029186E-014
|
||||
0.0000000000000000 3.68971721476004985E-015 0.0000000000000000
|
||||
1.04744497248029186E-014 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 -1.04744497248030322E-014
|
||||
0.0000000000000000 -1.04744497248030322E-014 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 3.49148324160092211E-015
|
||||
0.0000000000000000 -3.68971721476004985E-015 0.0000000000000000
|
||||
1.04744497248029691E-014 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 1.04744497248030053E-014
|
||||
0.0000000000000000 3.49148324160103531E-015 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 -1.04744497248029691E-014
|
||||
0.0000000000000000 -3.68971721476004985E-015 0.0000000000000000
|
||||
-3.49148324160092211E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 3.49148324160103531E-015
|
||||
0.0000000000000000 1.04744497248030053E-014 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 3.49148324160097299E-015
|
||||
0.0000000000000000 3.68971721476004985E-015 0.0000000000000000
|
||||
-3.49148324160097299E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -3.49148324160101006E-015
|
||||
0.0000000000000000 -3.49148324160101006E-015 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -6.98296243866963709E-015
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
6.98296243866963709E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -1.95047177326934654E-028 0.0000000000000000
|
||||
-9.75235886634673268E-029 0.0000000000000000 1.39659329664039914E-014
|
||||
0.0000000000000000 -1.39659329664039914E-014 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -6.98296243866963709E-015
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-6.98296243866963709E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -9.75235886634673268E-029 0.0000000000000000
|
||||
4.87617943317336634E-029 0.0000000000000000 -6.98296648320199568E-015
|
||||
0.0000000000000000 6.98296648320199568E-015 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 6.98296243866963709E-015
|
||||
0.0000000000000000 1.04744497248029943E-014 0.0000000000000000
|
||||
7.31426914976004895E-029 0.0000000000000000 -1.04744497248029943E-014
|
||||
0.0000000000000000 1.46285382995200979E-028 0.0000000000000000
|
||||
6.98296243866963709E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 6.98296243866963709E-015
|
||||
0.0000000000000000 -3.49148324160099784E-015 0.0000000000000000
|
||||
-2.43808971658668317E-029 0.0000000000000000 3.49148324160099784E-015
|
||||
0.0000000000000000 4.87617943317336634E-029 0.0000000000000000
|
||||
-6.98296243866963709E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 -3.49148324160094774E-015
|
||||
0.0000000000000000 -3.49148324160102348E-015 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -6.98296648320200830E-015
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
6.98296648320197043E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -3.68971721476004985E-015 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 1.04744497248029422E-014
|
||||
0.0000000000000000 1.04744497248030180E-014 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 6.98296648320203354E-015
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
6.98296648320191994E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 3.68971721476004985E-015 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 -3.49148324160089765E-015
|
||||
0.0000000000000000 3.49148324160104911E-015 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 1.39659329664040024E-014
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-1.39659329664039645E-014 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 3.68971721476004985E-015 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 1.04744497248028933E-014
|
||||
0.0000000000000000 -1.04744497248030448E-014 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 -1.39659329664040292E-014
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-1.39659329664039156E-014 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -3.68971721476004985E-015 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 1.04744497248029943E-014 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 1.04744497248029943E-014
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 -3.49148324160099784E-015 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -3.49148324160099784E-015
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 3.49148324160099784E-015 0.0000000000000000
|
||||
3.49148324160099784E-015 0.0000000000000000 1.25506999338354715E-029
|
||||
0.0000000000000000 -2.51013998676709429E-029 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 3.68971721476004985E-015
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -3.49148324160102348E-015 0.0000000000000000
|
||||
3.49148324160094774E-015 0.0000000000000000 -6.98296648320200830E-015
|
||||
0.0000000000000000 -6.98296648320197043E-015 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 -3.68971721476004985E-015
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 3.68971721476004985E-015
|
||||
0.0000000000000000 6.98296648320189549E-015 0.0000000000000000
|
||||
1.39659329664039409E-014 0.0000000000000000 -6.98296648320204695E-015
|
||||
0.0000000000000000 -1.39659329664040166E-014 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -3.68971721476004985E-015
|
||||
0.0000000000000000 1.00405599470683772E-028 0.0000000000000000
|
||||
1.39659329664039914E-014 0.0000000000000000 5.02027997353418859E-029
|
||||
0.0000000000000000 1.39659329664039914E-014 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 3.68971721476004985E-015
|
||||
0.0000000000000000 -1.39659329664039409E-014 0.0000000000000000
|
||||
-6.98296648320189549E-015 0.0000000000000000 -1.39659329664040166E-014
|
||||
0.0000000000000000 -6.98296648320204695E-015 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 -3.68971721476004985E-015
|
||||
0.0000000000000000 6.98296648320194598E-015 0.0000000000000000
|
||||
-6.98296648320194598E-015 0.0000000000000000 6.98296648320202013E-015
|
||||
0.0000000000000000 6.98296648320202013E-015 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 1.04744497248030180E-014 0.0000000000000000
|
||||
-1.04744497248029422E-014 0.0000000000000000 6.98296648320203354E-015
|
||||
0.0000000000000000 -6.98296648320191994E-015 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 3.68971721476004985E-015
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -1.04744497248030448E-014 0.0000000000000000
|
||||
-1.04744497248028933E-014 0.0000000000000000 -1.39659329664040292E-014
|
||||
0.0000000000000000 1.39659329664039156E-014 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -3.68971721476004985E-015
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -1.04744497248030448E-014 0.0000000000000000
|
||||
-1.04744497248028933E-014 0.0000000000000000 -1.39659329664040292E-014
|
||||
0.0000000000000000 1.39659329664039156E-014 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -3.68971721476004985E-015
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 1.04744497248030180E-014 0.0000000000000000
|
||||
-1.04744497248029422E-014 0.0000000000000000 6.98296648320203354E-015
|
||||
0.0000000000000000 -6.98296648320191994E-015 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 3.68971721476004985E-015
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 -3.68971721476004985E-015
|
||||
0.0000000000000000 6.98296648320194598E-015 0.0000000000000000
|
||||
-6.98296648320194598E-015 0.0000000000000000 6.98296648320202013E-015
|
||||
0.0000000000000000 6.98296648320202013E-015 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 3.68971721476004985E-015
|
||||
0.0000000000000000 -1.39659329664039409E-014 0.0000000000000000
|
||||
-6.98296648320189549E-015 0.0000000000000000 -1.39659329664040166E-014
|
||||
0.0000000000000000 -6.98296648320204695E-015 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -3.68971721476004985E-015
|
||||
0.0000000000000000 1.00405599470683772E-028 0.0000000000000000
|
||||
1.39659329664039914E-014 0.0000000000000000 5.02027997353418859E-029
|
||||
0.0000000000000000 1.39659329664039914E-014 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 3.68971721476004985E-015
|
||||
0.0000000000000000 6.98296648320189549E-015 0.0000000000000000
|
||||
1.39659329664039409E-014 0.0000000000000000 -6.98296648320204695E-015
|
||||
0.0000000000000000 -1.39659329664040166E-014 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -3.49148324160102348E-015 0.0000000000000000
|
||||
3.49148324160094774E-015 0.0000000000000000 -6.98296648320200830E-015
|
||||
0.0000000000000000 -6.98296648320197043E-015 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 -3.68971721476004985E-015
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 3.49148324160099784E-015 0.0000000000000000
|
||||
3.49148324160099784E-015 0.0000000000000000 1.25506999338354715E-029
|
||||
0.0000000000000000 -2.51013998676709429E-029 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 3.68971721476004985E-015
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 -3.49148324160099784E-015 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -3.49148324160099784E-015
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 1.04744497248029943E-014 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 1.04744497248029943E-014
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 1.04744497248028933E-014
|
||||
0.0000000000000000 -1.04744497248030448E-014 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 -1.39659329664040292E-014
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-1.39659329664039156E-014 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -3.68971721476004985E-015 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 -3.49148324160089765E-015
|
||||
0.0000000000000000 3.49148324160104911E-015 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 1.39659329664040024E-014
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-1.39659329664039645E-014 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 3.68971721476004985E-015 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 1.04744497248029422E-014
|
||||
0.0000000000000000 1.04744497248030180E-014 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 6.98296648320203354E-015
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
6.98296648320191994E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 3.68971721476004985E-015 0.0000000000000000
|
||||
3.61121259316941049E-015 0.0000000000000000 -3.49148324160094774E-015
|
||||
0.0000000000000000 -3.49148324160102348E-015 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -6.98296648320200830E-015
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
6.98296648320197043E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -3.68971721476004985E-015 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 6.98296243866963709E-015
|
||||
0.0000000000000000 -3.49148324160099784E-015 0.0000000000000000
|
||||
-2.43808971658668317E-029 0.0000000000000000 3.49148324160099784E-015
|
||||
0.0000000000000000 4.87617943317336634E-029 0.0000000000000000
|
||||
-6.98296243866963709E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 6.98296243866963709E-015
|
||||
0.0000000000000000 1.04744497248029943E-014 0.0000000000000000
|
||||
7.31426914976004895E-029 0.0000000000000000 -1.04744497248029943E-014
|
||||
0.0000000000000000 1.46285382995200979E-028 0.0000000000000000
|
||||
6.98296243866963709E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -6.98296243866963709E-015
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-6.98296243866963709E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -9.75235886634673268E-029 0.0000000000000000
|
||||
4.87617943317336634E-029 0.0000000000000000 -6.98296648320199568E-015
|
||||
0.0000000000000000 6.98296648320199568E-015 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -6.98296243866963709E-015
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
6.98296243866963709E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -1.95047177326934654E-028 0.0000000000000000
|
||||
-9.75235886634673268E-029 0.0000000000000000 1.39659329664039914E-014
|
||||
0.0000000000000000 -1.39659329664039914E-014 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 3.49148324160097299E-015
|
||||
0.0000000000000000 3.68971721476004985E-015 0.0000000000000000
|
||||
-3.49148324160097299E-015 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 -3.49148324160101006E-015
|
||||
0.0000000000000000 -3.49148324160101006E-015 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 -1.04744497248029691E-014
|
||||
0.0000000000000000 -3.68971721476004985E-015 0.0000000000000000
|
||||
-3.49148324160092211E-015 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 3.49148324160103531E-015
|
||||
0.0000000000000000 1.04744497248030053E-014 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 3.49148324160092211E-015
|
||||
0.0000000000000000 -3.68971721476004985E-015 0.0000000000000000
|
||||
1.04744497248029691E-014 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 1.04744497248030053E-014
|
||||
0.0000000000000000 3.49148324160103531E-015 0.0000000000000000
|
||||
-3.61121259316941049E-015 0.0000000000000000 -1.04744497248029186E-014
|
||||
0.0000000000000000 3.68971721476004985E-015 0.0000000000000000
|
||||
1.04744497248029186E-014 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 -1.04744497248030322E-014
|
||||
0.0000000000000000 -1.04744497248030322E-014 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 -0.99999996577145822 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 6.98296648320199568E-015
|
||||
0.0000000000000000 6.98296648320199568E-015 0.0000000000000000
|
||||
0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.99999996577145822
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -1.39659329664039914E-014
|
||||
0.0000000000000000 -1.39659329664039914E-014 0.0000000000000000
|
||||
-0.99999996577145822 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.99999996577145822 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 -0.99999996577145822
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
||||
0.0000000000000000 0.0000000000000000 0.0000000000000000
|
BIN
test/U_mat.output.h5
Normal file
BIN
test/U_mat.output.h5
Normal file
Binary file not shown.
51
test/U_mat.py
Normal file
51
test/U_mat.py
Normal file
@ -0,0 +1,51 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from pytriqs.archive import *
|
||||
import numpy
|
||||
#from pytriqs.applications.dft.U_matrix import Umatrix
|
||||
from U_matrix import Umatrix
|
||||
|
||||
U = Umatrix(U_interact = 2.0, J_hund = 0.5, l=2)
|
||||
|
||||
T = numpy.zeros([5,5],numpy.complex_)
|
||||
sqtwo = 1.0/numpy.sqrt(2.0)
|
||||
T[0,0] = 1j*sqtwo
|
||||
T[0,4] = -1j*sqtwo
|
||||
T[1,1] = -1j*sqtwo
|
||||
T[1,3] = -1j*sqtwo
|
||||
T[2,2] = 1.0
|
||||
T[3,1] = -sqtwo
|
||||
T[3,3] = sqtwo
|
||||
T[4,0] = sqtwo
|
||||
T[4,4] = sqtwo
|
||||
|
||||
U(T=T)
|
||||
|
||||
U.reduce_matrix()
|
||||
|
||||
ar = HDFArchive('U_mat.output.h5')
|
||||
ar['U'] = U.U
|
||||
ar['Up'] = U.Up
|
||||
ar['Ufull'] = U.Ufull
|
||||
del ar
|
||||
|
BIN
test/srvo3_Gloc.output.h5
Normal file
BIN
test/srvo3_Gloc.output.h5
Normal file
Binary file not shown.
64
test/srvo3_Gloc.py
Normal file
64
test/srvo3_Gloc.py
Normal file
@ -0,0 +1,64 @@
|
||||
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
#from pytriqs.applications.dft.sumk_lda import *
|
||||
#from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from sumk_lda import *
|
||||
from converters.wien2k_converter import *
|
||||
from pytriqs.archive import *
|
||||
|
||||
#=====================================================
|
||||
#Basic input parameters:
|
||||
LDAFilename = 'SrVO3'
|
||||
U = 4.0
|
||||
J = 0.6
|
||||
Beta = 40
|
||||
DC_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
|
||||
useBlocs = True # use bloc structure from LDA input
|
||||
useMatrix = False # True: Slater parameters, False: Kanamori parameters U+2J, U, U-J
|
||||
use_spinflip = False # use the full rotational invariant interaction?
|
||||
#=====================================================
|
||||
|
||||
U=U-2*J
|
||||
|
||||
HDFfilename = LDAFilename+'.h5'
|
||||
|
||||
# Init the SumK class
|
||||
SK=SumkLDA(hdf_file='SrVO3.h5',use_lda_blocks=True)
|
||||
|
||||
|
||||
Norb = SK.corr_shells[0][3]
|
||||
l = SK.corr_shells[0][2]
|
||||
|
||||
|
||||
from solver_multiband import *
|
||||
#from pytriqs.applications.dft.solver_multiband import *
|
||||
|
||||
S=SolverMultiBand(beta=Beta,n_orb=Norb,gf_struct=SK.gf_struct_solver[0],map=SK.map[0])
|
||||
|
||||
SK.put_Sigma([S.Sigma])
|
||||
Gloc=SK.extract_G_loc()
|
||||
|
||||
ar = HDFArchive('srvo3_Gloc.output.h5','w')
|
||||
ar['Gloc'] = Gloc[0]
|
||||
del ar
|
BIN
test/sumklda_basic.output.h5
Normal file
BIN
test/sumklda_basic.output.h5
Normal file
Binary file not shown.
36
test/sumklda_basic.py
Normal file
36
test/sumklda_basic.py
Normal file
@ -0,0 +1,36 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from pytriqs.archive import *
|
||||
#from pytriqs.applications.dft.sumk_lda_tools import SumkLDATools
|
||||
from sumk_lda_tools import SumkLDATools
|
||||
|
||||
|
||||
SK = SumkLDATools(hdf_file = 'SrVO3.h5')
|
||||
|
||||
dm = SK.density_gf(40)
|
||||
dm_pc = SK.partial_charges(40)
|
||||
|
||||
ar = HDFArchive('sumklda_basic.output.h5','w')
|
||||
ar['dm'] = dm
|
||||
ar['dm_pc'] = dm_pc
|
||||
del ar
|
BIN
test/wien2k_convert.output.h5
Normal file
BIN
test/wien2k_convert.output.h5
Normal file
Binary file not shown.
36
test/wien2k_convert.py
Normal file
36
test/wien2k_convert.py
Normal file
@ -0,0 +1,36 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from pytriqs.archive import *
|
||||
#from pytriqs.applications.dft.converters import Wien2kConverter
|
||||
from converters import Wien2kConverter
|
||||
|
||||
|
||||
|
||||
Converter = Wien2kConverter(filename='SrVO3')
|
||||
Converter.hdf_file = 'wien2k_convert.output.h5'
|
||||
Converter.convert_dmft_input()
|
||||
|
||||
Converter.convert_parproj_input()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user