mirror of
https://github.com/triqs/dft_tools
synced 2024-12-30 16:15:47 +01:00
Merge remote-tracking branch 'gernot/analyze_block_structure_from_gf' into analyze_block_structure_from_gf
This commit is contained in:
commit
07397ca42e
@ -2,6 +2,7 @@ import copy
|
||||
import numpy as np
|
||||
from pytriqs.gf import GfImFreq, BlockGf
|
||||
from ast import literal_eval
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from warnings import warn
|
||||
|
||||
class BlockStructure(object):
|
||||
@ -40,12 +41,14 @@ class BlockStructure(object):
|
||||
gf_struct_solver=None,
|
||||
solver_to_sumk=None,
|
||||
sumk_to_solver=None,
|
||||
solver_to_sumk_block=None):
|
||||
solver_to_sumk_block=None,
|
||||
deg_shells=None):
|
||||
self.gf_struct_sumk = gf_struct_sumk
|
||||
self.gf_struct_solver = gf_struct_solver
|
||||
self.solver_to_sumk = solver_to_sumk
|
||||
self.sumk_to_solver = sumk_to_solver
|
||||
self.solver_to_sumk_block = solver_to_sumk_block
|
||||
self.deg_shells = deg_shells
|
||||
|
||||
@classmethod
|
||||
def full_structure(cls,gf_struct,corr_to_inequiv):
|
||||
@ -99,7 +102,8 @@ class BlockStructure(object):
|
||||
gf_struct_sumk = gs_sumk_all,
|
||||
solver_to_sumk = copy.deepcopy(solver_to_sumk),
|
||||
sumk_to_solver = solver_to_sumk,
|
||||
solver_to_sumk_block = s2sblock)
|
||||
solver_to_sumk_block = s2sblock,
|
||||
deg_shells = [[] for ish in range(len(gf_struct))])
|
||||
|
||||
def pick_gf_struct_solver(self,new_gf_struct):
|
||||
""" Pick selected orbitals within blocks.
|
||||
@ -292,15 +296,24 @@ class BlockStructure(object):
|
||||
G : BlockGf
|
||||
the Gf that should be converted
|
||||
G_struct : GfStructure
|
||||
the structure ofthat G
|
||||
the structure of that G
|
||||
ish : int
|
||||
shell index
|
||||
show_warnings : bool
|
||||
show_warnings : bool or float
|
||||
whether to show warnings when elements of the Green's
|
||||
function get thrown away
|
||||
if float, set the threshold for the magnitude of an element
|
||||
about to be thrown away to trigger a warning
|
||||
(default: 1.e-10)
|
||||
**kwargs :
|
||||
options passed to the constructor for the new Gf
|
||||
"""
|
||||
|
||||
warning_threshold = 1.e-10
|
||||
if isinstance(show_warnings, float):
|
||||
warning_threshold = show_warnings
|
||||
show_warnings = True
|
||||
|
||||
G_new = self.create_gf(ish=ish,**kwargs)
|
||||
for block in G_struct.gf_struct_solver[ish].keys():
|
||||
for i1 in G_struct.gf_struct_solver[ish][block]:
|
||||
@ -311,14 +324,16 @@ class BlockStructure(object):
|
||||
i2_sol = self.sumk_to_solver[ish][i2_sumk]
|
||||
if i1_sol[0] is None or i2_sol[0] is None:
|
||||
if show_warnings:
|
||||
if mpi.is_master_node():
|
||||
warn(('Element {},{} of block {} of G is not present '+
|
||||
'in the new structure').format(i1,i2,block))
|
||||
continue
|
||||
if i1_sol[0]!=i2_sol[0]:
|
||||
if show_warnings:
|
||||
if show_warnings and np.max(np.abs(G[block][i1,i2].data)) > warning_threshold:
|
||||
if mpi.is_master_node():
|
||||
warn(('Element {},{} of block {} of G is approximated '+
|
||||
'to zero to match the new structure.').format(
|
||||
i1,i2,block))
|
||||
'to zero to match the new structure. Max abs value: {}').format(
|
||||
i1,i2,block,np.max(np.abs(G[block][i1,i2].data))))
|
||||
continue
|
||||
G_new[i1_sol[0]][i1_sol[1],i2_sol[1]] = \
|
||||
G[block][i1,i2]
|
||||
@ -351,6 +366,7 @@ class BlockStructure(object):
|
||||
def __eq__(self,other):
|
||||
def compare(one,two):
|
||||
if type(one)!=type(two):
|
||||
if not (isinstance(one, (bool, np.bool_)) and isinstance(two, (bool, np.bool_))):
|
||||
return False
|
||||
if one is None and two is None:
|
||||
return True
|
||||
@ -361,10 +377,10 @@ class BlockStructure(object):
|
||||
if not compare(x,y):
|
||||
return False
|
||||
return True
|
||||
elif isinstance(one,int):
|
||||
return one==two
|
||||
elif isinstance(one,str):
|
||||
elif isinstance(one,(int,bool, str, np.bool_)):
|
||||
return one==two
|
||||
elif isinstance(one,np.ndarray):
|
||||
return np.all(one==two)
|
||||
elif isinstance(one,dict):
|
||||
if set(one.keys()) != set(two.keys()):
|
||||
return False
|
||||
@ -376,7 +392,8 @@ class BlockStructure(object):
|
||||
return False
|
||||
|
||||
for prop in [ "gf_struct_sumk", "gf_struct_solver",
|
||||
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block"]:
|
||||
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block",
|
||||
"deg_shells"]:
|
||||
if not compare(getattr(self,prop),getattr(other,prop)):
|
||||
return False
|
||||
return True
|
||||
@ -389,7 +406,7 @@ class BlockStructure(object):
|
||||
|
||||
ret = {}
|
||||
for element in [ "gf_struct_sumk", "gf_struct_solver",
|
||||
"solver_to_sumk_block"]:
|
||||
"solver_to_sumk_block","deg_shells"]:
|
||||
ret[element] = getattr(self,element)
|
||||
|
||||
def construct_mapping(mapping):
|
||||
@ -436,6 +453,18 @@ class BlockStructure(object):
|
||||
keys = sorted(element[ish].keys(),key=keyfun)
|
||||
for k in keys:
|
||||
s+=' '+str(k)+str(element[ish][k])+'\n'
|
||||
s += "deg_shells\n"
|
||||
for ish in range(len(self.deg_shells)):
|
||||
s+=' shell '+str(ish)+'\n'
|
||||
for l in range(len(self.deg_shells[ish])):
|
||||
s+=' equivalent group '+str(l)+'\n'
|
||||
if isinstance(self.deg_shells[ish][l],dict):
|
||||
for key, val in self.deg_shells[ish][l].iteritems():
|
||||
s+=' '+key+('*' if val[1] else '')+':\n'
|
||||
s+=' '+str(val[0]).replace('\n','\n ')+'\n'
|
||||
else:
|
||||
for key in self.deg_shells[ish][l]:
|
||||
s+=' '+key+'\n'
|
||||
return s
|
||||
|
||||
from pytriqs.archive.hdf_archive_schemes import register_class
|
||||
|
@ -25,12 +25,15 @@ import numpy
|
||||
import pytriqs.utility.dichotomy as dichotomy
|
||||
from pytriqs.gf import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from pytriqs.utility.comparison_tests import assert_arrays_are_close
|
||||
from pytriqs.archive import *
|
||||
from symmetry import *
|
||||
from block_structure import BlockStructure
|
||||
from sets import Set
|
||||
from itertools import product
|
||||
from warnings import warn
|
||||
from scipy import compress
|
||||
from scipy.optimize import minimize
|
||||
|
||||
|
||||
class SumkDFT(object):
|
||||
@ -848,6 +851,414 @@ class SumkDFT(object):
|
||||
elif (ind1 < 0) and (ind2 < 0):
|
||||
self.deg_shells[ish].append([block1, block2])
|
||||
|
||||
def _get_hermitian_quantity_from_gf(self, G):
|
||||
""" Convert G to a Hermitian quantity
|
||||
|
||||
For G(tau) and G(iw), G(tau) is returned.
|
||||
For G(t) and G(w), the spectral function is returned.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : list of BlockGf of GfImFreq, GfImTime, GfReFreq or GfReTime
|
||||
the input Green's function
|
||||
|
||||
Returns
|
||||
-------
|
||||
gf : list of BlockGf of GfImTime or GfReFreq
|
||||
the output G(tau) or A(w)
|
||||
"""
|
||||
# make a GfImTime from the supplied GfImFreq
|
||||
if all(isinstance(g_sh._first(), GfImFreq) for g_sh in G):
|
||||
gf = [BlockGf(name_block_generator = [(name, GfImTime(beta=block.mesh.beta,
|
||||
indices=block.indices,n_points=len(block.mesh)+1)) for name, block in g_sh])
|
||||
for g_sh in G]
|
||||
for ish in range(len(gf)):
|
||||
for name, g in gf[ish]:
|
||||
g.set_from_inverse_fourier(G[ish][name])
|
||||
# keep a GfImTime from the supplied GfImTime
|
||||
elif all(isinstance(g_sh._first(), GfImTime) for g_sh in G):
|
||||
gf = G
|
||||
# make a spectral function from the supplied GfReFreq
|
||||
elif all(isinstance(g_sh._first(), GfReFreq) for g_sh in G):
|
||||
gf = [g_sh.copy() for g_sh in G]
|
||||
for ish in range(len(gf)):
|
||||
for name, g in gf[ish]:
|
||||
g << 1.0j*(g-g.conjugate().transpose())/2.0/numpy.pi
|
||||
elif all(isinstance(g_sh._first(), GfReTime) for g_sh in G):
|
||||
def get_delta_from_mesh(mesh):
|
||||
w0 = None
|
||||
for w in mesh:
|
||||
if w0 is None:
|
||||
w0 = w
|
||||
else:
|
||||
return w-w0
|
||||
gf = [BlockGf(
|
||||
name_block_generator = [(name,
|
||||
GfReFreq(
|
||||
window=(-numpy.pi*(len(block.mesh)-1) / (len(block.mesh)*get_delta_from_mesh(block.mesh)), numpy.pi*(len(block.mesh)-1) / (len(block.mesh)*get_delta_from_mesh(block.mesh))),
|
||||
n_points=len(block.mesh),
|
||||
indices=block.indices)) for name, block in g_sh])
|
||||
for g_sh in G]
|
||||
|
||||
for ish in range(len(gf)):
|
||||
for name, g in gf[ish]:
|
||||
g.set_from_fourier(G[ish][name])
|
||||
g << 1.0j*(g-g.conjugate().transpose())/2.0/numpy.pi
|
||||
else:
|
||||
raise Exception("G must be a list of BlockGf of either GfImFreq, GfImTime, GfReFreq or GfReTime")
|
||||
return gf
|
||||
|
||||
|
||||
|
||||
def analyse_block_structure_from_gf(self, G, threshold=1.e-5, include_shells=None, analyse_deg_shells = True):
|
||||
r"""
|
||||
Determines the block structure of local Green's functions by analysing
|
||||
the structure of the corresponding non-interacting Green's function.
|
||||
The resulting block structures for correlated shells are
|
||||
stored in the :class:`SumkDFT.block_structure <dft.block_structure.BlockStructure>`
|
||||
attribute.
|
||||
|
||||
This is a safer alternative to analyse_block_structure, because
|
||||
the full non-interacting Green's function is taken into account
|
||||
and not just the density matrix and Hloc.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : list of BlockGf of GfImFreq, GfImTime, GfReFreq or GfReTime
|
||||
the non-interacting Green's function for each inequivalent correlated shell
|
||||
threshold : real, optional
|
||||
If the difference between matrix elements is below threshold,
|
||||
they are considered to be equal.
|
||||
include_shells : list of integers, optional
|
||||
List of correlated shells to be analysed.
|
||||
If include_shells is not provided all correlated shells will be analysed.
|
||||
analyse_deg_shells : bool
|
||||
Whether to call the analyse_deg_shells function
|
||||
after having finished the block structure analysis
|
||||
|
||||
Returns
|
||||
-------
|
||||
G : list of BlockGf of GfImFreq or GfImTime
|
||||
the Green's function transformed into the new block structure
|
||||
"""
|
||||
|
||||
gf = self._get_hermitian_quantity_from_gf(G)
|
||||
|
||||
# initialize the variables
|
||||
self.gf_struct_solver = [{} for ish in range(self.n_inequiv_shells)]
|
||||
self.sumk_to_solver = [{} for ish in range(self.n_inequiv_shells)]
|
||||
self.solver_to_sumk = [{} for ish in range(self.n_inequiv_shells)]
|
||||
self.solver_to_sumk_block = [{}
|
||||
for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
# the maximum value of each matrix element of each block and shell
|
||||
max_gf = [{name:numpy.max(numpy.abs(g.data),0) for name, g in gf[ish]} for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
if include_shells is None:
|
||||
# include all shells
|
||||
include_shells = range(self.n_inequiv_shells)
|
||||
|
||||
for ish in include_shells:
|
||||
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
|
||||
n_orb = self.corr_shells[self.inequiv_to_corr[ish]]['dim']
|
||||
|
||||
# gives an index list of entries larger that threshold
|
||||
maxgf_bool = (abs(max_gf[ish][sp]) > threshold)
|
||||
|
||||
# Determine off-diagonal entries in upper triangular part of the
|
||||
# Green's function
|
||||
offdiag = Set([])
|
||||
for i in range(n_orb):
|
||||
for j in range(i + 1, n_orb):
|
||||
if maxgf_bool[i, j]:
|
||||
offdiag.add((i, j))
|
||||
|
||||
# Determine the number of non-hybridising blocks in the gf
|
||||
blocs = [[i] for i in range(n_orb)]
|
||||
while len(offdiag) != 0:
|
||||
pair = offdiag.pop()
|
||||
for b1, b2 in product(blocs, blocs):
|
||||
if (pair[0] in b1) and (pair[1] in b2):
|
||||
if blocs.index(b1) != blocs.index(b2): # In separate blocks?
|
||||
# Merge two blocks
|
||||
b1.extend(blocs.pop(blocs.index(b2)))
|
||||
break # Move on to next pair in offdiag
|
||||
|
||||
# Set the gf_struct for the solver accordingly
|
||||
num_blocs = len(blocs)
|
||||
for i in range(num_blocs):
|
||||
blocs[i].sort()
|
||||
self.gf_struct_solver[ish].update(
|
||||
[('%s_%s' % (sp, i), range(len(blocs[i])))])
|
||||
|
||||
# Construct sumk_to_solver taking (sumk_block, sumk_index) --> (solver_block, solver_inner)
|
||||
# and solver_to_sumk taking (solver_block, solver_inner) -->
|
||||
# (sumk_block, sumk_index)
|
||||
for i in range(num_blocs):
|
||||
for j in range(len(blocs[i])):
|
||||
block_sumk = sp
|
||||
inner_sumk = blocs[i][j]
|
||||
block_solv = '%s_%s' % (sp, i)
|
||||
inner_solv = j
|
||||
self.sumk_to_solver[ish][(block_sumk, inner_sumk)] = (
|
||||
block_solv, inner_solv)
|
||||
self.solver_to_sumk[ish][(block_solv, inner_solv)] = (
|
||||
block_sumk, inner_sumk)
|
||||
self.solver_to_sumk_block[ish][block_solv] = block_sumk
|
||||
|
||||
# transform G to the new structure
|
||||
full_structure = BlockStructure.full_structure(
|
||||
[{sp:range(self.corr_shells[self.inequiv_to_corr[ish]]['dim'])
|
||||
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]}
|
||||
for ish in range(self.n_inequiv_shells)],None)
|
||||
G_transformed = [
|
||||
self.block_structure.convert_gf(G[ish],
|
||||
full_structure, ish, mesh=G[ish].mesh.copy(), show_warnings=threshold,
|
||||
gf_function=type(G[ish]._first()))
|
||||
for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
if analyse_deg_shells:
|
||||
self.analyse_deg_shells(G_transformed, threshold, include_shells)
|
||||
return G_transformed
|
||||
|
||||
def analyse_deg_shells(self, G, threshold=1.e-5, include_shells=None):
|
||||
r"""
|
||||
Determines the degenerate shells of local Green's functions by analysing
|
||||
the structure of the corresponding non-interacting Green's function.
|
||||
The results are stored in the
|
||||
:class:`SumkDFT.block_structure <dft.block_structure.BlockStructure>`
|
||||
attribute.
|
||||
|
||||
Due to the implementation and numerics, the maximum difference between
|
||||
two matrix elements that are detected as equal can be a bit higher
|
||||
(e.g. a factor of two) than the actual threshold.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : list of BlockGf of GfImFreq or GfImTime
|
||||
the non-interacting Green's function for each inequivalent correlated shell
|
||||
threshold : real, optional
|
||||
If the difference between matrix elements is below threshold,
|
||||
they are considered to be equal.
|
||||
include_shells : list of integers, optional
|
||||
List of correlated shells to be analysed.
|
||||
If include_shells is not provided all correlated shells will be analysed.
|
||||
"""
|
||||
|
||||
# initialize
|
||||
self.deg_shells = [[] for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
# helper function
|
||||
def null(A, eps=1e-15):
|
||||
""" Calculate the null-space of matrix A """
|
||||
u, s, vh = numpy.linalg.svd(A)
|
||||
null_mask = (s <= eps)
|
||||
null_space = compress(null_mask, vh, axis=0)
|
||||
return null_space.conjugate().transpose()
|
||||
|
||||
gf = self._get_hermitian_quantity_from_gf(G)
|
||||
|
||||
if include_shells is None:
|
||||
# include all shells
|
||||
include_shells = range(self.n_inequiv_shells)
|
||||
|
||||
# We consider two blocks equal, if their Green's functions obey
|
||||
# maybe_conjugate1( v1^dagger G1 v1 ) = maybe_conjugate2( v2^dagger G2 v2 )
|
||||
# where maybe_conjugate is a function that conjugates the Green's
|
||||
# function if the flag 'conjugate' is set and the v are unitary
|
||||
# matrices
|
||||
#
|
||||
# for each pair of blocks, we check whether there is a transformation
|
||||
# maybe_conjugate( T G1 T^dagger ) = G2
|
||||
# where our goal is to find T
|
||||
# we just try whether there is such a T with and without conjugation
|
||||
for ish in include_shells:
|
||||
for block1 in self.gf_struct_solver[ish].iterkeys():
|
||||
for block2 in self.gf_struct_solver[ish].iterkeys():
|
||||
if block1==block2: continue
|
||||
|
||||
# check if the blocks are already present in the deg_shells
|
||||
ind1 = -1
|
||||
ind2 = -2
|
||||
for n, ind in enumerate(self.deg_shells[ish]):
|
||||
if block1 in ind:
|
||||
ind1 = n
|
||||
v1 = ind[block1]
|
||||
if block2 in ind:
|
||||
ind2 = n
|
||||
v2 = ind[block2]
|
||||
|
||||
# if both are already present, go to the next pair of blocks
|
||||
if ind1 >= 0 and ind2 >= 0:
|
||||
continue
|
||||
|
||||
gf1 = gf[ish][block1]
|
||||
gf2 = gf[ish][block2]
|
||||
|
||||
# the two blocks have to have the same shape
|
||||
if gf1.target_shape != gf2.target_shape:
|
||||
continue
|
||||
|
||||
# Instead of directly comparing the two blocks, we
|
||||
# compare its eigenvalues. As G(tau) is Hermitian,
|
||||
# they are real and the eigenvector matrix is unitary.
|
||||
# Thus, if the eigenvalues are equal we can transform
|
||||
# one block to make it equal to the other (at least
|
||||
# for tau=0).
|
||||
|
||||
e1 = numpy.linalg.eigvalsh(gf1.data[0])
|
||||
e2 = numpy.linalg.eigvalsh(gf2.data[0])
|
||||
if numpy.any(abs(e1-e2) > threshold): continue
|
||||
|
||||
for conjugate in [False,True]:
|
||||
if conjugate:
|
||||
gf2 = gf2.conjugate()
|
||||
|
||||
# we want T gf1 T^dagger = gf2
|
||||
# while for a given tau, T could be calculated
|
||||
# by diagonalizing gf1 and gf2, this does not
|
||||
# work for all taus simultaneously because of
|
||||
# numerical imprecisions
|
||||
|
||||
# rather, we rewrite the equation to
|
||||
# T gf1 = gf2 T
|
||||
# which is the Sylvester equation.
|
||||
# For that equation, one can use the Kronecker
|
||||
# product to get a linear problem, which consists
|
||||
# of finding the null space of M vec T = 0.
|
||||
|
||||
M = numpy.kron(numpy.eye(*gf1.target_shape),gf2.data[0])-numpy.kron(gf1.data[0].transpose(),numpy.eye(*gf1.target_shape))
|
||||
N = null(M, threshold)
|
||||
|
||||
# now we get the intersection of the null spaces
|
||||
# of all values of tau
|
||||
for i in range(1,len(gf1.data)):
|
||||
M = numpy.kron(numpy.eye(*gf1.target_shape),gf2.data[i])-numpy.kron(gf1.data[i].transpose(),numpy.eye(*gf1.target_shape))
|
||||
# transform M into current null space
|
||||
M = numpy.dot(M, N)
|
||||
N = numpy.dot(N, null(M, threshold))
|
||||
if numpy.size(N) == 0:
|
||||
break
|
||||
|
||||
# no intersection of the null spaces -> no symmetry
|
||||
if numpy.size(N) == 0: continue
|
||||
|
||||
# reshape N: it then has the indices matrix, matrix, number of basis vectors of the null space
|
||||
N = N.reshape(gf1.target_shape[0], gf1.target_shape[1], -1).transpose([1, 0, 2])
|
||||
|
||||
"""
|
||||
any matrix in the null space can now be constructed as
|
||||
M = 0
|
||||
for i in range(N.shape[-1]):
|
||||
M += y[i]*N[:,:,i]
|
||||
with coefficients (complex numbers) y[i].
|
||||
|
||||
We want to get a set of coefficients y so that M is unitary.
|
||||
Unitary means M M^dagger = 1.
|
||||
Thus,
|
||||
sum y[i] N[:,:,i] y[j].conjugate() N[:,:,j].conjugate().transpose() = eye.
|
||||
The object N[:,:,i] N[:,:,j] is a four-index object which we call Z.
|
||||
"""
|
||||
Z = numpy.einsum('aci,bcj->abij', N, N.conjugate())
|
||||
|
||||
"""
|
||||
function chi2
|
||||
This function takes a real parameter vector y and reinterprets it as complex.
|
||||
Then, it calculates the chi2 of
|
||||
sum y[i] N[:,:,i] y[j].conjugate() N[:,:,j].conjugate().transpose() - eye.
|
||||
"""
|
||||
def chi2(y):
|
||||
# reinterpret y as complex number
|
||||
y = y.view(numpy.complex_)
|
||||
ret = 0.0
|
||||
for a in range(Z.shape[0]):
|
||||
for b in range(Z.shape[1]):
|
||||
ret += numpy.abs(numpy.dot(y, numpy.dot(Z[a, b], y.conjugate()))
|
||||
- (1.0 if a == b else 0.0))**2
|
||||
return ret
|
||||
|
||||
# use the minimization routine from scipy
|
||||
res = minimize(chi2, numpy.ones(2 * N.shape[-1]))
|
||||
|
||||
# if the minimization fails, there is probably no symmetry
|
||||
if not res.success: continue
|
||||
# check if the minimization returned zero within the tolerance
|
||||
if res.fun > threshold: continue
|
||||
|
||||
# reinterpret the solution as a complex number
|
||||
y = res.x.view(numpy.complex_)
|
||||
|
||||
# reconstruct the T matrix
|
||||
T = numpy.zeros(N.shape[:-1], dtype=numpy.complex_)
|
||||
for i in range(len(y)):
|
||||
T += N[:, :, i] * y[i]
|
||||
|
||||
# transform gf1 using T
|
||||
G_transformed = gf1.copy()
|
||||
G_transformed.from_L_G_R(T, gf1, T.conjugate().transpose())
|
||||
|
||||
# it does not make sense to check the tails for an
|
||||
# absolute error because it will usually not hold;
|
||||
# we could just check the relative error
|
||||
# (here, we ignore it, reasoning that if the data
|
||||
# is the same, the tails have to coincide as well)
|
||||
try:
|
||||
assert_arrays_are_close(G_transformed.data, gf2.data, threshold)
|
||||
except (RuntimeError, AssertionError):
|
||||
# the symmetry does not hold
|
||||
continue
|
||||
|
||||
# Now that we have found a valid T, we have to
|
||||
# rewrite it to match the convention that
|
||||
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2),
|
||||
# where C conjugates if the flag is True
|
||||
|
||||
# For each group of degenerate shells, the list
|
||||
# SK.deg_shells[ish] contains a dict. The keys
|
||||
# of the dict are the block names, the values
|
||||
# are tuples. The first entry of the tuple is
|
||||
# the transformation matrix v, the second entry
|
||||
# is the conjugation flag
|
||||
|
||||
# the second block is already present
|
||||
# set v1 and C1 so that they are compatible with
|
||||
# C(T gf1 T^dagger) = gf2
|
||||
# and with
|
||||
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2)
|
||||
if (ind1 < 0) and (ind2 >= 0):
|
||||
if conjugate:
|
||||
self.deg_shells[ish][ind2][block1] = numpy.dot(T.conjugate().transpose(), v2[0].conjugate()), not v2[1]
|
||||
else:
|
||||
self.deg_shells[ish][ind2][block1] = numpy.dot(T.conjugate().transpose(), v2[0]), v2[1]
|
||||
# the first block is already present
|
||||
# set v2 and C2 so that they are compatible with
|
||||
# C(T gf1 T^dagger) = gf2
|
||||
# and with
|
||||
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2)
|
||||
elif (ind1 >= 0) and (ind2 < 0):
|
||||
if conjugate:
|
||||
self.deg_shells[ish][ind1][block2] = numpy.dot(T.conjugate(), v1[0].conjugate()), not v1[1]
|
||||
else:
|
||||
self.deg_shells[ish][ind1][block2] = numpy.dot(T, v1[0]), v1[1]
|
||||
# the blocks are not already present
|
||||
# we arbitrarily choose v1=eye and C1=False and
|
||||
# set v2 and C2 so that they are compatible with
|
||||
# C(T gf1 T^dagger) = gf2
|
||||
# and with
|
||||
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2)
|
||||
elif (ind1 < 0) and (ind2 < 0):
|
||||
d = dict()
|
||||
d[block1] = numpy.eye(*gf1.target_shape), False
|
||||
if conjugate:
|
||||
d[block2] = T.conjugate(), True
|
||||
else:
|
||||
d[block2] = T, False
|
||||
self.deg_shells[ish].append(d)
|
||||
|
||||
# a block was found, break out of the loop
|
||||
break
|
||||
|
||||
|
||||
def density_matrix(self, method='using_gf', beta=40.0):
|
||||
"""Calculate density matrices in one of two ways.
|
||||
|
||||
@ -1212,20 +1623,52 @@ class SumkDFT(object):
|
||||
Parameters
|
||||
----------
|
||||
gf_to_symm : gf_struct_solver like
|
||||
Input GF.
|
||||
Input and output GF (i.e., it gets overwritten)
|
||||
orb : int
|
||||
Index of an inequivalent shell.
|
||||
|
||||
"""
|
||||
|
||||
# when reading block_structures written with older versions from
|
||||
# an h5 file, self.deg_shells might be None
|
||||
if self.deg_shells is None: return
|
||||
|
||||
for degsh in self.deg_shells[orb]:
|
||||
ss = gf_to_symm[degsh[0]].copy()
|
||||
ss.zero()
|
||||
# ss will hold the averaged orbitals in the basis where the
|
||||
# blocks are all equal
|
||||
# i.e. maybe_conjugate(v^dagger gf v)
|
||||
ss = None
|
||||
n_deg = len(degsh)
|
||||
for bl in degsh:
|
||||
ss += gf_to_symm[bl] / (1.0 * n_deg)
|
||||
for bl in degsh:
|
||||
gf_to_symm[bl] << ss
|
||||
for key in degsh:
|
||||
if ss is None:
|
||||
ss = gf_to_symm[key].copy()
|
||||
ss.zero()
|
||||
helper = ss.copy()
|
||||
# get the transformation matrix
|
||||
if isinstance(degsh, dict):
|
||||
v, C = degsh[key]
|
||||
else:
|
||||
# for backward compatibility, allow degsh to be a list
|
||||
v = numpy.eye(*ss.target_shape)
|
||||
C = False
|
||||
# the helper is in the basis where the blocks are all equal
|
||||
helper.from_L_G_R(v.conjugate().transpose(), gf_to_symm[key], v)
|
||||
if C:
|
||||
helper << helper.transpose()
|
||||
# average over all shells
|
||||
ss += helper / (1.0 * n_deg)
|
||||
# now put back the averaged gf to all shells
|
||||
for key in degsh:
|
||||
if isinstance(degsh, dict):
|
||||
v, C = degsh[key]
|
||||
else:
|
||||
# for backward compatibility, allow degsh to be a list
|
||||
v = numpy.eye(*ss.target_shape)
|
||||
C = False
|
||||
if C:
|
||||
gf_to_symm[key].from_L_G_R(v, ss.transpose(), v.conjugate().transpose())
|
||||
else:
|
||||
gf_to_symm[key].from_L_G_R(v, ss, v.conjugate().transpose())
|
||||
|
||||
def total_density(self, mu=None, iw_or_w="iw", with_Sigma=True, with_dc=True, broadening=None):
|
||||
r"""
|
||||
@ -1610,3 +2053,9 @@ class SumkDFT(object):
|
||||
def __set_solver_to_sumk_block(self,value):
|
||||
self.block_structure.solver_to_sumk_block = value
|
||||
solver_to_sumk_block = property(__get_solver_to_sumk_block,__set_solver_to_sumk_block)
|
||||
|
||||
def __get_deg_shells(self):
|
||||
return self.block_structure.deg_shells
|
||||
def __set_deg_shells(self,value):
|
||||
self.block_structure.deg_shells = value
|
||||
deg_shells = property(__get_deg_shells,__set_deg_shells)
|
||||
|
@ -2,10 +2,10 @@
|
||||
FILE(GLOB all_h5_files RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} *.h5)
|
||||
file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/${all_h5_files} DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
||||
# Copy other files
|
||||
FILE(COPY SrVO3.pmat SrVO3.struct SrVO3.outputs SrVO3.oubwin SrVO3.ctqmcout SrVO3.symqmc SrVO3.sympar SrVO3.parproj hk_convert_hamiltonian.hk LaVO3-Pnma_hr.dat LaVO3-Pnma.inp DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
||||
FILE(COPY SrVO3.pmat SrVO3.struct SrVO3.outputs SrVO3.oubwin SrVO3.ctqmcout SrVO3.symqmc SrVO3.sympar SrVO3.parproj SrIrO3_rot.h5 hk_convert_hamiltonian.hk LaVO3-Pnma_hr.dat LaVO3-Pnma.inp DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
# List all tests
|
||||
set(all_tests wien2k_convert hk_convert w90_convert sumkdft_basic srvo3_Gloc srvo3_transp sigma_from_file blockstructure)
|
||||
set(all_tests wien2k_convert hk_convert w90_convert sumkdft_basic srvo3_Gloc srvo3_transp sigma_from_file blockstructure analyze_block_structure_from_gf analyze_block_structure_from_gf2)
|
||||
|
||||
foreach(t ${all_tests})
|
||||
add_test(NAME ${t} COMMAND python ${CMAKE_CURRENT_SOURCE_DIR}/${t}.py)
|
||||
|
BIN
test/SrIrO3_rot.h5
Normal file
BIN
test/SrIrO3_rot.h5
Normal file
Binary file not shown.
232
test/analyze_block_structure_from_gf.py
Normal file
232
test/analyze_block_structure_from_gf.py
Normal file
@ -0,0 +1,232 @@
|
||||
from pytriqs.gf import *
|
||||
from sumk_dft import SumkDFT
|
||||
from scipy.linalg import expm
|
||||
import numpy as np
|
||||
from pytriqs.utility.comparison_tests import assert_gfs_are_close, assert_arrays_are_close, assert_block_gfs_are_close
|
||||
from pytriqs.archive import *
|
||||
import itertools
|
||||
|
||||
# The full test checks all different possible combinations of conjugated
|
||||
# blocks. This takes a few minutes. For a quick test, just checking one
|
||||
# random value suffices.
|
||||
# (this parameter affects the second test)
|
||||
full_test = False
|
||||
|
||||
#######################################################################
|
||||
# First test #
|
||||
# where we check the analyse_block_structure_from_gf function #
|
||||
# for the SrIrO3_rot.h5 file #
|
||||
#######################################################################
|
||||
|
||||
beta = 40
|
||||
SK = SumkDFT(hdf_file = 'SrIrO3_rot.h5')
|
||||
Sigma = SK.block_structure.create_gf(beta=beta)
|
||||
SK.put_Sigma([Sigma])
|
||||
G = SK.extract_G_loc()
|
||||
|
||||
# the original block structure
|
||||
block_structure1 = SK.block_structure.copy()
|
||||
|
||||
G_new = SK.analyse_block_structure_from_gf(G)
|
||||
|
||||
# the new block structure
|
||||
block_structure2 = SK.block_structure.copy()
|
||||
|
||||
with HDFArchive('analyze_block_structure_from_gf.out.h5','w') as ar:
|
||||
ar['bs1'] = block_structure1
|
||||
ar['bs2'] = block_structure2
|
||||
|
||||
# check whether the block structure is the same as in the reference
|
||||
with HDFArchive('analyze_block_structure_from_gf.out.h5','r') as ar,\
|
||||
HDFArchive('analyze_block_structure_from_gf.ref.h5','r') as ar2:
|
||||
assert ar['bs1'] == ar2['bs1'], 'bs1 not equal'
|
||||
a1 = ar['bs2']
|
||||
a2 = ar2['bs2']
|
||||
assert a1==block_structure2, "writing/reading block structure incorrect"
|
||||
# we set the deg_shells to None because the transformation matrices
|
||||
# have a phase freedom and will, therefore, not be equal in general
|
||||
a1.deg_shells = None
|
||||
a2.deg_shells = None
|
||||
assert a1==a2, 'bs2 not equal'
|
||||
|
||||
# check if deg shells are correct
|
||||
assert len(SK.deg_shells[0])==1, "wrong number of equivalent groups"
|
||||
|
||||
# check if the Green's functions that are found to be equal in the
|
||||
# routine are indeed equal
|
||||
for d in SK.deg_shells[0]:
|
||||
assert len(d)==2, "wrong number of shells in equivalent group"
|
||||
# the convention is that for every degenerate shell, the transformation
|
||||
# matrix v and the conjugate bool is saved
|
||||
# then,
|
||||
# maybe_conjugate1( v1^dagger G1 v1 ) = maybe_conjugate2( v2^dagger G2 v2 )
|
||||
# therefore, to test, we calculate
|
||||
# maybe_conjugate( v^dagger G v )
|
||||
# for all degenerate shells and check that they are all equal
|
||||
normalized_gfs = []
|
||||
for key in d:
|
||||
normalized_gf = G_new[0][key].copy()
|
||||
normalized_gf.from_L_G_R(d[key][0].conjugate().transpose(), G_new[0][key], d[key][0])
|
||||
if d[key][1]:
|
||||
normalized_gf << normalized_gf.transpose()
|
||||
normalized_gfs.append(normalized_gf)
|
||||
for i in range(len(normalized_gfs)):
|
||||
for j in range(i+1,len(normalized_gfs)):
|
||||
assert_arrays_are_close(normalized_gfs[i].data, normalized_gfs[j].data, 1.e-5)
|
||||
# the tails have to be compared using a relative error
|
||||
for o in range(normalized_gfs[i].tail.order_min,normalized_gfs[i].tail.order_max+1):
|
||||
if np.abs(normalized_gfs[i].tail[o][0,0]) < 1.e-10:
|
||||
continue
|
||||
assert np.max(np.abs((normalized_gfs[i].tail[o]-normalized_gfs[j].tail[o])/(normalized_gfs[i].tail[o][0,0]))) < 1.e-5, \
|
||||
"tails are different"
|
||||
|
||||
#######################################################################
|
||||
# Second test #
|
||||
# where a Green's function is constructed from a random model #
|
||||
# and the analyse_block_structure_from_gf function is tested for that #
|
||||
# model #
|
||||
#######################################################################
|
||||
|
||||
# helper function to get random Hermitian matrix
|
||||
def get_random_hermitian(dim):
|
||||
herm = np.random.rand(dim,dim)+1.0j*np.random.rand(dim,dim)
|
||||
herm = herm + herm.conjugate().transpose()
|
||||
return herm
|
||||
|
||||
# helper function to get random unitary matrix
|
||||
def get_random_transformation(dim):
|
||||
herm = get_random_hermitian(dim)
|
||||
T = expm(1.0j*herm)
|
||||
return T
|
||||
|
||||
# we will conjugate the Green's function blocks according to the entries
|
||||
# of conjugate_values
|
||||
# for each of the 5 blocks that will be constructed, there is an entry
|
||||
# True or False that says whether it will be conjugated
|
||||
if full_test:
|
||||
# in the full test we check all combinations
|
||||
conjugate_values = list(itertools.product([False, True], repeat=5))
|
||||
else:
|
||||
# in the quick test we check a random combination
|
||||
conjugate_values = [np.random.rand(5)>0.5]
|
||||
|
||||
for conjugate in conjugate_values:
|
||||
# construct a random block-diagonal Hloc
|
||||
Hloc = np.zeros((10,10), dtype=np.complex_)
|
||||
# the Hloc of the first three 2x2 blocks is equal
|
||||
Hloc0 = get_random_hermitian(2)
|
||||
Hloc[:2,:2] = Hloc0
|
||||
Hloc[2:4,2:4] = Hloc0
|
||||
Hloc[4:6,4:6] = Hloc0
|
||||
# the Hloc of the last two 2x2 blocks is equal
|
||||
Hloc1 = get_random_hermitian(2)
|
||||
Hloc[6:8,6:8] = Hloc1
|
||||
Hloc[8:,8:] = Hloc1
|
||||
# construct the hybridization delta
|
||||
# this is equal for all 2x2 blocks
|
||||
V = get_random_hermitian(2) # the hopping elements from impurity to bath
|
||||
b1 = np.random.rand() # the bath energy of the first bath level
|
||||
b2 = np.random.rand() # the bath energy of the second bath level
|
||||
delta = G[0]['ud'][:2,:2].copy()
|
||||
delta[0,0] << (V[0,0]*V[0,0].conjugate()*inverse(Omega-b1)+V[0,1]*V[0,1].conjugate()*inverse(Omega-b2))/2.0
|
||||
delta[0,1] << (V[0,0]*V[1,0].conjugate()*inverse(Omega-b1)+V[0,1]*V[1,1].conjugate()*inverse(Omega-b2))/2.0
|
||||
delta[1,0] << (V[1,0]*V[0,0].conjugate()*inverse(Omega-b1)+V[1,1]*V[0,1].conjugate()*inverse(Omega-b2))/2.0
|
||||
delta[1,1] << (V[1,0]*V[1,0].conjugate()*inverse(Omega-b1)+V[1,1]*V[1,1].conjugate()*inverse(Omega-b2))/2.0
|
||||
# construct G
|
||||
G[0].zero()
|
||||
for i in range(0,10,2):
|
||||
G[0]['ud'][i:i+2,i:i+2] << inverse(Omega-delta)
|
||||
G[0]['ud'] << inverse(inverse(G[0]['ud']) - Hloc)
|
||||
|
||||
# for testing symm_deg_gf below, we need this
|
||||
# we construct it so that for every group of degenerate blocks of G[0], the
|
||||
# mean of the blocks of G_noisy is equal to G[0]
|
||||
G_noisy = G[0].copy()
|
||||
noise1 = np.random.randn(*delta.target_shape)
|
||||
G_noisy['ud'][:2,:2].data[:,:,:] += noise1
|
||||
G_noisy['ud'][2:4,2:4].data[:,:,:] -= noise1/2.0
|
||||
G_noisy['ud'][4:6,4:6].data[:,:,:] -= noise1/2.0
|
||||
noise2 = np.random.randn(*delta.target_shape)
|
||||
G_noisy['ud'][6:8,6:8].data[:,:,:] += noise2
|
||||
G_noisy['ud'][8:,8:].data[:,:,:] -= noise2
|
||||
|
||||
# for testing backward-compatibility in symm_deg_gf, we need the
|
||||
# un-transformed Green's functions
|
||||
G_pre_transform = G[0].copy()
|
||||
G_noisy_pre_transform = G_noisy.copy()
|
||||
|
||||
# transform each block using a random transformation matrix
|
||||
for i in range(0,10,2):
|
||||
T = get_random_transformation(2)
|
||||
G[0]['ud'][i:i+2,i:i+2].from_L_G_R(T, G[0]['ud'][i:i+2,i:i+2], T.conjugate().transpose())
|
||||
G_noisy['ud'][i:i+2,i:i+2].from_L_G_R(T, G_noisy['ud'][i:i+2,i:i+2], T.conjugate().transpose())
|
||||
# if that block shall be conjugated, go ahead and do it
|
||||
if conjugate[i//2]:
|
||||
G[0]['ud'][i:i+2,i:i+2] << G[0]['ud'][i:i+2,i:i+2].transpose()
|
||||
G_noisy['ud'][i:i+2,i:i+2] << G_noisy['ud'][i:i+2,i:i+2].transpose()
|
||||
|
||||
# analyse the block structure
|
||||
G_new = SK.analyse_block_structure_from_gf(G, 1.e-7)
|
||||
|
||||
# transform G_noisy etc. to the new block structure
|
||||
G_noisy = SK.block_structure.convert_gf(G_noisy, block_structure1, beta = G_noisy.mesh.beta)
|
||||
G_pre_transform = SK.block_structure.convert_gf(G_pre_transform, block_structure1, beta = G_noisy.mesh.beta)
|
||||
G_noisy_pre_transform = SK.block_structure.convert_gf(G_noisy_pre_transform, block_structure1, beta = G_noisy.mesh.beta)
|
||||
|
||||
assert len(SK.deg_shells[0]) == 2, "wrong number of equivalent groups found"
|
||||
assert sorted([len(d) for d in SK.deg_shells[0]]) == [2,3], "wrong number of members in the equivalent groups found"
|
||||
for d in SK.deg_shells[0]:
|
||||
if len(d)==2:
|
||||
assert 'ud_3' in d, "shell ud_3 missing"
|
||||
assert 'ud_4' in d, "shell ud_4 missing"
|
||||
if len(d)==3:
|
||||
assert 'ud_0' in d, "shell ud_0 missing"
|
||||
assert 'ud_1' in d, "shell ud_1 missing"
|
||||
assert 'ud_2' in d, "shell ud_2 missing"
|
||||
|
||||
# the convention is that for every degenerate shell, the transformation
|
||||
# matrix v and the conjugate bool is saved
|
||||
# then,
|
||||
# maybe_conjugate1( v1^dagger G1 v1 ) = maybe_conjugate2( v2^dagger G2 v2 )
|
||||
# therefore, to test, we calculate
|
||||
# maybe_conjugate( v^dagger G v )
|
||||
# for all degenerate shells and check that they are all equal
|
||||
normalized_gfs = []
|
||||
for key in d:
|
||||
normalized_gf = G_new[0][key].copy()
|
||||
normalized_gf.from_L_G_R(d[key][0].conjugate().transpose(), G_new[0][key], d[key][0])
|
||||
if d[key][1]:
|
||||
normalized_gf << normalized_gf.transpose()
|
||||
normalized_gfs.append(normalized_gf)
|
||||
for i in range(len(normalized_gfs)):
|
||||
for j in range(i+1,len(normalized_gfs)):
|
||||
# here, we use a threshold that is 1 order of magnitude less strict
|
||||
# because of numerics
|
||||
assert_gfs_are_close(normalized_gfs[i], normalized_gfs[j], 1.e-6)
|
||||
|
||||
# now we check symm_deg_gf
|
||||
# symmetrizing the GF has is has to leave it unchanged
|
||||
G_new_symm = G_new[0].copy()
|
||||
SK.symm_deg_gf(G_new_symm, 0)
|
||||
assert_block_gfs_are_close(G_new[0], G_new_symm, 1.e-6)
|
||||
|
||||
# symmetrizing the noisy GF, which was carefully constructed,
|
||||
# has to give the same result as G_new[0]
|
||||
SK.symm_deg_gf(G_noisy, 0)
|
||||
assert_block_gfs_are_close(G_new[0], G_noisy, 1.e-6)
|
||||
|
||||
# check backward compatibility of symm_deg_gf
|
||||
# first, construct the old format of the deg shells
|
||||
for ish in range(len(SK.deg_shells)):
|
||||
for gr in range(len(SK.deg_shells[ish])):
|
||||
SK.deg_shells[ish][gr] = SK.deg_shells[ish][gr].keys()
|
||||
|
||||
# symmetrizing the GF as is has to leave it unchanged
|
||||
G_new_symm << G_pre_transform
|
||||
SK.symm_deg_gf(G_new_symm, 0)
|
||||
assert_block_gfs_are_close(G_new_symm, G_pre_transform, 1.e-6)
|
||||
|
||||
# symmetrizing the noisy GF pre transform, which was carefully constructed,
|
||||
# has to give the same result as G_pre_transform
|
||||
SK.symm_deg_gf(G_noisy_pre_transform, 0)
|
||||
assert_block_gfs_are_close(G_noisy_pre_transform, G_pre_transform, 1.e-6)
|
BIN
test/analyze_block_structure_from_gf.ref.h5
Normal file
BIN
test/analyze_block_structure_from_gf.ref.h5
Normal file
Binary file not shown.
115
test/analyze_block_structure_from_gf2.py
Normal file
115
test/analyze_block_structure_from_gf2.py
Normal file
@ -0,0 +1,115 @@
|
||||
from pytriqs.gf import *
|
||||
from sumk_dft import SumkDFT
|
||||
import numpy as np
|
||||
from pytriqs.utility.comparison_tests import assert_block_gfs_are_close
|
||||
|
||||
# here we test the SK.analyze_block_structure_from_gf function
|
||||
# with GfReFreq, GfReTime
|
||||
|
||||
|
||||
# helper function to get random Hermitian matrix
|
||||
def get_random_hermitian(dim):
|
||||
herm = np.random.rand(dim,dim)+1.0j*np.random.rand(dim,dim)
|
||||
herm = herm + herm.conjugate().transpose()
|
||||
return herm
|
||||
|
||||
# helper function to get random unitary matrix
|
||||
def get_random_transformation(dim):
|
||||
herm = get_random_hermitian(dim)
|
||||
T = expm(1.0j*herm)
|
||||
return T
|
||||
|
||||
# construct a random block-diagonal Hloc
|
||||
Hloc = np.zeros((10,10), dtype=np.complex_)
|
||||
# the Hloc of the first three 2x2 blocks is equal
|
||||
Hloc0 = get_random_hermitian(2)
|
||||
Hloc[:2,:2] = Hloc0
|
||||
Hloc[2:4,2:4] = Hloc0
|
||||
Hloc[4:6,4:6] = Hloc0
|
||||
# the Hloc of the last two 2x2 blocks is equal
|
||||
Hloc1 = get_random_hermitian(2)
|
||||
Hloc[6:8,6:8] = Hloc1
|
||||
Hloc[8:,8:] = Hloc1
|
||||
# construct the hybridization delta
|
||||
# this is equal for all 2x2 blocks
|
||||
V = get_random_hermitian(2) # the hopping elements from impurity to bath
|
||||
b1 = np.random.rand() # the bath energy of the first bath level
|
||||
b2 = np.random.rand() # the bath energy of the second bath level
|
||||
delta = GfReFreq(window=(-5,5), indices=range(2), n_points=1001)
|
||||
delta[0,0] << (V[0,0]*V[0,0].conjugate()*inverse(Omega-b1)+V[0,1]*V[0,1].conjugate()*inverse(Omega-b2+0.02j))/2.0
|
||||
delta[0,1] << (V[0,0]*V[1,0].conjugate()*inverse(Omega-b1)+V[0,1]*V[1,1].conjugate()*inverse(Omega-b2+0.02j))/2.0
|
||||
delta[1,0] << (V[1,0]*V[0,0].conjugate()*inverse(Omega-b1)+V[1,1]*V[0,1].conjugate()*inverse(Omega-b2+0.02j))/2.0
|
||||
delta[1,1] << (V[1,0]*V[1,0].conjugate()*inverse(Omega-b1)+V[1,1]*V[1,1].conjugate()*inverse(Omega-b2+0.02j))/2.0
|
||||
# construct G
|
||||
G = BlockGf(name_block_generator=(('ud',GfReFreq(window=(-5,5), indices=range(10), n_points=1001)),))
|
||||
for i in range(0,10,2):
|
||||
G['ud'][i:i+2,i:i+2] << inverse(Omega-delta+0.02j)
|
||||
G['ud'] << inverse(inverse(G['ud']) - Hloc)
|
||||
|
||||
|
||||
SK = SumkDFT(hdf_file = 'SrIrO3_rot.h5', use_dft_blocks=False)
|
||||
G_new = SK.analyse_block_structure_from_gf([G])
|
||||
G_new_symm = G_new[0].copy()
|
||||
SK.symm_deg_gf(G_new_symm, 0)
|
||||
assert_block_gfs_are_close(G_new[0], G_new_symm)
|
||||
|
||||
|
||||
assert SK.gf_struct_sumk == [[('ud', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], [('ud', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])]],\
|
||||
"wrong gf_struct_sumk"
|
||||
for i in range(5):
|
||||
assert 'ud_{}'.format(i) in SK.gf_struct_solver[0], "missing block"
|
||||
assert SK.gf_struct_solver[0]['ud_{}'.format(i)] == range(2), "wrong block size"
|
||||
for i in range(10):
|
||||
assert SK.sumk_to_solver[0]['ud',i] == ('ud_{}'.format(i/2), i%2), "wrong mapping"
|
||||
|
||||
assert len(SK.deg_shells[0]) == 2, "wrong number of equivalent groups found"
|
||||
assert sorted([len(d) for d in SK.deg_shells[0]]) == [2,3], "wrong number of members in the equivalent groups found"
|
||||
for d in SK.deg_shells[0]:
|
||||
if len(d)==2:
|
||||
assert 'ud_3' in d, "shell ud_3 missing"
|
||||
assert 'ud_4' in d, "shell ud_4 missing"
|
||||
if len(d)==3:
|
||||
assert 'ud_0' in d, "shell ud_0 missing"
|
||||
assert 'ud_1' in d, "shell ud_1 missing"
|
||||
assert 'ud_2' in d, "shell ud_2 missing"
|
||||
|
||||
|
||||
|
||||
def get_delta_from_mesh(mesh):
|
||||
w0 = None
|
||||
for w in mesh:
|
||||
if w0 is None:
|
||||
w0 = w
|
||||
else:
|
||||
return w-w0
|
||||
|
||||
Gt = BlockGf(name_block_generator = [(name,
|
||||
GfReTime(window=(-np.pi*(len(block.mesh)-1) / (len(block.mesh)*get_delta_from_mesh(block.mesh)), np.pi*(len(block.mesh)-1) / (len(block.mesh)*get_delta_from_mesh(block.mesh))),
|
||||
n_points=len(block.mesh),
|
||||
indices=block.indices)) for name, block in G])
|
||||
|
||||
Gt['ud'].set_from_inverse_fourier(G['ud'])
|
||||
|
||||
G_new = SK.analyse_block_structure_from_gf([Gt])
|
||||
G_new_symm = G_new[0].copy()
|
||||
SK.symm_deg_gf(G_new_symm, 0)
|
||||
assert_block_gfs_are_close(G_new[0], G_new_symm)
|
||||
|
||||
assert SK.gf_struct_sumk == [[('ud', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], [('ud', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])]],\
|
||||
"wrong gf_struct_sumk"
|
||||
for i in range(5):
|
||||
assert 'ud_{}'.format(i) in SK.gf_struct_solver[0], "missing block"
|
||||
assert SK.gf_struct_solver[0]['ud_{}'.format(i)] == range(2), "wrong block size"
|
||||
for i in range(10):
|
||||
assert SK.sumk_to_solver[0]['ud',i] == ('ud_{}'.format(i/2), i%2), "wrong mapping"
|
||||
|
||||
assert len(SK.deg_shells[0]) == 2, "wrong number of equivalent groups found"
|
||||
assert sorted([len(d) for d in SK.deg_shells[0]]) == [2,3], "wrong number of members in the equivalent groups found"
|
||||
for d in SK.deg_shells[0]:
|
||||
if len(d)==2:
|
||||
assert 'ud_3' in d, "shell ud_3 missing"
|
||||
assert 'ud_4' in d, "shell ud_4 missing"
|
||||
if len(d)==3:
|
||||
assert 'ud_0' in d, "shell ud_0 missing"
|
||||
assert 'ud_1' in d, "shell ud_1 missing"
|
||||
assert 'ud_2' in d, "shell ud_2 missing"
|
Binary file not shown.
@ -21,7 +21,8 @@ sk_pick1 = BlockStructure(gf_struct_sumk = SK.gf_struct_sumk,
|
||||
gf_struct_solver = SK.gf_struct_solver,
|
||||
solver_to_sumk = SK.solver_to_sumk,
|
||||
sumk_to_solver = SK.sumk_to_solver,
|
||||
solver_to_sumk_block = SK.solver_to_sumk_block)
|
||||
solver_to_sumk_block = SK.solver_to_sumk_block,
|
||||
deg_shells = SK.deg_shells)
|
||||
assert sk_pick1 == pick1, 'constructing block structure from SumkDFT properties failed'
|
||||
|
||||
# check pick_gf_struct_sumk
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user