3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-22 12:23:41 +01:00

[wannier] few minor tidying changes while reading through

This commit is contained in:
Priyanka Seth 2016-02-23 15:10:22 +01:00
parent 0d3e59a73c
commit 058e8e968f

View File

@ -1,5 +1,5 @@
################################################################################ ##########################################################################
# #
# TRIQS: a Toolbox for Research in Interacting Quantum Systems # TRIQS: a Toolbox for Research in Interacting Quantum Systems
# #
@ -18,7 +18,7 @@
# You should have received a copy of the GNU General Public License along with # You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>. # TRIQS. If not, see <http://www.gnu.org/licenses/>.
# #
################################################################################ ##########################################################################
### ###
# Wannier90 to HDF5 converter for the SumkDFT class of dfttools/TRIQS; # Wannier90 to HDF5 converter for the SumkDFT class of dfttools/TRIQS;
@ -49,15 +49,17 @@ import numpy
import math import math
from pytriqs.archive import * from pytriqs.archive import *
from converter_tools import * from converter_tools import *
from itertools import product
import os.path import os.path
class Wannier90Converter(ConverterTools): class Wannier90Converter(ConverterTools):
""" """
Conversion from Wannier90 output to an hdf5 file that can be used as input for the SumkDFT class. Conversion from Wannier90 output to an hdf5 file that can be used as input for the SumkDFT class.
""" """
def __init__(self, seedname, hdf_filename = None, dft_subgrp = 'dft_input', def __init__(self, seedname, hdf_filename=None, dft_subgrp='dft_input',
symmcorr_subgrp = 'dft_symmcorr_input', repacking = False): symmcorr_subgrp='dft_symmcorr_input', repacking=False):
""" """
Initialise the class. Initialise the class.
@ -77,15 +79,18 @@ class Wannier90Converter(ConverterTools):
""" """
self._name = "Wannier90Converter" self._name = "Wannier90Converter"
assert type(seedname)==StringType, self._name + ": Please provide the DFT files' base name as a string." assert type(seedname) == StringType, self._name + \
if hdf_filename is None: hdf_filename = seedname+'.h5' ": Please provide the DFT files' base name as a string."
if hdf_filename is None:
hdf_filename = seedname + '.h5'
self.hdf_file = hdf_filename self.hdf_file = hdf_filename
# if the w90 output is seedname_hr.dat, the input file for the converter must be called seedname.inp # if the w90 output is seedname_hr.dat, the input file for the
self.inp_file = seedname+'.inp' # converter must be called seedname.inp
self.inp_file = seedname + '.inp'
self.w90_seed = seedname self.w90_seed = seedname
self.dft_subgrp = dft_subgrp self.dft_subgrp = dft_subgrp
self.symmcorr_subgrp = symmcorr_subgrp self.symmcorr_subgrp = symmcorr_subgrp
self.fortran_to_replace = {'D':'E'} self.fortran_to_replace = {'D': 'E'}
# threshold below which matrix elements from wannier90 should be considered equal # threshold below which matrix elements from wannier90 should be considered equal
self._w90zero = 2.e-6 self._w90zero = 2.e-6
@ -93,7 +98,6 @@ class Wannier90Converter(ConverterTools):
if (os.path.exists(self.hdf_file) and repacking): if (os.path.exists(self.hdf_file) and repacking):
ConverterTools.repack(self) ConverterTools.repack(self)
def convert_dft_input(self): def convert_dft_input(self):
""" """
Reads the appropriate files and stores the data for the Reads the appropriate files and stores the data for the
@ -106,41 +110,50 @@ class Wannier90Converter(ConverterTools):
""" """
# Read and write only on the master node # Read and write only on the master node
if not (mpi.is_master_node()): return if not (mpi.is_master_node()):
mpi.report("Reading input from %s..."%self.inp_file) return
mpi.report("Reading input from %s..." % self.inp_file)
# R is a generator : each R.Next() will return the next number in the file # R is a generator : each R.Next() will return the next number in the file
R = ConverterTools.read_fortran_file(self,self.inp_file,self.fortran_to_replace) R = ConverterTools.read_fortran_file(
self, self.inp_file, self.fortran_to_replace)
shell_entries = ['atom', 'sort', 'l', 'dim'] shell_entries = ['atom', 'sort', 'l', 'dim']
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep'] corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
# First, let's read the input file with the parameters needed for the conversion # First, let's read the input file with the parameters needed for the conversion
try: try:
kmesh_mode = int(R.next()) # read k-point mesh generation option # read k - point mesh generation option
kmesh_mode = int(R.next())
if kmesh_mode >= 0: if kmesh_mode >= 0:
# read k-point mesh size from input # read k-point mesh size from input
nki = [int(R.next()) for idir in range(3)] nki = [int(R.next()) for idir in range(3)]
else: else:
# some default grid, if everything else fails... # some default grid, if everything else fails...
nki = [8, 8, 8] nki = [8, 8, 8]
density_required = float(R.next()) # read the total number of electrons per cell # read the total number of electrons per cell
density_required = float(R.next())
# we do not read shells, because we have no additional shells beyond correlated ones, # we do not read shells, because we have no additional shells beyond correlated ones,
# and the data will be copied from corr_shells into shells (see below) # and the data will be copied from corr_shells into shells (see below)
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell, # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
n_corr_shells = int(R.next())
# now read the information about the correlated shells (atom, sort, l, dim, SO flag, irep): # now read the information about the correlated shells (atom, sort, l, dim, SO flag, irep):
corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ] corr_shells = [{name: int(val) for name, val in zip(
except StopIteration: # a more explicit error if the file is corrupted. corr_shell_entries, R)} for icrsh in range(n_corr_shells)]
mpi.report(self._name + ": reading input file %s failed!"%self.inp_file) except StopIteration: # a more explicit error if the file is corrupted.
mpi.report(self._name + ": reading input file %s failed!" %
self.inp_file)
# close the input file # close the input file
R.close() R.close()
# Set or derive some quantities # Set or derive some quantities
symm_op = 0 # Wannier90 does not use symmetries to reduce the k-points # Wannier90 does not use symmetries to reduce the k-points
# the following might change in future versions # the following might change in future versions
### copy corr_shells into shells (see above) symm_op = 0
# copy corr_shells into shells (see above)
n_shells = n_corr_shells n_shells = n_corr_shells
shells = [] shells = []
for ish in range(n_shells): for ish in range(n_shells):
shells.append({key: corr_shells[ish].get(key,None) for key in shell_entries}) shells.append({key: corr_shells[ish].get(
key, None) for key in shell_entries})
### ###
SP = 0 # NO spin-polarised calculations for now SP = 0 # NO spin-polarised calculations for now
SO = 0 # NO spin-orbit calculation for now SO = 0 # NO spin-orbit calculation for now
@ -150,19 +163,22 @@ class Wannier90Converter(ConverterTools):
# this is more general # this is more general
n_spin = SP + 1 - SO n_spin = SP + 1 - SO
dim_corr_shells = sum([sh['dim'] for sh in corr_shells]) dim_corr_shells = sum([sh['dim'] for sh in corr_shells])
mpi.report("Total number of WFs expected in the correlated shells: %d"%dim_corr_shells) mpi.report(
"Total number of WFs expected in the correlated shells: %d" % dim_corr_shells)
# determine the number of inequivalent correlated shells and maps, needed for further processing # determine the number of inequivalent correlated shells and maps, needed for further processing
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(self,corr_shells) n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(
mpi.report("Number of inequivalent shells: %d"%n_inequiv_shells) self, corr_shells)
mpi.report("Number of inequivalent shells: %d" % n_inequiv_shells)
mpi.report("Shell representatives: " + format(inequiv_to_corr)) mpi.report("Shell representatives: " + format(inequiv_to_corr))
shells_map = [inequiv_to_corr[corr_to_inequiv[ish]] for ish in range(n_corr_shells)] shells_map = [inequiv_to_corr[corr_to_inequiv[ish]]
for ish in range(n_corr_shells)]
mpi.report("Mapping: " + format(shells_map)) mpi.report("Mapping: " + format(shells_map))
# build the k-point mesh, if its size was given on input (kmesh_mode >= 0), # build the k-point mesh, if its size was given on input (kmesh_mode >= 0),
# otherwise it is built according to the data in the hr file (see below) # otherwise it is built according to the data in the hr file (see below)
if kmesh_mode >= 0: if kmesh_mode >= 0:
n_k, k_mesh, bz_weights = self.kmesh_build(nki,kmesh_mode) n_k, k_mesh, bz_weights = self.kmesh_build(nki, kmesh_mode)
self.n_k = n_k self.n_k = n_k
self.k_mesh = k_mesh self.k_mesh = k_mesh
@ -171,10 +187,9 @@ class Wannier90Converter(ConverterTools):
dim_reps = [0 for i in range(n_inequiv_shells)] dim_reps = [0 for i in range(n_inequiv_shells)]
T = [] T = []
for ish in range(n_inequiv_shells): for ish in range(n_inequiv_shells):
ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1 ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1) lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
T.append(numpy.zeros([lmax,lmax],numpy.complex_)) T.append(numpy.zeros([lmax, lmax], numpy.complex_))
spin_w90name = ['_up', '_down'] spin_w90name = ['_up', '_down']
hamr_full = [] hamr_full = []
@ -182,22 +197,23 @@ class Wannier90Converter(ConverterTools):
# TODO: generalise to SP=1 (only partially done) # TODO: generalise to SP=1 (only partially done)
rot_mat_time_inv = [0 for i in range(n_corr_shells)] rot_mat_time_inv = [0 for i in range(n_corr_shells)]
# Second, let's read the file containing the Hamiltonian in WF basis produced by Wannier90 # Second, let's read the file containing the Hamiltonian in WF basis produced by Wannier90
for isp in range(n_spin): for isp in range(n_spin):
### begin loop on isp # begin loop on isp
# build filename according to wannier90 conventions # build filename according to wannier90 conventions
if SP == 1: if SP == 1:
mpi.report("Reading information for spin component n. %d"%isp) mpi.report(
"Reading information for spin component n. %d" % isp)
hr_file = self.w90_seed + spin_w90name[isp] + '_hr.dat' hr_file = self.w90_seed + spin_w90name[isp] + '_hr.dat'
else: else:
hr_file = self.w90_seed + '_hr.dat' hr_file = self.w90_seed + '_hr.dat'
# now grab the data from the H(R) file # now grab the data from the H(R) file
mpi.report("The Hamiltonian in MLWF basis is extracted from %s ..."%hr_file) mpi.report(
"The Hamiltonian in MLWF basis is extracted from %s ..." % hr_file)
nr, rvec, rdeg, nw, hamr = self.read_wannier90hr(hr_file) nr, rvec, rdeg, nw, hamr = self.read_wannier90hr(hr_file)
# number of R vectors, their indices, their degeneracy, number of WFs, H(R) # number of R vectors, their indices, their degeneracy, number of WFs, H(R)
mpi.report("... done: %d R vectors, %d WFs found"%(nr, nw)) mpi.report("... done: %d R vectors, %d WFs found" % (nr, nw))
if isp == 0: if isp == 0:
# set or check some quantities that must be the same for both spins # set or check some quantities that must be the same for both spins
@ -206,7 +222,7 @@ class Wannier90Converter(ConverterTools):
# k-point grid: (if not defined before) # k-point grid: (if not defined before)
if kmesh_mode == -1: if kmesh_mode == -1:
# the size of the k-point mesh is determined from the largest R vector # the size of the k-point mesh is determined from the largest R vector
nki = [2*rvec[:,idir].max()+1 for idir in range(3)] nki = [2 * rvec[:, idir].max() + 1 for idir in range(3)]
# it will be the same as in the win only when nki is odd, because of the # it will be the same as in the win only when nki is odd, because of the
# wannier90 convention: if we have nki k-points along the i-th direction, # wannier90 convention: if we have nki k-points along the i-th direction,
# then we should get 2*(nki/2)+nki%2 R points along that direction # then we should get 2*(nki/2)+nki%2 R points along that direction
@ -225,30 +241,33 @@ class Wannier90Converter(ConverterTools):
elif self.nwfs > dim_corr_shells: elif self.nwfs > dim_corr_shells:
# NOTE: correlated shells must appear before uncorrelated ones inside the file # NOTE: correlated shells must appear before uncorrelated ones inside the file
mpi.report("Number of WFs larger than correlated orbitals:\n" + mpi.report("Number of WFs larger than correlated orbitals:\n" +
"WFs from %d to %d treated as uncorrelated"%(dim_corr_shells+1,self.nwfs)) "WFs from %d to %d treated as uncorrelated" % (dim_corr_shells + 1, self.nwfs))
else: else:
mpi.report("Number of WFs equal to number of correlated orbitals") mpi.report("Number of WFs equal to number of correlated orbitals")
# we assume spin up and spin down always have same total number of WFs # we assume spin up and spin down always have same total number of WFs
n_orbitals = numpy.ones([self.n_k,n_spin],numpy.int)*self.nwfs n_orbitals = numpy.ones(
[self.n_k, n_spin], numpy.int) * self.nwfs
else: else:
# consistency check between the _up and _down file contents # consistency check between the _up and _down file contents
if nr != self.nrpt: mpi.report("Different number of R vectors for spin-up/spin-down!") if nr != self.nrpt:
if nw != self.nwfs: mpi.report("Different number of WFs for spin-up/spin-down!") mpi.report("Different number of R vectors for spin-up/spin-down!")
if nw != self.nwfs:
mpi.report("Different number of WFs for spin-up/spin-down!")
hamr_full.append(hamr) hamr_full.append(hamr)
##FIXME: when do we actually need deepcopy()? # FIXME: when do we actually need deepcopy()?
#hamr_full.append(deepcopy(hamr)) # hamr_full.append(deepcopy(hamr))
for ir in range(nr): for ir in range(nr):
# checks if the Hamiltonian is real (it should, if wannierisation worked fine) # checks if the Hamiltonian is real (it should, if wannierisation worked fine)
if numpy.abs((hamr[ir].imag.max()).max()) > self._w90zero: if numpy.abs((hamr[ir].imag.max()).max()) > self._w90zero:
mpi.report("H(R) has large complex components at R %d"%ir) mpi.report("H(R) has large complex components at R %d" % ir)
# copy the R=0 block corresponding to the correlated shells # copy the R=0 block corresponding to the correlated shells
# into another variable (needed later for finding rot_mat) # into another variable (needed later for finding rot_mat)
if rvec[ir,0] == 0 and rvec[ir,1] == 0 and rvec[ir,2] == 0: if rvec[ir, 0] == 0 and rvec[ir, 1] == 0 and rvec[ir, 2] == 0:
ham_corr0 = hamr[ir][0:dim_corr_shells,0:dim_corr_shells] ham_corr0 = hamr[ir][0:dim_corr_shells, 0:dim_corr_shells]
# checks if ham0 is Hermitian # checks if ham0 is Hermitian
if not numpy.allclose(ham_corr0.transpose().conjugate(), ham_corr0, atol=self._w90zero, rtol=1.e-9): if not numpy.allclose(ham_corr0.transpose().conjugate(), ham_corr0, atol=self._w90zero, rtol=1.e-9):
@ -258,33 +277,34 @@ class Wannier90Converter(ConverterTools):
if isp == 0: if isp == 0:
use_rotations, rot_mat = self.find_rot_mat(n_corr_shells, corr_shells, shells_map, ham_corr0) use_rotations, rot_mat = self.find_rot_mat(n_corr_shells, corr_shells, shells_map, ham_corr0)
else: else:
# consistency check # consistency check
use_rotations_, rot_mat_ = self.find_rot_mat(n_corr_shells, corr_shells, shells_map, ham_corr0) use_rotations_, rot_mat_ = self.find_rot_mat(n_corr_shells, corr_shells, shells_map, ham_corr0)
if (use_rotations and not use_rotations_): if (use_rotations and not use_rotations_):
mpi.report("Rotations cannot be used for spin component n. %d"%isp) mpi.report("Rotations cannot be used for spin component n. %d" % isp)
for icrsh in range(n_corr_shells): for icrsh in range(n_corr_shells):
if not numpy.allclose(rot_mat_[icrsh], rot_mat[icrsh], atol=self._w90zero, rtol=1.e-15): if not numpy.allclose(rot_mat_[icrsh], rot_mat[icrsh], atol=self._w90zero, rtol=1.e-15):
mpi.report("Rotations for spin component n. %d do not match!"%isp) mpi.report("Rotations for spin component n. %d do not match!" % isp)
### end loop on isp # end loop on isp
mpi.report("The k-point grid has dimensions: %d, %d, %d" % tuple(nki))
mpi.report("The k-point grid has dimensions: %d, %d, %d"%tuple(nki))
# if calculations are spin-polarized, then renormalize k-point weights # if calculations are spin-polarized, then renormalize k-point weights
if SP == 1: bz_weights = 0.5 * bz_weights if SP == 1:
bz_weights = 0.5 * bz_weights
# Third, compute the hoppings in reciprocal space # Third, compute the hoppings in reciprocal space
hopping = numpy.zeros([self.n_k,n_spin,numpy.max(n_orbitals),numpy.max(n_orbitals)],numpy.complex_) hopping = numpy.zeros([self.n_k, n_spin, numpy.max(n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
for isp in range(n_spin): for isp in range(n_spin):
# make Fourier transform H(R) -> H(k) : it can be done one spin at a time # make Fourier transform H(R) -> H(k) : it can be done one spin at a time
hamk = self.fourierham(self.nwfs, hamr_full[isp]) hamk = self.fourier_ham(self.nwfs, hamr_full[isp])
# copy the H(k) in the right place of hoppings... is there a better way to do this?? # copy the H(k) in the right place of hoppings... is there a better way to do this??
for ik in range(self.n_k): for ik in range(self.n_k):
#hopping[ik,isp,:,:] = deepcopy(hamk[ik][:,:])*energy_unit #hopping[ik,isp,:,:] = deepcopy(hamk[ik][:,:])*energy_unit
hopping[ik,isp,:,:] = hamk[ik][:,:]*energy_unit hopping[ik, isp, :, :] = hamk[ik][:, :] * energy_unit
# Then, initialise the projectors # Then, initialise the projectors
k_dep_projection = 0 # we always have the same number of WFs at each k-point k_dep_projection = 0 # we always have the same number of WFs at each k-point
proj_mat = numpy.zeros([self.n_k,n_spin,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),numpy.max(n_orbitals)],numpy.complex_) proj_mat = numpy.zeros([self.n_k, n_spin, n_corr_shells, max(
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
iorb = 0 iorb = 0
# Projectors simply consist in identity matrix blocks selecting those MLWFs that # Projectors simply consist in identity matrix blocks selecting those MLWFs that
# correspond to the specific correlated shell indexed by icrsh. # correspond to the specific correlated shell indexed by icrsh.
@ -292,22 +312,23 @@ class Wannier90Converter(ConverterTools):
# file and that the ordering of MLWFs matches the corr_shell info from the input. # file and that the ordering of MLWFs matches the corr_shell info from the input.
for icrsh in range(n_corr_shells): for icrsh in range(n_corr_shells):
norb = corr_shells[icrsh]['dim'] norb = corr_shells[icrsh]['dim']
proj_mat[:,:,icrsh,0:norb,iorb:iorb+norb] = numpy.identity(norb,numpy.complex_) proj_mat[:, :, icrsh, 0:norb, iorb:iorb +
norb] = numpy.identity(norb, numpy.complex_)
iorb += norb iorb += norb
# Finally, save all required data into the HDF archive: # Finally, save all required data into the HDF archive:
ar = HDFArchive(self.hdf_file,'a') ar = HDFArchive(self.hdf_file, 'a')
if not (self.dft_subgrp in ar): ar.create_group(self.dft_subgrp) if not (self.dft_subgrp in ar):
ar.create_group(self.dft_subgrp)
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten! # The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required', things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat', 'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping', 'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr'] 'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it] for it in things_to_save:
ar[self.dft_subgrp][it] = locals()[it]
del ar del ar
def read_wannier90hr(self, hr_filename="wannier_hr.dat"): def read_wannier90hr(self, hr_filename="wannier_hr.dat"):
""" """
Method for reading the seedname_hr.dat file produced by Wannier90 (http://wannier.org) Method for reading the seedname_hr.dat file produced by Wannier90 (http://wannier.org)
@ -333,27 +354,30 @@ class Wannier90Converter(ConverterTools):
""" """
# Read only from the master node # Read only from the master node
if not (mpi.is_master_node()): return if not (mpi.is_master_node()):
return
try: try:
with open(hr_filename, "r") as hr_filedesc: with open(hr_filename, "r") as hr_filedesc:
hr_data = hr_filedesc.readlines() hr_data = hr_filedesc.readlines()
hr_filedesc.close() hr_filedesc.close()
except IOError: except IOError:
mpi.report("The file %s could not be read!"%hr_filename) mpi.report("The file %s could not be read!" % hr_filename)
mpi.report("Reading %s..."%hr_filename + hr_data[0]) mpi.report("Reading %s..." % hr_filename + hr_data[0])
try: try:
num_wf = int(hr_data[1]) # reads number of Wannier functions per spin # reads number of Wannier functions per spin
nrpt = int(hr_data[2]) num_wf = int(hr_data[1])
nrpt = int(hr_data[2])
except ValueError: except ValueError:
mpi.report("Could not read number of WFs or R vectors") mpi.report("Could not read number of WFs or R vectors")
# allocate arrays to save the R vector indexes and degeneracies and the Hamiltonian # allocate arrays to save the R vector indexes and degeneracies and the Hamiltonian
rvec_idx = numpy.zeros((nrpt, 3), dtype=int) rvec_idx = numpy.zeros((nrpt, 3), dtype=int)
rvec_deg = numpy.zeros(nrpt, dtype=int) rvec_deg = numpy.zeros(nrpt, dtype=int)
h_of_r = [numpy.zeros((num_wf, num_wf), dtype=numpy.complex_) for n in range(nrpt)] h_of_r = [numpy.zeros((num_wf, num_wf), dtype=numpy.complex_)
for n in range(nrpt)]
# variable currpos points to the current line in the file # variable currpos points to the current line in the file
currpos = 2 currpos = 2
@ -367,37 +391,36 @@ class Wannier90Converter(ConverterTools):
raise IndexError("wrong number of R vectors??") raise IndexError("wrong number of R vectors??")
rvec_deg[ir] = int(x) rvec_deg[ir] = int(x)
ir += 1 ir += 1
# for each direct lattice vector R # for each direct lattice vector R read the block of the
for ir in range(nrpt): # Hamiltonian H(R)
# read the block of the Hamiltonian H(R) for ir, jj, ii in product(range(nrpt), range(num_wf), range(num_wf)):
for jj in range(num_wf): # advance one line, split the line into tokens
for ii in range(num_wf): currpos += 1
# advance one line, split the line into tokens cline = hr_data[currpos].split()
currpos += 1 # check if the orbital indexes in the file make sense
cline = hr_data[currpos].split() if int(cline[3]) != ii + 1 or int(cline[4]) != jj + 1:
# check if the orbital indexes in the file make sense mpi.report(
if int(cline[3]) != ii+1 or int(cline[4]) != jj+1: "Inconsistent indices at %s%s of R n. %s" % (ii, jj, ir))
mpi.report("Inconsistent indices at %s%s of R n. %s"%(ii,jj,ir)) rcurr = numpy.array(
rcurr = numpy.array([int(cline[0]), int(cline[1]), int(cline[2])]) [int(cline[0]), int(cline[1]), int(cline[2])])
if ii == 0 and jj == 0: if ii == 0 and jj == 0:
rvec_idx[ir] = rcurr rvec_idx[ir] = rcurr
rprec = rcurr rprec = rcurr
else: else:
# check if the vector indices are consistent # check if the vector indices are consistent
if not numpy.array_equal(rcurr, rprec): if not numpy.array_equal(rcurr, rprec):
mpi.report("Inconsistent indices for R vector n. %s"%ir) mpi.report(
"Inconsistent indices for R vector n. %s" % ir)
# fill h_of_r with the matrix elements of the Hamiltonian # fill h_of_r with the matrix elements of the Hamiltonian
h_of_r[ir][ii, jj] = complex(float(cline[5]), float(cline[6])) h_of_r[ir][ii, jj] = complex(float(cline[5]), float(cline[6]))
except ValueError: except ValueError:
mpi.report("Wrong data or structure in file %s"%hr_filename) mpi.report("Wrong data or structure in file %s" % hr_filename)
# return the data into variables # return the data into variables
return nrpt, rvec_idx, rvec_deg, num_wf, h_of_r return nrpt, rvec_idx, rvec_deg, num_wf, h_of_r
def find_rot_mat(self, n_sh, sh_lst, sh_map, ham0): def find_rot_mat(self, n_sh, sh_lst, sh_map, ham0):
""" """
Method for finding the matrices that bring from local to global coordinate systems Method for finding the matrices that bring from local to global coordinate systems
@ -424,12 +447,14 @@ class Wannier90Converter(ConverterTools):
""" """
# initialize the rotation matrices to identities # initialize the rotation matrices to identities
rot_mat = [numpy.identity(sh_lst[ish]['dim'], dtype=complex) for ish in range(n_sh)] rot_mat = [numpy.identity(sh_lst[ish]['dim'], dtype=complex)
for ish in range(n_sh)]
istatus = 0 istatus = 0
hs = ham0.shape hs = ham0.shape
if hs[0] != hs[1] or hs[0] != sum([sh['dim'] for sh in sh_lst]): if hs[0] != hs[1] or hs[0] != sum([sh['dim'] for sh in sh_lst]):
mpi.report("find_rot_mat: wrong block structure of input Hamiltonian!") mpi.report(
"find_rot_mat: wrong block structure of input Hamiltonian!")
istatus = 0 istatus = 0
# this error will lead into troubles later... early return # this error will lead into troubles later... early return
return istatus, rot_mat return istatus, rot_mat
@ -443,7 +468,8 @@ class Wannier90Converter(ConverterTools):
# nw = number of orbitals in this shell # nw = number of orbitals in this shell
nw = sh_lst[ish]["dim"] nw = sh_lst[ish]["dim"]
# diagonalize the sub-block of H(0) corresponding to this shell # diagonalize the sub-block of H(0) corresponding to this shell
eigval, eigvec = numpy.linalg.eigh(ham0[iwf:iwf+nw, iwf:iwf+nw]) eigval, eigvec = numpy.linalg.eigh(
ham0[iwf:iwf + nw, iwf:iwf + nw])
# find the indices sorting the eigenvalues in ascending order # find the indices sorting the eigenvalues in ascending order
eigsrt = eigval[0:nw].argsort() eigsrt = eigval[0:nw].argsort()
# order eigenvalues and eigenvectors and save in a list # order eigenvalues and eigenvectors and save in a list
@ -451,34 +477,37 @@ class Wannier90Converter(ConverterTools):
eigvec_lst.append(eigvec[eigsrt]) eigvec_lst.append(eigvec[eigsrt])
iwf += nw iwf += nw
# TODO: better handling of degenerate eigenvalue case # TODO: better handling of degenerate eigenvalue case
if sh_map[ish] != ish: # issue warning only when there are equivalent shells if sh_map[ish] != ish: # issue warning only when there are equivalent shells
for i in range(nw): for i in range(nw):
for j in range(i+1,nw): for j in range(i + 1, nw):
if ( abs(eigval[j] - eigval[i]) < self._w90zero ): if (abs(eigval[j] - eigval[i]) < self._w90zero):
mpi.report("WARNING: degenerate eigenvalue of H(0) detected for shell %d: "%(ish) + mpi.report("WARNING: degenerate eigenvalue of H(0) detected for shell %d: " % (ish) +
"global-to-local transformation might not work!") "global-to-local transformation might not work!")
for ish in range(n_sh): for ish in range(n_sh):
try: try:
# build rotation matrices by combining the unitary transformations that diagonalize H(0) # build rotation matrices by combining the unitary
rot_mat[ish] = numpy.dot(eigvec_lst[ish],eigvec_lst[sh_map[ish]].conjugate().transpose()) # transformations that diagonalize H(0)
rot_mat[ish] = numpy.dot(eigvec_lst[ish], eigvec_lst[
sh_map[ish]].conjugate().transpose())
except ValueError: except ValueError:
mpi.report("Global-to-local rotation matrices cannot be constructed!") mpi.report(
"Global-to-local rotation matrices cannot be constructed!")
istatus = 1 istatus = 1
# check that eigenvalues are the same (within accuracy) for equivalent shells # check that eigenvalues are the same (within accuracy) for
# equivalent shells
if not numpy.allclose(eigval_lst[ish], eigval_lst[sh_map[ish]], atol=self._w90zero, rtol=1.e-15): if not numpy.allclose(eigval_lst[ish], eigval_lst[sh_map[ish]], atol=self._w90zero, rtol=1.e-15):
mpi.report("ERROR: eigenvalue mismatch between equivalent shells! %d"%ish) mpi.report(
"ERROR: eigenvalue mismatch between equivalent shells! %d" % ish)
eigval_diff = eigval_lst[ish] - eigval_lst[sh_map[ish]] eigval_diff = eigval_lst[ish] - eigval_lst[sh_map[ish]]
mpi.report("Eigenvalue difference: " + format(eigval_diff)) mpi.report("Eigenvalue difference: " + format(eigval_diff))
istatus = 0 istatus = 0
#TODO: add additional consistency check on rot_mat matrices? # TODO: add additional consistency check on rot_mat matrices?
return istatus, rot_mat return istatus, rot_mat
def kmesh_build(self, msize=None, mmode=0): def kmesh_build(self, msize=None, mmode=0):
""" """
Method for the generation of the k-point mesh. Method for the generation of the k-point mesh.
@ -502,27 +531,24 @@ class Wannier90Converter(ConverterTools):
""" """
if mmode == 0: if mmode != 0:
# a regular mesh including Gamma point raise ValueError("Mesh generation mode not supported: %s" % mmode)
nkpt = msize[0] * msize[1] * msize[2] # total number of k-points
kmesh = numpy.zeros((nkpt, 3), dtype=float) # a regular mesh including Gamma point
ii = 0 # total number of k-points
for ix in range(msize[0]): nkpt = msize[0] * msize[1] * msize[2]
for iy in range(msize[1]): kmesh = numpy.zeros((nkpt, 3), dtype=float)
for iz in range(msize[2]): ii = 0
kmesh[ii,:] = [float(ix)/msize[0], float(iy)/msize[1], float(iz)/msize[2]] for ix, iy, iz in product(range(msize[0]), range(msize[1]), range(msize[2])):
ii += 1 kmesh[ii, :] = [float(ix) / msize[0], float(iy) / msize[1], float(iz) / msize[2]]
# weight is equal for all k-points because wannier90 uses uniform grid on whole BZ ii += 1
# (normalization is always 1 and takes into account spin degeneracy) # weight is equal for all k-points because wannier90 uses uniform grid on whole BZ
wk = numpy.ones([nkpt], dtype=float) / float(nkpt) # (normalization is always 1 and takes into account spin degeneracy)
else: wk = numpy.ones([nkpt], dtype=float) / float(nkpt)
raise ValueError("Mesh generation mode not supported: %s"%mmode)
return nkpt, kmesh, wk return nkpt, kmesh, wk
def fourier_ham(self, norb, h_of_r):
def fourierham(self, norb, h_of_r):
""" """
Method for obtaining H(k) from H(R) via Fourier transform Method for obtaining H(k) from H(R) via Fourier transform
The R vectors and k-point mesh are read from global module variables The R vectors and k-point mesh are read from global module variables
@ -541,16 +567,12 @@ class Wannier90Converter(ConverterTools):
""" """
imag = 1j
twopi = 2 * numpy.pi twopi = 2 * numpy.pi
h_of_k = [numpy.zeros((norb, norb), dtype=numpy.complex_) for ik in range(self.n_k)] h_of_k = [numpy.zeros((norb, norb), dtype=numpy.complex_) for ik in range(self.n_k)]
for ik in range(self.n_k): ridx = numpy.array(range(self.nrpt))
ridx = numpy.array(range(self.nrpt)) for ik, ir in product(range(self.n_k), ridx):
for ir in ridx: rdotk = twopi * numpy.dot(self.k_mesh[ik], self.rvec[ir])
rdotk = twopi * numpy.dot(self.k_mesh[ik], self.rvec[ir]) factor = (math.cos(rdotk) + 1j * math.sin(rdotk)) / float(self.rdeg[ir])
factor = (math.cos(rdotk) + imag * math.sin(rdotk)) / float(self.rdeg[ir]) h_of_k[ik][:, :] += factor * h_of_r[ir][:, :]
h_of_k[ik][:, :] += factor * h_of_r[ir][:,:]
return h_of_k return h_of_k