3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-25 05:43:40 +01:00
dft_tools/python/triqs_dft_tools/converters/elktools/readElkfiles.py

690 lines
26 KiB
Python
Raw Normal View History

##########################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2019 by A. D. N. James, M. Zingl and M. Aichhorn
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
##########################################################################
from types import *
import numpy
from triqs_dft_tools.converters.converter_tools import *
import os.path
from locale import atof
class readElkfiles:
"""
Read in the Elk output files for the elk_converter.py routines.
"""
def __init__(self):
self.dft_file = 'PROJ.OUT'
self.band_file = 'BAND.OUT'
self.eval_file = 'EIGVAL.OUT'
self.efermi_file = 'EFERMI.OUT'
self.kp_file = 'KPOINTS.OUT'
self.geom_file='GEOMETRY.OUT'
def read_elk_file(self, filename, to_replace):
#this function is almost identical to read_fortran_file, but it removes words after ':'
"""
Returns a generator that yields all numbers in the Fortran file as float, with possible replacements.
Parameters
----------
filename : string
Name of Fortran-produced file.
to_replace : dict of str:str
Dictionary defining old_char:new_char.
Returns
-------
string
The next number in file.
"""
#import os.path
#import string
import locale
from locale import atof
if not(os.path.exists(filename)):
raise IOError("File %s does not exist." % filename)
for line in open(filename, 'r'):
for old, new in to_replace.items():
line = line.replace(old, new)
# removes the substring after ':' character - if it exists
if ":" in line:
line = self.split_string(line)
if "(" in line:
line = self.split_string3(line)
for x in line.split():
yield atof(x)
def read_elk_file2(self, filename, to_replace):
#this function is almost identical to read_fortran_file, but it removes words after '('
"""
Returns a generator that yields all numbers in the Fortran file as float, with possible replacements.
Parameters
----------
filename : string
Name of Fortran-produced file.
to_replace : dict of str:str
Dictionary defining old_char:new_char.
Returns
-------
string
The next number in file.
"""
import os.path
import string
if not(os.path.exists(filename)):
raise IOError("File %s does not exist." % filename)
for line in open(filename, 'r'):
if line.strip():
for old, new in to_replace.items():
line = line.replace(old, new)
# removes the substring after '(' character - if it exists
if "(" in line:
line = self.split_string2(line,'(')
# removes the substring after '+' character - if it exists
if "+" in line:
line = self.split_string2(line,'+')
# removes the substring after '|' character - if it exists
if "|" in line:
line = self.split_string2(line,'|')
#only include lines which have multiple characters
if(len(line)>1):
yield line.split()
def split_string(self,line):
"""
This removes the excess information after ':' of the string read in from the file
"""
temp = line.split(':')
line = temp[0]
return line
def split_string2(self,line,str):
"""
This removes the excess information after 'str' of the string read in from the file
"""
temp = line.split(str)
line = temp[0]
return line
def split_string3(self,line):
"""
This removes the excess information after '(' of the string read in from the file
"""
temp = line.split('(')
line = temp[0]
return line
def read_proj(self,dft_file):#,things_to_set):
"""
This function reads the contents of PROJ.OUT and returns them for general use.
"""
#read in PROJ.OUT file
R = self.read_elk_file( dft_file, self.fortran_to_replace)
try:
#arrays of entry names
gen_info_entries = ['nproj', 'n_k', 'spinpol', 'SO','natm']
proj_entries = ['sort', 'natom', 'l', 'dim']
at_entries = ['spatom','atom']
#Read in the No. of projectors, no. of k-points, spin and spinorb info
gen_info = {name: int(val) for name, val in zip(gen_info_entries, R)}
#mpi.report(gen_info)
#read in the information of all the projectors
#initialized variables
icorr=0
lmax=3 #maximum l value that will be used
n_shells=0
n_inequiv_shells=0
#local arrays
neqatom=[]#numpy.zeros([n_shells], int)
proj=[]
shells=[]#numpy.zeros([n_shells], int)
corr_shells=[]#numpy.zeros([n_shells], int)
prjtype=[]
wan=[]
proj_info=[]#numpy.zeros([n_shells], int)
T=[]
basis=[]
inequiv_to_corr=[]
corr_to_inequiv=[]
ind=[]
proj_idx=[]
at=[]
idxlm=[]
#assign global variables
n_k=gen_info['n_k']
SO=gen_info['SO']
#loop over projector flags
for ip in range(gen_info['nproj']):
#projector index
proj_idx.append(int(next(R)))
proj.append({name: int(val) for name, val in zip(proj_entries, R)})
na=proj[ip]['natom'] # integer which reduces when reading in atom info
while(na>0):
neqatom.append(int(next(R)))
na-=neqatom[n_inequiv_shells]
#appends the mapping array to index of inequivalent atom in shells
inequiv_to_corr.append(icorr)
for ia in range(neqatom[n_inequiv_shells]):
corr_to_inequiv.append(n_inequiv_shells)
at.append({name: int(val) for name, val in zip(at_entries, R)})
shells.append(proj[ip].copy())
shells[n_shells].update({'atom':at[n_shells]['atom'], 'spatom':at[n_shells]['spatom']})
corr_shells.append(shells[n_shells].copy())
n_orb=2*shells[n_shells]['l']+1
#lm submatrix indices
idxlm.append(numpy.zeros(2*lmax+1, dtype=int))
nrep=proj[ip]['dim']
for i in range(nrep):
idxlm[n_shells][i]=next(R)-1
ind.append(idxlm[n_shells][0:nrep])
#determine basis type and transformation matrix
basis.append(int(next(R)))
#determine whether which basis the projectors where generated in
#spherical harmonics
T.append(numpy.zeros([n_orb, n_orb], dtype=complex))
#Elk generated unitary basis
if (basis[n_shells]==2):
#reads the transformation matrix
for i in range(n_orb):
for j in range(n_orb):
T[n_shells][i, j] = next(R)
for i in range(n_orb):
for j in range(n_orb):
T[n_shells][i, j] += 1j * next(R)
#transformation matrix from spherical harmonics to cubic basis
elif (basis[n_shells]==1):
T[n_shells]=self.determine_T(shells[n_shells]['l'])
else:
for i in range(n_orb):
T[n_shells][i,i] = 1.0
#index for the next inequivalent atom (+1 to index is not needed as this is incorporated in
#neqatom[ish]
n_shells+=1
#increase the inequiv_to_corr value
icorr+=neqatom[n_inequiv_shells]
#increase the numer of inequivalent atoms
n_inequiv_shells+=1
#end reading the file if read the last projector
if (ip+1==gen_info['nproj']):
break
#determine the irreducible representation
dim_reps=[]
n_reps=[]
irep=[]
for ish in range(n_inequiv_shells):
isheq=inequiv_to_corr[ish]
[n_reps,dim_reps,irep] = self.determine_rep(isheq,ish,corr_shells,basis,ind,n_reps,dim_reps,irep)
for ish in range(n_shells):
ishin=corr_to_inequiv[ish]
corr_shells[ish].update({'SO':SO, 'irep':irep[ishin]})
except StopIteration: # a more explicit error if the file is corrupted.
#raise "Elk_converter : reading PROJ.OUT file failed!"
raise IOError("Elk_converter : reading PROJ.OUT file failed!")
R.close()
#output desired information
return (gen_info,n_shells,n_inequiv_shells,corr_to_inequiv,inequiv_to_corr,corr_shells,n_reps,dim_reps,ind,basis,T)
def determine_T(self,l):
"""
Current version calculates the transformation matrix T to convert the inputs from spherical
harmonics to the cubic basis (as used in TRIQS and Wien2k).
This routine is currently very similar to spherical_to_cubic in the TRIQS library.
This routine can be extended to include other unitary rotation matrices
"""
from math import sqrt
size=2*l+1
T = numpy.zeros((size,size),dtype=complex)
if(l == 0):
T[0,0]= 1.0
elif(l == 1):
T[0,0] = 1.0/sqrt(2); T[0,2] = -1.0/sqrt(2)
T[1,0] = 1j/sqrt(2); T[1,2] = 1j/sqrt(2)
T[2,1] = 1.0
elif l == 2:
T[0,2] = 1.0
T[1,0] = 1.0/sqrt(2); T[1,4] = 1.0/sqrt(2)
T[2,0] =-1.0/sqrt(2); T[2,4] = 1.0/sqrt(2)
T[3,1] = 1.0/sqrt(2); T[3,3] =-1.0/sqrt(2)
T[4,1] = 1.0/sqrt(2); T[4,3] = 1.0/sqrt(2)
elif l == 3:
#This needs to be checked
T[0,0] = 1.0/sqrt(2); T[0,6] = -1.0/sqrt(2)
T[1,1] = 1.0/sqrt(2); T[1,5] = 1.0/sqrt(2)
T[2,2] = 1.0/sqrt(2); T[2,4] = -1.0/sqrt(2)
T[3,3] = 1.0
T[4,2] = 1j/sqrt(2); T[4,4] = 1j/sqrt(2)
T[5,1] = 1j/sqrt(2); T[5,5] = -1j/sqrt(2)
T[6,0] = 1j/sqrt(2); T[6,6] = 1j/sqrt(2)
else: raise ValueError("determine: implemented only for l=0,1,2,3")
return numpy.matrix(T)
def determine_rep(self,ish,ishin,corr_shells,basis,ind,n_reps,dim_reps,irep):
"""
Determines the irreducible representation used for projection calculation.
Only for Cubic harmonics at the moment
"""
#if all of the orbitals were used to construct the projectors
rep=corr_shells[ish]['dim']
if(rep==2*corr_shells[ish]['l']+1):
n_reps.append(1)
dim_reps.append([corr_shells[ish]['dim']])
irep.append(1)
#if a subset of obitals were used for generating the projectors (l>1)
#if Elk generated T matrix is used
elif((basis[ish]==2)&(corr_shells[ish]['l']>1)):
if (corr_shells[ish]['l']==2):
n_reps.append(2)
dim_reps.append([3, 2])
irep.append(dim_reps[ishin].index(rep)+1)
elif (corr_shells[ish]['l']==3):
n_reps.append(3)
dim_reps.append([1, 3, 3])
#cubic T matrix
elif((basis[ish]==1)&(corr_shells[ish]['l']>1)):
if (corr_shells[ish]['l']==2):
n_reps.append(2)
dim_reps.append([2, 3])
irep.append(dim_reps[ishin].index(rep)+1)
elif (corr_shells[ish]['l']==3):
n_reps.append(3)
dim_reps.append([2, 2, 3])
#determine the dim_reps from the lm indices in ind
if(rep==3):
irep.append(3)
else:
for i in range(2):
#look for ind[i]==0
if(ind[i]==0):
irep.append(1)
break
#default to irep=2
elif(i==1):
irep.append(2)
else:
raise ValueError("Elk_converter (determine_rep) : irreducible representations were not found!")
return (n_reps,dim_reps,irep)
def read_projector(self,shell,n_spin_blocks,ish,proj_mat,ind,T,basis,filext):
"""
This function reads the contents of WANPROJ_L**_S**_A****.OUT
"""
import string
l = str(shell[ish]['l']).zfill(2)
s = str(shell[ish]['sort']).zfill(2)
a = str(shell[ish]['spatom']).zfill(4)
#construct file name from atoms info
wan_shells_file = 'WANPROJ_L'+l+'_S'+s+'_A'+a+filext
R = self.read_elk_file(wan_shells_file, self.fortran_to_replace)
try:
#no. of kpts and number of orbital
gen_entries = ['n_k', 'lmmax','dim_rep']
gen = {name: int(val) for name, val in zip(gen_entries, R)}
#projector lm size
dim=gen['lmmax']
#no. of lm used to construct projector
dim_rep=gen['dim_rep']
lat=[]
n_k=gen['n_k']
n_orbitals = numpy.zeros([n_k, n_spin_blocks], int)
band_window = [None for isp in range(n_spin_blocks)]
for isp in range(n_spin_blocks):
band_window[isp] = numpy.zeros([n_k, 2], dtype=int)
for ik in range(0,n_k):
#k-point index and correlated band window indices
lat_entries = ['ik','vklx','vkly','vklz']
lat.append({name: int(val) for name, val in zip(lat_entries, R)})
#loop over each spin
for isp in range(0,n_spin_blocks):
#band window indices
proj_entries = ['isp', 'ist_min','ist_max']
proj_dim={name: int(val) for name, val in zip(proj_entries, R)}
if(isp+1!=proj_dim['isp']):
raise IOError("Elk_converter (",wan_shells_file,") : reading spin projecotrs failed!")
return
#setting band window arrays
n_orbitals[ik,isp]=proj_dim['ist_max']-proj_dim['ist_min']+1
band_window[isp][ik, 0] = proj_dim['ist_min']
band_window[isp][ik, 1] = proj_dim['ist_max']
#define temporary matrix for reading in the projectors
mat = numpy.zeros([dim, n_orbitals[ik,isp]], complex)
# Real part
for j in range(dim):
for i in range(n_orbitals[ik,isp]):
mat[j, i] = next(R)
# Imag part:
for j in range(dim):
for i in range(n_orbitals[ik,isp]):
mat[j, i] += 1j * next(R)
#rotate projectors into basis T
if(basis[ish]!=0):
mat[:,:]=numpy.matmul(T[ish],mat[:,:])
#put desired projector subset into master array
proj_mat[ik,isp,ish,0:dim_rep,0:n_orbitals[ik,isp]]=mat[ind[ish],0:n_orbitals[ik,isp]]
#delete temporary index
del mat
#resize array length of band indices to maximum number used
proj_mat=proj_mat[:,:,:,:,:numpy.max(n_orbitals)]
except StopIteration: # a more explicit error if the file is corrupted.
raise IOError("Elk_converter (read projectors): reading file failed!")
R.close()
return(n_orbitals,band_window,dim_rep,proj_mat)
def read_eig(self,filext=".OUT"):
"""
This function reads the contents of EIGVAL.OUT and EFERMI.OUT
"""
import string
#construct file name from atoms info
R = self.read_elk_file( self.efermi_file, self.fortran_to_replace)
try:
efermi=next(R)
except StopIteration: # a more explicit error if the file is corrupted.
raise IOError("Elk_converter (EFERMI.OUT): reading file failed!")
eval_file = 'EIGVAL'+filext
R = self.read_elk_file( eval_file, self.fortran_to_replace)
try:
#no. of kpts
n_k=int(next(R))
#no. second variation states (no. bands)
nstsv=int(next(R))
en=[]
occ=[]
kp2=[]
for ik in range(0,n_k):
#k index and corresponing lattice coordinates
k_entries = ['ik', 'vklx','vkly','vklz']
kp2.append([{name: val for name, val in zip(k_entries, R)}])
en.append([])
occ.append([])
for ist in range(0,nstsv):
#stores the band index, energy eigenvalues and occupancies
en_entries = ['ist', 'hopping','occ']
read_en={name: val for name, val in zip(en_entries, R)}
#Energy eigenvalues and occupations
en[ik].append(read_en['hopping']-efermi)
occ[ik].append(read_en['occ'])
except StopIteration: # a more explicit error if the file is corrupted.
raise IOError("Elk_converter (EIGVAL.OUT): reading file failed!")
R.close()
return(en,occ,nstsv)
def read_kpoints(self,filext=".OUT"):
"""
This function reads the contents of KPOINTS.OUT
"""
import string
kp_file = 'KPOINTS'+filext
R = self.read_elk_file( kp_file, self.fortran_to_replace)
try:
#no. of kpts
n_k=int(next(R))
kp=[]
#reads in the k index, lattice vectors, weights and nmat for each kpt
#array for bz weights
bz_weights = numpy.ones([n_k], float) / float(n_k)
#array for lattice vectors
vkl = numpy.ones([n_k,3], float)
for ik in range(n_k):
#k-grid info
k_entries = ['ik', 'vklx','vkly','vklz', 'bz_weights', 'nmat']
kp.append({name: val for name, val in zip(k_entries, R)})
#convert to integers
kp[ik]['ik']=int(kp[ik]['ik'])
#read in BZ weights
bz_weights[ik]=kp[ik]['bz_weights']
j=0
for i in range(1,4):
vkl[ik,j]=kp[ik][k_entries[i]]
j=j+1
except StopIteration: # a more explicit error if the file is corrupted.
raise IOError("Elk_converter (KPOINTS.OUT): reading file failed!")
R.close()
return(bz_weights,vkl)
def readsym(self):
"""
Read in the (crystal) symmetries in lattice coordinates
"""
dft_file='SYMCRYS.OUT'
R = self.read_elk_file2( dft_file, self.fortran_to_replace)
try:
symmat=[]
spinmat=[]
tr=[]
#read the number of crystal symmetries
x = next(R)
nsym = int(atof(x[0]))
#set up symmetry matrices
for isym in range(nsym):
symmat.append(numpy.zeros([3, 3], float))
spinmat.append(numpy.zeros([3, 3], float))
tr.append(numpy.zeros([3], float))
#read each symmetry
for isym in range(nsym):
#read the symmetry index and check it
x = next(R)
isymm = int(x[3])
if(isym+1!=isymm):
raise IOError("Elk_converter : reading symmetries failed!")
#next read has no useful infomation
x = next(R)
#read in the translation vector used for symmetries
x = next(R)
for i in range(3):
tr[isym][i]=atof(x[i])
#read in the spatial symmetries
#string with no useful information
x = next(R)
#read in the spatial symmetry
for i in range(3):
x = next(R)
for j in range(3):
symmat[isym][i,j]=int(atof(x[j]))
#string with no useful information
x = next(R)
#read in the spin symmetries
for i in range(3):
x = next(R)
for j in range(3):
spinmat[isym][i,j]=int(atof(x[j]))
except StopIteration: # a more explicit error if the file is corrupted.
raise IOError("Elk_converter : reading SYMCRYS.OUT file failed!")
R.close()
return nsym,spinmat,symmat,tr
def readlat(self):
"""
Read in information about the lattice.
"""
dft_file='LATTICE.OUT'
R = self.read_elk_file2( dft_file, self.fortran_to_replace)
try:
amat = numpy.zeros([3, 3], float)
amatinv = numpy.zeros([3, 3], float)
bmat = numpy.zeros([3, 3], float)
bmatinv = numpy.zeros([3, 3], float)
#real space lattice matrices
#cycling through information which is not needed
for i in range(4):
x = next(R)
#reading in the lattice vectors as matrix
for i in range(3):
x = next(R)
for j in range(3):
amat[i,j] = atof(x[j])
#cycling through information which is not needed
x = next(R)
#reading in the inverse lattice matrix
for i in range(3):
x = next(R)
for j in range(3):
amatinv[i,j] = atof(x[j])
#read in cell volume (for transport)
x = next(R)
cell_vol = atof(x[-1])
#cycling through information which is not needed
for i in range(4):
x = next(R)
#reading in the reciprocal lattice vectors as matrix
for i in range(3):
x = next(R)
for j in range(3):
bmat[i,j] = atof(x[j])
#cycling through information which is not needed
x = next(R)
#reading in the inverse reciprocal lattice matrix
for i in range(3):
x = next(R)
for j in range(3):
bmatinv[i,j] = atof(x[j])
except StopIteration: # a more explicit error if the file is corrupted.
raise IOError("Elk_converter : reading PROJ.OUT file failed!")
R.close()
return amat,amatinv,bmat,bmatinv,cell_vol
def read_geometry(self):
"""
This function reads the contents of GEOMETRY.OUT
"""
import string
#read in the Geometery file
dft_file='GEOMETRY.OUT'
#atom positions in lattice coordinates
R = self.read_elk_file2( dft_file, self.fortran_to_replace)
nspecies=0
na=[]
atpos_entries = ['kx', 'ky','kz','Bkx', 'Bky', 'Bkz']
atpos=[]
try:
i=0
#cycle through file until "atoms" is found
while(i<1000):
x = next(R)
if "atoms" in x:
break
elif(i==1000):
raise IOError("Elk_converter : Could not find 'atoms' in GEOMETRY.OUT!")
i+=1
#read in the number of species
x = next(R)
ns = int(atof(x[0]))
#loop over species
for js in range(ns):
#Skip species name
x = next(R)
#read in the number of atoms per species
x = next(R)
na.append(int(atof(x[0])))
#loop over atomss pre species
atpos.append([])
for ia in range(na[js]):
atpos[js].append(numpy.zeros(6, float))
x = next(R)
for j in range(6):
atpos[js][ia][j]=atof(x[j])
except StopIteration: # a more explicit error if the file is corrupted.
raise IOError("Elk_converter : Could not open GEOMETRY.OUT!")
R.close()
return ns, na, atpos
2023-04-15 00:43:23 +02:00
#commented out for now - unsure this will produce DFT+DMFT PDOS
##band character dependent calculations
# def read_bc(self,fileext):
# """
# Read in the ELK generated band characters from BC.OUT
# """
# #import string
# file = 'BC'+fileext
# R = self.read_elk_file(file, self.fortran_to_replace)
# try:
# #no. of kpts and number of orbital
# gen_entries = ['maxlm', 'nspinor','natmtot','nstsv','nkpt','irep']
# gen = {name: int(val) for name, val in zip(gen_entries, R)}
# #projector lm size
# #check the read in information complies with previous read in data
# nspinor=self.SP+1
# if(gen['nspinor'] != nspinor):
# mpi.report('HDF file nspinor = %s'%nspinor)
# mpi.report('BC.OUT nspinor = %s'%gen['nspinor'])
# raise IOError("Elk_converter (",file,") : reading nspinor failed!")
# return
# if(gen['natmtot'] != self.n_atoms):
# raise IOError("Elk_converter (",file,") : reading no. of atoms failed!")
# return
# if(gen['nstsv'] != self.nstsv):
# raise IOError("Elk_converter (",file,") : reading all states failed!")
# return
# if(gen['nkpt'] != self.n_k):
# raise IOError("Elk_converter (",file,") : reading kpoints failed failed!")
# return
# if(gen['irep'] == 0):
# raise IOError("Elk_converter (",file,") : Band characters are in spherical hamonics, may have issues with the PDOS!")
# return
# dim=gen['maxlm']
# lmax=numpy.sqrt(dim)-1
# bc = numpy.zeros([dim,nspinor,self.n_atoms,self.nstsv,self.n_k], float)
# for ik in range(0,self.n_k):
# for iatom in range(0,self.n_atoms):
# for ispn in range(0,nspinor):
# entry = ['ispn','ias','is','ia','ik']
# ent = {name: int(val) for name, val in zip(entry, R)}
# #k-point index and correlated band window indices
# #check read in values
# if(ent['ispn'] != ispn+1):
# raise IOError("Elk_converter (",file,") : reading ispn failed!")
# return
# if(ent['ias'] != iatom+1):
# raise IOError("Elk_converter (",file,") : reading iatom failed!")
# return
# if(ent['ik'] != ik+1):
# raise IOError("Elk_converter (",file,") : reading ik failed!")
# return
# for ist in range(self.nstsv):
# for lm in range(dim):
# bc[lm,ispn,iatom,ist,ik] = next(R)
# except StopIteration: # a more explicit error if the file is corrupted.
# raise IOError("Elk_converter (read BC.OUT): reading file failed!")
# R.close()
# return(bc,dim)