mirror of
https://github.com/triqs/dft_tools
synced 2025-01-27 13:00:49 +01:00
64 lines
1.6 KiB
Python
64 lines
1.6 KiB
Python
|
from pytriqs.gf.local import *
|
||
|
from pytriqs.plot.mpl_interface import *
|
||
|
from numpy import *
|
||
|
import os
|
||
|
|
||
|
class IPTSolver:
|
||
|
|
||
|
def __init__(self, **params):
|
||
|
|
||
|
self.U = params['U']
|
||
|
self.beta = params['beta']
|
||
|
|
||
|
# Matsubara frequency
|
||
|
self.g = GfImFreq(indices=[0], beta=self.beta)
|
||
|
self.g0 = self.g.copy()
|
||
|
self.sigma = self.g.copy()
|
||
|
|
||
|
# Imaginary time
|
||
|
self.g0t = GfImTime(indices=[0], beta = self.beta)
|
||
|
self.sigmat = self.g0t.copy()
|
||
|
|
||
|
def solve(self):
|
||
|
|
||
|
self.g0t <<= InverseFourier(self.g0)
|
||
|
self.sigmat <<= (self.U**2) * self.g0t * self.g0t * self.g0t
|
||
|
self.sigma <<= Fourier(self.sigmat)
|
||
|
|
||
|
# Dyson equation to get G
|
||
|
self.g <<= inverse(inverse(self.g0) - self.sigma)
|
||
|
|
||
|
# Parameters
|
||
|
t = 0.5
|
||
|
beta = 40
|
||
|
n_loops = 20
|
||
|
dos_files = []
|
||
|
|
||
|
# Prepare the plot
|
||
|
plt.figure(figsize=(6,6))
|
||
|
plt.title("Local DOS, IPT, Bethe lattice, $\\beta=%.2f$"%(beta))
|
||
|
|
||
|
# Main loop over U
|
||
|
Umax=4.05
|
||
|
Umin=0.0
|
||
|
for U in arange(Umin, Umax, 0.51):
|
||
|
|
||
|
# Construct the IPT solver and set initial G
|
||
|
S = IPTSolver(U = U, beta = beta)
|
||
|
S.g <<= SemiCircular(2*t)
|
||
|
|
||
|
# Do the DMFT loop
|
||
|
for i in range(n_loops):
|
||
|
S.g0 <<= inverse( iOmega_n - t**2 * S.g )
|
||
|
S.solve()
|
||
|
|
||
|
# Get the real-axis with Pade approximants
|
||
|
greal = GfReFreq(indices = [1], window = (-4.0,4.0), n_points = 400)
|
||
|
greal.set_from_pade(S.g, 201, 0.0)
|
||
|
|
||
|
r=(U-Umin)/(Umax-Umin) #for color
|
||
|
oplot((-1/pi*greal).imag, lw=3,RI='S', color=(r,1.-r,1.-r), label = "U=%1.1f"%U)
|
||
|
plt.xlim(-4,4)
|
||
|
plt.ylim(0,0.7)
|
||
|
plt.ylabel("$A(\omega)$");
|