3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-18 16:41:48 +01:00
dft_tools/triqs/lattice/tight_binding.cpp.new

296 lines
9.6 KiB
Plaintext
Raw Normal View History

#include "tight_binding.hpp"
#include <triqs/arrays/expressions/arithmetic.hpp>
#include <triqs/arrays/expressions/min_max.hpp>
#include <triqs/arrays/linalg/eigenelements.hpp>
#include <triqs/python_tools/converters.hpp>
#include "grid_generator.hpp"
#include "functors.hpp"
using namespace std;
namespace triqs { namespace lattice_tools {
using namespace tqa;
tight_binding::tight_binding(bravais_lattice const & bl__, map_type const & t_r) : bl_(bl__),tr(t_r) {check();}
tight_binding::tight_binding(bravais_lattice const & bl__,boost::python::object dct) :
bl_(bl__), tr(triqs::python_tools::Py_to_C::convert<map_type>::invoke(dct)) {check();}
void tight_binding::check() {
const size_t no = bl_.n_orbitals();
for (map_type::const_iterator it = tr.begin(); it !=tr.end(); ++it) {
if (it->second.len(0) != no) throw triqs::runtime_error()<<"tight_binding construction : the first dim matrix is of size "<< it->second.len(0) <<" instead of "<< no;
if (it->second.len(1) != no) throw triqs::runtime_error()<<"tight_binding construction : the second dim matrix is of size "<< it->second.len(1) <<" instead of "<< no;
}
}
//------------------------------------------------------
array_view <dcomplex,3> hopping_stack (tight_binding const & TB, array<double,2> const & k_stack) {
result_of::Fourier<tight_binding>::type TK = Fourier(TB);
array<dcomplex,3> res(TB.n_bands(), TB.n_bands(), k_stack.len(1));
for(size_t i = 0; i<k_stack.len(1); ++i) res(range(), range(), i) = TK(k_stack(range(),i));
return res;
}
//------------------------------------------------------
array_view<double,2> energies_on_bz_path(tight_binding const & TB, K_view_type K1, K_view_type K2, size_t n_pts) {
result_of::Fourier<tight_binding>::type TK = Fourier(TB);
const size_t norb=TB.lattice().n_orbitals();
const size_t ndim=TB.lattice().dim();
array<double,2> eval(norb,n_pts);
K_type dk = (K2 - K1)/double(n_pts), k = K1;
for (size_t i =0; i<n_pts; ++i, k += dk) {
eval(range(),i) = linalg::eigenvalues( TK( k (range(0,ndim))), false);
}
return eval;
}
//------------------------------------------------------
array_view<double,2> energies_on_bz_grid(tight_binding const & TB, size_t n_pts) {
result_of::Fourier<tight_binding>::type TK = Fourier(TB);
const size_t norb=TB.lattice().n_orbitals();
const size_t ndim=TB.lattice().dim();
grid_generator grid(ndim,n_pts);
array<double,2> eval(norb,grid.size());
for (; grid ; ++grid) {
eval(range(),grid.index()) = linalg::eigenvalues( TK( (*grid) (range(0,ndim))), false);
}
return eval;
}
//------------------------------------------------------
struct bz_grid {
const brillouin_zone bz;
const size_t nkpts, dim;
const size_t N_Z,N_Y,N_X;
size_t size () const { return (N_X * N_Y * N_Z);}
bz_grid( brillouin_zone const & bz_, size_t nkpts_) :
bz(bz_),
nkpts(nkpts_), dim (bz.lattice().dim()),
N_X (nkpts), N_Y (dim>1 ? nkpts : 1), N_Z (dim>2 ? nkpts : 1) {}
template <class F>
void foreach(F f) {
K_type k(3);
for (int nz = 0; nz < N_Z; nz++)
for (int ny = 0; ny < N_Y; ny++)
for (int nx = 0; nx < N_X; nx++) {
k(0) = nx/double(N_X);
k(1) = ny/double(N_Y);
k(2) = nz/double(N_Z);
f(k);
}
}
};
#ifndef TRIQS_HAS_CPP11_LAMBDA
void lambda_loop( result_of::Fourier<tight_binding>::type const & TK,
array<dcomplex,3> & evec, array<double,2> & eval,
size_t & index, size_t ndim, K_type const & k) {
array_view <double,1> eval_sl = eval(range(),index);
array_view <dcomplex,2> evec_sl = evec(range(),range(),index);
boost::tie (eval_sl,evec_sl) = linalg::eigenelements( TK( k(range(0,ndim)))) ;//, true);
index++;
}
}}
#include <boost/lambda/bind.hpp>
#include <boost/ref.hpp>
namespace triqs { namespace lattice_tools {
namespace BLL=boost::lambda;
using boost::ref;
using boost::cref;
#endif
std::pair<array<double,1>, array<double,2> > dos(tight_binding const & TB, size_t nkpts, size_t neps) {
// The Fourier transform of TK
// auto TK = Fourier(TB); // C++0x ....
result_of::Fourier<tight_binding>::type TK = Fourier(TB);
// loop on the BZ
const size_t ndim=TB.lattice().dim();
const size_t norb=TB.lattice().n_orbitals();
bz_grid grid(brillouin_zone(TB.lattice()),nkpts);
//grid_generator grid(ndim,nkpts);
array<double,1> tempeval(norb);
array<dcomplex,3> evec(norb,norb,grid.size());
array<double,2> eval(norb,grid.size());
size_t index=0;
#ifdef TRIQS_HAS_CPP11_LAMBDA
grid.foreach([&] {
array_view <double,1> eval_sl = eval(range(),index);
array_view <dcomplex,2> evec_sl = evec(range(),range(),index);
boost::tie (eval_sl,evec_sl) = linalg::eigenelements( TK( k(range(0,ndim))), true);
index++;
});
#else
int N_X (nkpts), N_Y (ndim>1 ? nkpts : 1), N_Z (ndim>2 ? nkpts : 1);
K_type k(3);
for (int nz = 0; nz < N_Z; nz++)
for (int ny = 0; ny < N_Y; ny++)
for (int nx = 0; nx < N_X; nx++) {
k(0) = nx/double(N_X);
k(1) = ny/double(N_Y);
k(2) = nz/double(N_Z);
array_view <double,1> eval_sl = eval(range(),index);
array_view <dcomplex,2> evec_sl = evec(range(),range(),index);
boost::tie (eval_sl,evec_sl) = linalg::eigenelements( TK( k(range(0,ndim)))) ;//, true);
index++;
}
// grid.foreach(BLL::bind(lambda_loop,cref(TK),ref(evec),ref(eval),ref(index),ndim,BLL::_1));
#endif
/*
for (; grid ; ++grid) {
//cerr<<" index = "<<grid.index()<<endl;
array_view <double,1> eval_sl = eval(range(),grid.index());
array_view <dcomplex,2> evec_sl = evec(range(),range(),grid.index());
boost::tie (eval_sl,evec_sl) = linalg::eigenelements( TK( (*grid) (range(0,ndim))), true);
//cerr<< " point "<< *grid << " value "<< eval_sl<< endl; //" "<< (*grid) (range(0,ndim)) << endl;
}
*/
// define the epsilon mesh, etc.
array<double,1> epsilon(neps);
double epsmax = tqa::max_element(eval);
double epsmin = tqa::min_element(eval);
double deps=(epsmax-epsmin)/neps;
//for (size_t i =0; i< neps; ++i) epsilon(i)= epsmin+i/(neps-1.0)*(epsmax-epsmin);
for (size_t i =0; i< neps; ++i) epsilon(i)=epsmin+(i+0.5)*deps;
// bin the eigenvalues according to their energy
// NOTE: a is defined as an integer. it is the index for the DOS.
//REPORT <<"Starting Binning ...."<<endl;
array<double,2> rho (neps,norb);rho()=0;
for(size_t l=0;l<norb;l++){
for (size_t j=0;j<grid.size();j++){
for (size_t k=0;k<norb;k++){
int a=int((eval(k,j)-epsmin)/deps);
if(a==int(neps)) a=a-1;
rho(l,a) += real(conj(evec(l,k,j))*evec(l,k,j));
//dos(a) += real(conj(evec(l,k,j))*evec(l,k,j));
}
}
}
//rho = rho / double(grid.size()*deps);
rho /= grid.size()*deps;
return std::make_pair( epsilon, rho);
}
//----------------------------------------------------------------------------------
std::pair<array<double,1>, array<double,1> > dos_patch(tight_binding const & TB, const array<double,2> & triangles, size_t neps, size_t ndiv) {
// WARNING: This version only works for a single band Hamiltonian in 2 dimensions!!!!
// triangles is an array of points defining the triangles of the patch
// neps in the number of bins in energy
// ndiv in the number of divisions used to divide the triangles
//const size_t ndim=TB.lattice().dim();
//const size_t norb=TB.lattice().n_orbitals();
int ntri = triangles.len(0)/3;
array<double,1> dos(neps);
// Check consistency
const size_t ndim=TB.lattice().dim();
//const size_t norb=TB.lattice().n_orbitals();
if (ndim !=2) throw triqs::runtime_error()<<"dos_patch : dimension 2 only !";
if (triangles.len(1) != ndim) throw triqs::runtime_error()<<"dos_patch : the second dimension of the 'triangle' array in not "<<ndim;
// Every triangle has ndiv*ndiv k points
size_t nk = ntri*ndiv*ndiv;
size_t k_index = 0;
double epsmax=-100000,epsmin=100000;
array<dcomplex,2> thop(1,1);
array<double,1> energ(nk), weight(nk);
// a, b, c are the corners of the triangle
// g the center of gravity taken from a
array<double,1> a(ndim), b(ndim), c(ndim), g(ndim), rv(ndim);
int pt = 0;
double s, t;
// The Fourier transform of TK
// auto TK = Fourier(TB); // C++0x ....
result_of::Fourier<tight_binding>::type TK = Fourier(TB);
// loop over the triangles
for (int tri = 0; tri < ntri; tri++) {
a = triangles(pt,range());
pt++;
b = triangles(pt,range());
pt++;
c = triangles(pt,range());
pt++;
g = ((a+b+c)/3.0-a)/double(ndiv);
// the area around a k point might be different from one triangle to the other
// so I use it to weight the sum in the dos
double area = abs(0.5*((b(0)-a(0))*(c(1)-a(1))-(b(1)-a(1))*(c(0)-a(0)))/(ndiv*ndiv));
for (size_t i = 0; i<ndiv; i++) {
s = i/double(ndiv);
for (size_t j = 0; j<ndiv-i; j++) {
t = j/double(ndiv);
for (size_t k = 0; k<2; k++) {
rv = a+s*(b-a)+t*(c-a)+(k+1.0)*g;
if(k==0 || j < ndiv-i-1) {
energ(k_index) = real(TK(rv)(0,0));
//compute(rv);
//energ(k_index) = real(tk_for_eval(1,1)); //tk_for_eval is Fortran array
weight(k_index) = area;
if (energ(k_index)>epsmax) epsmax=energ(k_index);
if (energ(k_index)<epsmin) epsmin=energ(k_index);
k_index++;
}
}
}
}
}
// check consistency
assert(k_index == nk);
// define the epsilon mesh, etc.
array<double,1> epsilon(neps);
double deps=(epsmax-epsmin)/neps;
for (size_t i =0; i< neps; ++i) epsilon(i)= epsmin+i/(neps-1.0)*(epsmax-epsmin);
// bin the eigenvalues according to their energy
int ind;
double totalweight(0.0);
dos() = 0.0;
for (size_t j = 0; j < nk; j++) {
ind=int((energ(j)-epsmin)/deps);
if (ind == int(neps)) ind--;
dos(ind) += weight(j);
totalweight += weight(j);
}
dos /= deps;// Normalize the DOS
return std::make_pair(epsilon, dos);
}
}}