mirror of
https://github.com/triqs/dft_tools
synced 2025-01-05 10:59:34 +01:00
216 lines
6.7 KiB
Python
216 lines
6.7 KiB
Python
|
|
||
|
import numpy as np
|
||
|
|
||
|
class Projector:
|
||
|
"""
|
||
|
Class describing a local-orbital projector.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, matrix, ib1=1, ib2=None, nion=1):
|
||
|
self.p_matrix = matrix.astype(np.complex128)
|
||
|
self.norb, self.nb = matrix.shape
|
||
|
self.nion = nion
|
||
|
self.ib1 = ib1 - 1
|
||
|
if not ib2 is None:
|
||
|
self.ib2 = ib2 - 1
|
||
|
else:
|
||
|
self.ib2 = self.nb - 1
|
||
|
|
||
|
def project_up(self, mat):
|
||
|
return np.dot(self.p_matrix.conj().T, np.dot(mat, self.p_matrix))
|
||
|
|
||
|
def project_down(self, mat):
|
||
|
assert mat.shape == (self.nb, self.nb), " Matrix must match projector in size"
|
||
|
return np.dot(self.p_matrix, np.dot(mat, self.p_matrix.conj().T))
|
||
|
|
||
|
def orthogonalize(self):
|
||
|
"""
|
||
|
Orthogonalizes a projector.
|
||
|
Returns an overlap matrix and its eigenvalues for initial projectors.
|
||
|
"""
|
||
|
self.p_matrix, overlap, over_eig = orthogonalize_projector(self.p_matrix)
|
||
|
|
||
|
return (overlap, over_eig)
|
||
|
|
||
|
################################################################################
|
||
|
# orthogonalize_projector()
|
||
|
################################################################################
|
||
|
def orthogonalize_projector(p_matrix):
|
||
|
"""
|
||
|
Orthogonalizes a projector defined by a rectangular matrix `p_matrix`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
p_matrix (numpy.array[complex]) : matrix `Nm x Nb`, where `Nm` is
|
||
|
the number of orbitals, `Nb` number of bands
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
|
||
|
Orthogonalized projector matrix, initial overlap matrix and its eigenvalues.
|
||
|
"""
|
||
|
|
||
|
overlap = np.dot(p_matrix, p_matrix.conj().T)
|
||
|
eig, eigv = np.linalg.eigh(overlap)
|
||
|
assert np.all(eig > 0.0), (" Negative eigenvalues of the overlap matrix:"
|
||
|
"projectors are ill-defined")
|
||
|
sqrt_eig = np.diag(1.0 / np.sqrt(eig))
|
||
|
shalf = np.dot(eigv, np.dot(sqrt_eig, eigv.conj().T))
|
||
|
p_ortho = np.dot(shalf, p_matrix)
|
||
|
|
||
|
return (p_ortho, overlap, eig)
|
||
|
|
||
|
################################################################################
|
||
|
# check_vasp_data_consistency()
|
||
|
################################################################################
|
||
|
def check_vasp_data_consistency(vasp_data):
|
||
|
"""
|
||
|
Check the consistency of the VASP data.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
################################################################################
|
||
|
# select_bands()
|
||
|
################################################################################
|
||
|
def select_bands(eigvals, emin, emax):
|
||
|
"""
|
||
|
Select a subset of bands lying within a given energy window.
|
||
|
The band energies are assumed to be sorted in an ascending order.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
eigvals (numpy.array) : all eigenvalues
|
||
|
emin, emax (float) : energy window
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
|
||
|
ib_win, nb_min, nb_max :
|
||
|
"""
|
||
|
nk, nband, ns_band = eigvals.shape
|
||
|
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
|
||
|
|
||
|
nb_min = 10000000
|
||
|
nb_max = 0
|
||
|
for isp in xrange(ns_band):
|
||
|
for ik in xrange(nk):
|
||
|
for ib in xrange(nband):
|
||
|
en = eigvals[ik, ib, isp]
|
||
|
if en >= emin:
|
||
|
break
|
||
|
ib1 = ib
|
||
|
for ib in xrange(ib1, nb_max):
|
||
|
en = eigvals[ik, ib, isp]
|
||
|
if en <= emax:
|
||
|
break
|
||
|
ib2 = ib
|
||
|
|
||
|
ib_win[ik, isp, 0] = ib1
|
||
|
ib_win[ik, isp, 1] = ib2
|
||
|
|
||
|
nb_min = min(nb_min, ib1)
|
||
|
nb_max = max(nb_max, ib2)
|
||
|
|
||
|
return ib_win, nb_min, nb_max
|
||
|
|
||
|
################################################################################
|
||
|
#
|
||
|
# class ProjectorSet
|
||
|
#
|
||
|
################################################################################
|
||
|
class ProjectorSet:
|
||
|
"""
|
||
|
Container of projectors defined within a certain energy window.
|
||
|
|
||
|
The constructor selects a subset of projectors according to
|
||
|
the parameters from the config-file (passed in `pars`).
|
||
|
|
||
|
Parameters:
|
||
|
|
||
|
- pars (dict) : dictionary of parameters from the config-file for a given PLO group
|
||
|
- proj_raw (numpy.array) : array of raw projectors
|
||
|
- eigvals (numpy.array) : array of KS eigenvalues
|
||
|
|
||
|
"""
|
||
|
# def __init__(self, proj_set, nb_min, nb_max, ib_win):
|
||
|
# """
|
||
|
# Constructor.
|
||
|
#
|
||
|
# Parameters
|
||
|
# ----------
|
||
|
#
|
||
|
# proj_set (numpy.array) : projector array
|
||
|
# nb_min (int) : the lowest absolute band index
|
||
|
# nb_max (int) : the lowest absolute band index
|
||
|
# ib_win (numpy.array((nk, ns, 2), dtype=int)) : the lowest and highest band indices
|
||
|
# for a given `k`-point
|
||
|
# """
|
||
|
# self.proj_set = proj_set
|
||
|
# self.nb_min = nb_min
|
||
|
# self.nb_max = nb_max
|
||
|
# self.ib_win = ib_win
|
||
|
|
||
|
#################################################################################
|
||
|
# __init__()
|
||
|
#################################################################################
|
||
|
def __init__(self, pars, proj_raw, eigvals):
|
||
|
"""
|
||
|
Constructor
|
||
|
"""
|
||
|
ns = proj_raw.shape[1]
|
||
|
nk, nband, ns_band = eigvals.shape
|
||
|
|
||
|
self.lorb = pars['lshell']
|
||
|
self.lm_l = range(lorb**2, (lorb+1)**2)
|
||
|
nlm = len(self.lm_l)
|
||
|
|
||
|
self.emin = pars['emin']
|
||
|
self.emax = pars['emax']
|
||
|
|
||
|
# Determine the minimum and maximum band numbers
|
||
|
ib_win, nb_min, nb_max = select_bands(eigvals, self.emin, self.emax)
|
||
|
self.ib_win = ib_win
|
||
|
self.nb_min = nb_min
|
||
|
self.nb_max = nb_max
|
||
|
|
||
|
# Set the dimensions of the array
|
||
|
nb_win = self.nb_max - self.nb_min + 1
|
||
|
nion_sel = pars['ion_list'].shape[0]
|
||
|
|
||
|
self.proj_set = np.zeros((nion_sel, ns, nk, nb_win, nlm), dtype=np.complex128)
|
||
|
# Select projectors for a given energy window
|
||
|
for isp in xrange(ns):
|
||
|
for ik in xrange(nk):
|
||
|
# TODO: for non-collinear case something else should be done here
|
||
|
is_b = min(isp, ns_band)
|
||
|
ib1 = self.ib_win[ik, is_b, 0]
|
||
|
ib2 = self.ib_win[ik, is_b, 1] + 1
|
||
|
ib1_win = ib1 - self.nb_min
|
||
|
ib2_win = ib2 - self.nb_min
|
||
|
for ion, ion_sel in enumerate(pars['ion_list']):
|
||
|
self.proj_set[ion, isp, ik, ib1_win:ib2_win, :] = proj_raw[ion_sel, isp, ik, ib1:ib2, self.lm_l]
|
||
|
|
||
|
|
||
|
def generate_ortho_plos(conf_pars, vasp_data):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
conf_pars (dict) : dictionary of input parameters (from conf-file)
|
||
|
vasp_data (dict) : dictionary of object representing various VASP files
|
||
|
"""
|
||
|
|
||
|
check_vasp_data_consistency(vasp_data)
|
||
|
|
||
|
proj_raw = vaps_data['plocar'].plo
|
||
|
efermi = vasp_data['doscar'].efermi
|
||
|
# eigvals(nktot, nband, ispin) are defined with respect to the Fermi level
|
||
|
eigvals = vasp_data['eigenval'].eigs - efermi
|
||
|
|
||
|
proj_set_l = []
|
||
|
for pars in conf_pars:
|
||
|
proj_set = select_projectors(pars, proj_raw, eigvals)
|
||
|
|