3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-05 10:59:34 +01:00
dft_tools/python/converters/vasp/plotools.py

216 lines
6.7 KiB
Python
Raw Normal View History

2015-02-13 21:58:42 +01:00
import numpy as np
class Projector:
"""
Class describing a local-orbital projector.
"""
def __init__(self, matrix, ib1=1, ib2=None, nion=1):
self.p_matrix = matrix.astype(np.complex128)
self.norb, self.nb = matrix.shape
self.nion = nion
self.ib1 = ib1 - 1
if not ib2 is None:
self.ib2 = ib2 - 1
else:
self.ib2 = self.nb - 1
def project_up(self, mat):
return np.dot(self.p_matrix.conj().T, np.dot(mat, self.p_matrix))
def project_down(self, mat):
assert mat.shape == (self.nb, self.nb), " Matrix must match projector in size"
return np.dot(self.p_matrix, np.dot(mat, self.p_matrix.conj().T))
def orthogonalize(self):
"""
Orthogonalizes a projector.
Returns an overlap matrix and its eigenvalues for initial projectors.
"""
self.p_matrix, overlap, over_eig = orthogonalize_projector(self.p_matrix)
return (overlap, over_eig)
################################################################################
# orthogonalize_projector()
################################################################################
def orthogonalize_projector(p_matrix):
"""
Orthogonalizes a projector defined by a rectangular matrix `p_matrix`.
Parameters
----------
p_matrix (numpy.array[complex]) : matrix `Nm x Nb`, where `Nm` is
the number of orbitals, `Nb` number of bands
Returns
-------
Orthogonalized projector matrix, initial overlap matrix and its eigenvalues.
"""
overlap = np.dot(p_matrix, p_matrix.conj().T)
eig, eigv = np.linalg.eigh(overlap)
assert np.all(eig > 0.0), (" Negative eigenvalues of the overlap matrix:"
"projectors are ill-defined")
sqrt_eig = np.diag(1.0 / np.sqrt(eig))
shalf = np.dot(eigv, np.dot(sqrt_eig, eigv.conj().T))
p_ortho = np.dot(shalf, p_matrix)
return (p_ortho, overlap, eig)
################################################################################
# check_vasp_data_consistency()
################################################################################
def check_vasp_data_consistency(vasp_data):
"""
Check the consistency of the VASP data.
"""
pass
################################################################################
# select_bands()
################################################################################
def select_bands(eigvals, emin, emax):
"""
Select a subset of bands lying within a given energy window.
The band energies are assumed to be sorted in an ascending order.
Parameters
----------
eigvals (numpy.array) : all eigenvalues
emin, emax (float) : energy window
Returns
-------
ib_win, nb_min, nb_max :
"""
nk, nband, ns_band = eigvals.shape
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
nb_min = 10000000
nb_max = 0
for isp in xrange(ns_band):
for ik in xrange(nk):
for ib in xrange(nband):
en = eigvals[ik, ib, isp]
if en >= emin:
break
ib1 = ib
for ib in xrange(ib1, nb_max):
en = eigvals[ik, ib, isp]
if en <= emax:
break
ib2 = ib
ib_win[ik, isp, 0] = ib1
ib_win[ik, isp, 1] = ib2
nb_min = min(nb_min, ib1)
nb_max = max(nb_max, ib2)
return ib_win, nb_min, nb_max
################################################################################
#
# class ProjectorSet
#
################################################################################
class ProjectorSet:
"""
Container of projectors defined within a certain energy window.
The constructor selects a subset of projectors according to
the parameters from the config-file (passed in `pars`).
Parameters:
- pars (dict) : dictionary of parameters from the config-file for a given PLO group
- proj_raw (numpy.array) : array of raw projectors
- eigvals (numpy.array) : array of KS eigenvalues
"""
# def __init__(self, proj_set, nb_min, nb_max, ib_win):
# """
# Constructor.
#
# Parameters
# ----------
#
# proj_set (numpy.array) : projector array
# nb_min (int) : the lowest absolute band index
# nb_max (int) : the lowest absolute band index
# ib_win (numpy.array((nk, ns, 2), dtype=int)) : the lowest and highest band indices
# for a given `k`-point
# """
# self.proj_set = proj_set
# self.nb_min = nb_min
# self.nb_max = nb_max
# self.ib_win = ib_win
#################################################################################
# __init__()
#################################################################################
def __init__(self, pars, proj_raw, eigvals):
"""
Constructor
"""
ns = proj_raw.shape[1]
nk, nband, ns_band = eigvals.shape
self.lorb = pars['lshell']
self.lm_l = range(lorb**2, (lorb+1)**2)
nlm = len(self.lm_l)
self.emin = pars['emin']
self.emax = pars['emax']
# Determine the minimum and maximum band numbers
ib_win, nb_min, nb_max = select_bands(eigvals, self.emin, self.emax)
self.ib_win = ib_win
self.nb_min = nb_min
self.nb_max = nb_max
# Set the dimensions of the array
nb_win = self.nb_max - self.nb_min + 1
nion_sel = pars['ion_list'].shape[0]
self.proj_set = np.zeros((nion_sel, ns, nk, nb_win, nlm), dtype=np.complex128)
# Select projectors for a given energy window
for isp in xrange(ns):
for ik in xrange(nk):
# TODO: for non-collinear case something else should be done here
is_b = min(isp, ns_band)
ib1 = self.ib_win[ik, is_b, 0]
ib2 = self.ib_win[ik, is_b, 1] + 1
ib1_win = ib1 - self.nb_min
ib2_win = ib2 - self.nb_min
for ion, ion_sel in enumerate(pars['ion_list']):
self.proj_set[ion, isp, ik, ib1_win:ib2_win, :] = proj_raw[ion_sel, isp, ik, ib1:ib2, self.lm_l]
def generate_ortho_plos(conf_pars, vasp_data):
"""
Parameters
----------
conf_pars (dict) : dictionary of input parameters (from conf-file)
vasp_data (dict) : dictionary of object representing various VASP files
"""
check_vasp_data_consistency(vasp_data)
proj_raw = vaps_data['plocar'].plo
efermi = vasp_data['doscar'].efermi
# eigvals(nktot, nband, ispin) are defined with respect to the Fermi level
eigvals = vasp_data['eigenval'].eigs - efermi
proj_set_l = []
for pars in conf_pars:
proj_set = select_projectors(pars, proj_raw, eigvals)