3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/doc/reference/determinant_manipulation/behind.rst

56 lines
1.7 KiB
ReStructuredText
Raw Normal View History

.. highlight:: c
How does it work ?
###################
Cofactors
==========
For any :math:`n\times n` matrix :math:`A`:
.. math:: A\,{\rm Cof}(A^T) = {\rm Det}A\, I_n.
where :math:`\rm{Cof}` means the matrix of the cofactors.
.. math:: {\rm Cof}(A)_{i,j}
=(-1)^{i+j}{\rm Det}\begin{pmatrix}
a_{1,1} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1}& \dots & a_{i-1,n} \\
a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1}& \dots & a_{i+1,n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{n,1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{pmatrix}.
Change in the determinant when one adds a line and a column
============================================================
:math:`A` is an inversible :math:`n\times n` matrix. :math:`A'` is a :math:`(n+1)\times (n+1)` matrix obtained by adding a line and a column to :math:`A`:
.. math:: A'=\begin{pmatrix}
A & B \\
C & D \end{pmatrix}.
Using the previous formula with the cofactors, we get
.. math:: \frac{{\rm Det}A'}{{\rm Det}A}=C A^{-1} B+D.
Change in the inverse when one adds a line and a column
==========================================================
Using the following variables:
.. math:: \xi=D-C A^{-1} B, \qquad B'=A^{-1}B, \qquad C'=CA^{-1},
We get the inverse of the new matrix as:
.. math:: (A')^{-1}=
\begin{pmatrix}
A^{-1}+\xi B'C' & -\xi B'\\
-\xi C' & \xi
\end{pmatrix}