3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/triqs/arrays/linalg/eigenelements.hpp

153 lines
6.5 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011-2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include <type_traits>
#include "../array.hpp"
#include "../matrix.hpp"
#include "../vector.hpp"
#include <triqs/utility/exceptions.hpp>
namespace triqs {
namespace arrays {
namespace linalg {
extern "C" {
void TRIQS_FORTRAN_MANGLING(dsyev)(char *, char *, // JOBZ and UPLO
int &, // Matrix Size
double[], // matrix
int &, // LDA of the matrix
double[], // Eigenvalues array
double[], // WORK
int &, // LWORK
int & // INFO
);
void TRIQS_FORTRAN_MANGLING(zheev)(char *, char *, // JOBZ and UPLO
int &, // Matrix Size
std::complex<double> [], // matrix
int &, // LDA of the matrix
double[], // Eigenvalues array
std::complex<double> [], // WORK
int &, // LWORK
double[], // WORK2
int & // INFO
);
}
/**
* A worker to call lapack routine with the matrices. Handles both real and complex case.
*/
template <typename T> class eigenelements_worker {
public:
eigenelements_worker() = default;
/// The eigenvalues
template <typename M> array<double, 1> eigenvalues(M &mat) const {
_prepare(mat);
_invoke(is_complex<T>(), 'N', mat);
return ev;
}
/// The eigensystems
template <typename M> std::pair<array<double, 1>, matrix<T>> eigenelements(M &mat) const {
_prepare(mat);
_invoke(is_complex<T>(), 'V', mat);
return {ev, _conj(mat, is_complex<T>())};
}
private:
mutable array<double, 1> ev, work2; // work2 only used for T complex
mutable array<T, 1> work;
mutable int dim, lwork, info;
// dispatch the implementation of invoke for T = double or complex
void _invoke(std::false_type, char compz, matrix_view<double> mat) const { // the case double (is_complex = false)
char uplo = 'U';
TRIQS_FORTRAN_MANGLING(dsyev)(&compz, &uplo, dim, mat.data_start(), dim, ev.data_start(), work.data_start(), lwork, info);
if (info) TRIQS_RUNTIME_ERROR << "eigenelements_worker :error code dsyev : " << info << " for matrix " << mat;
}
void _invoke(std::true_type, char compz, matrix_view<std::complex<double>> mat) const { // the case complex (is_complex = true)
char uplo = 'U';
TRIQS_FORTRAN_MANGLING(zheev)(&compz, &uplo, dim, mat.data_start(), dim, ev.data_start(), work.data_start(), lwork,
work2.data_start(), info);
if (info) TRIQS_RUNTIME_ERROR << "eigenelements_worker :error code zheev : " << info << " for matrix " << mat;
}
template <typename M> void _prepare(M const &mat) const {
if (mat.is_empty()) TRIQS_RUNTIME_ERROR << "eigenelements_worker : the matrix is empty : matrix = " << mat << " ";
if (!mat.is_square()) TRIQS_RUNTIME_ERROR << "eigenelements_worker : the matrix " << mat << " is not square ";
if (!mat.indexmap().is_contiguous())
TRIQS_RUNTIME_ERROR << "eigenelements_worker : the matrix " << mat << " is not contiguous in memory";
dim = first_dim(mat);
ev.resize(dim);
lwork = 64 * dim;
work.resize(lwork);
if (is_complex<T>::value) work2.resize(lwork);
}
template <typename M> matrix<double> _conj(M const &m, std::false_type) const { return m; }
// impl : since we call fortran lapack, if the order is C (!), the matrix is transposed, or conjugated, so we obtain
// the conjugate of the eigenvectors... Fix #119.
// Do nothing if the order is fortran already...
template <typename M> matrix<std::complex<double>> _conj(M const &m, std::true_type) const {
if (m.memory_layout_is_c())
return conj(m);
else
return m.transpose(); // the matrix mat is understood as a fortran matrix. After the lapack, in memory, it contains the
// correct answer.
// but since it is a fortran matrix, the C will see its transpose. We need to compensate this transpose (!).
}
};
//--------------------------------
/**
* Simple diagonalization call, return all eigenelements.
* Handles both real and complex case.
* @param M : the matrix or view. MUST be contiguous. It is modified by the call.
* If you wish not to modify it, call eigenelements(make_clone(A))
*/
template <typename M>
std::pair<array<double, 1>, matrix<typename std14::remove_reference_t<M>::value_type>> eigenelements(M &&m) {
return eigenelements_worker<typename std14::remove_reference_t<M>::value_type>().eigenelements(m);
}
//--------------------------------
/**
* Simple diagonalization call, returning only the eigenvalues.
* Handles both real and complex case.
* @param M : the matrix VIEW : it MUST be contiguous
* @param take_copy : makes a copy of the matrix before calling lapack, so that the original is preserved.
* if false : no copy is made and the content of the matrix M is destroyed.
* if true : a copy is made, M is preserved, but of course it is slower...
*/
template <typename M> array<double, 1> eigenvalues(M &&m) {
return eigenelements_worker<typename std14::remove_reference_t<M>::value_type>().eigenvalues(m);
}
}
}
} // namespace triqs::arrays::linalg