3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 19:53:45 +01:00
dft_tools/test/triqs/arrays/eigenelements.cpp

103 lines
2.4 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include "./common.hpp"
#include <triqs/arrays/linalg/eigenelements.hpp>
#include <triqs/utility/complex_ops.hpp>
#include <iostream>
using namespace triqs::arrays;
using namespace triqs::arrays::linalg;
using dcomplex = std::complex<double>;
template <typename T> void check_eig(matrix<T> M, matrix<T> vectors, array<double, 1> values) {
auto _ = range();
for (auto i : range(0, first_dim(M))) {
std::cerr << "check " << i << std::endl;
std::cerr << (M - values(i)) * vectors(i, _) << std::endl;
assert_all_close(M * vectors(i, _), values(i) * vectors(i, _), 1.e-14);
}
}
template <typename M> void test(M A) {
auto w = eigenelements(make_clone(A));
std::cerr << "A = " << A << std::endl;
std::cerr << " values = " << w.first << std::endl;
std::cerr << " vectors = " << w.second << std::endl;
check_eig(A, w.second, w.first);
}
int main(int argc, char **argv) {
{
matrix<double> A(3, 3);
for (int i = 0; i < 3; ++i)
for (int j = 0; j <= i; ++j) {
A(i, j) = (i > j ? i + 2 * j : i - j);
A(j, i) = A(i, j);
}
test(A);
A() = 0;
A(0, 1) = 1;
A(1, 0) = 1;
A(2, 2) = 8;
A(0, 2) = 2;
A(2, 0) = 2;
test(A);
A() = 0;
A(0, 1) = 1;
A(1, 0) = 1;
A(2, 2) = 8;
test(A);
}
{ // the complex case
matrix<dcomplex> M(2, 2);
M(0, 0) = 1;
M(0, 1) = 1.0_j;
M(1, 0) = -1.0_j;
M(1, 1) = 2;
test(M);
}
{ // the complex case
matrix<dcomplex> M(2, 2, FORTRAN_LAYOUT);
M(0, 0) = 1;
M(0, 1) = 1.0_j;
M(1, 0) = -1.0_j;
M(1, 1) = 2;
test(M);
}
return 0;
}