3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/pytriqs/wrap_generator/wrap_generator.py

782 lines
40 KiB
Python
Raw Normal View History

import sys
import re
import os
from mako.template import Template
import importlib
# the xxx_desc.py will always be called by cmake command, with the proper arguments
# analyse sys.argv right now : we need it early for the use_module
# The mako files for the wrapper and the header, and the file to write (_target)
wrapper_mako, wrapper_target, header_mako, header_target = sys.argv[1:5]
# Directories where to find the headers generated by other modules
module_path_list = sys.argv[5:]
# the correspondance c type -> py_type
c_to_py_type = {'void' : 'None', 'int' : 'int', 'long' : 'int', 'double' : "float", "std::string" : "str"}
# Translation for formatting of parsing converter.
basic_types_formatting = {'double' : 'd', 'int' : 'i'}
# Translate the name of the c++ type to the python type.
# for doc signatures.
def translate_c_type_to_py_type(t) :
if t in c_to_py_type : return c_to_py_type[t]
m = re.match('std::vector<(.*)>',t)
if m: return "list[%s]"%translate_c_type_to_py_type(m.group(1))
# numpy, etc...
return t
class cfunction :
"""
Representation of one overload of a C++ function or method.
"""
def __init__(self, signature, calling_pattern = None, no_self_c = False, is_constructor = False,
is_method = False, is_static = False, release_GIL_and_enable_signal = False, c_name = None, doc = '') :
"""
- signature :
signature of the function, with types, parameter names and defaut value
rtype( arg1 name1, arg2 name2 = default2, ....)
it can be :
- a string :
rtype (arg1 name1, arg2 name2 = default2, ....)
- a string :
rtype c_name ( arg1 name1, arg2 name2 = default2, ....)
- a dict [expert only] : rtype -> string , args -> list of tuples [ (c_type, variable_name, default_value)]
where rtype is the C++ type returned by the function.
- calling_pattern :
A string containing a piece of C++ code to call the C++ function.
This code can use :
- self_c : a reference to the C++ object (except for constructor, and static method).
- self_class : the name of the class of the C++ object (only for static method)
- the name of the parameters.
It should define a "result" variable :
- unless for a constructor or if the C++ return type is void.
- result shall be of any type from which the C++ return type is (move) constructible.
If calling_pattern is None, a default one is synthesized by the generator,
assuming the C++ function has exactly the signature given by the signature parameter of this function
including the c_name in it (which is then mandatory).
- no_self_c : boolean. do not generate self_c reference in C++ code, in some rare calling_pattern. Avoid a compiler warning.
- is_constructor : boolean
- is_method : boolean
- is_static : boolean. If True, it is a static method
- release_GIL_and_enable_signal [expert only] :
- For long functions in pure C++.
- If True, the GIL is released in the call of the C++ function and restored after the call.
- It also saves the signal handler of python and restores it after the call,
and enables the C++ triqs signal_handler.
- This allows e.g. to intercept Ctrl-C during the long C++ function.
- **Requirement** :
The function wrapped must be pure C++, i.e. no call whatsoever to the python C API, directly or indirectly.
otherwise the behaviour is undefined.
- doc : the doc string.
- c_name : Internal use only.
"""
self._calling_pattern = calling_pattern
self.is_constructor = is_constructor
self.no_self_c = no_self_c
self.doc = doc
self.is_method = is_method
self.is_static = is_static
if is_static : assert is_method, "is_static only works with method"
self.release_GIL_and_enable_signal = release_GIL_and_enable_signal
assert isinstance(signature, str) or isinstance(signature, dict), "Signature must be a string of a dict: cf doc"
self.c_name = c_name # Not none for internal call only
## Analyse signature.
self.args = []
if isinstance(signature, str) : # it is a string, we analyse it to get the rtype, and args
signature = re.sub('operator\(\s*\)','__operator_call',signature) # temp. replacement, to make the regex easier
m = re.match(r"\s*(.*?)\s*\((.*)\)",signature)
self.rtype, args = m.group(1).strip() or None, m.group(2).strip()
# extract the c_name if present
if self.rtype :
spl = self.rtype.strip().rsplit(' ',1)
if not is_constructor and len(spl)> 1 and '>' not in spl[-1] :
self.rtype, self.c_name = spl
if self.c_name == '__operator_call' : self.c_name = "operator()"
def f(): # analyse the argument, be careful that , can also be in type, like A<B,C>, so we count the < >
acc = ''
for s in args.split(',') :
2014-05-29 21:34:46 +02:00
acc += (',' if acc else '') + s.strip()
if acc.count('<') == acc.count('>') :
r, acc = acc,''
yield r
args = [ re.sub('=',' ',x).split() for x in f() if x] # list of (type, name, default) or (type, name)
else :
self.rtype = signature.pop("rtype", None)
args = signature.pop('args',())
self.c_name = signature.pop("c_name", '')
for a in args: # put back the default if there is none
# treat the case when the type is const T *, or T* (e.g. const char *).
# Need to regroup the first pieces.
if a[0] == 'const' : a = [' '.join(a[:2])] + list(a[2:])
if a[1] == '*' : a = [' '.join(a[:2])] + list(a[2:])
if len(a) == 2 : (t,n),d = a,None
elif len(a) == 3 : t,n,d = a
else : raise RuntimeError, "Syntax error in overload: args = %s"%args
self.args.append([t,n,d])
# end analyze signature
assert self.c_name or self._calling_pattern or self.is_constructor, "You must specify a calling_pattern or the signature must contain the name of the function"
if self.is_constructor :
assert self.rtype == None, "Constructor must not have a return type"
self.is_method = False
def _get_calling_pattern(self) :
"""Generation only: gets the calling_pattern or synthesize the default"""
if self._calling_pattern : return self._calling_pattern
s= "%s result = "%self.rtype if self.rtype != "void" else ""
self_c = ""
if self.is_method:
self_c = "self_c." if not self.is_static else "self_class::"
# the wrapped types are called by pointer
return "%s %s%s(%s)"%(s,self_c, self.c_name , ",".join([ ('*' if t in module_._wrapped_types else '') + n for t,n,d in self.args]))
def _get_signature (self):
"""Signature for the python doc"""
rtype = translate_c_type_to_py_type(self.rtype) if self.rtype else ''
args_rep = ", ".join(["%s %s%s"%(translate_c_type_to_py_type(t),n,' = ' + str(d) if d else '') for t,n,d in self.args])
return "({args_rep}) -> {rtype}".format(**locals())
def _get_c_signature (self):
"""Signature for the C++ calling errors"""
name = self.c_name if self.c_name else "(no C++ name)"
rtype = self.rtype if self.rtype else ''
args_rep = ", ".join(["%s %s"%(t,n) for t,n,d in self.args])
return "{name}({args_rep}) -> {rtype}".format(**locals())
def __repr__(self):
return "C++ function of signature : %s"%(self._get_signature())
def _parsing_format(self) :
"""Generation only: the formatting for the PyParse_xxx calls"""
def f(t) :
return basic_types_formatting[t] if t in basic_types_formatting else 'O&'
l1 = [ f(t) for t,n,d in self.args if d==None]
l2 = [ f(t) for t,n,d in self.args if d!=None]
if l2 : l2.insert(0,'|') # starts the default arguments, cf python doc
return ''.join(l1 + l2)
def _generate_doc(self) :
doc = "\n".join([ " " + x.strip() for x in self.doc.split('\n')])
return "Signature : %s\n%s"%( self._get_signature(),doc)
class pure_pyfunction_from_module :
"""
Representation of one python function defined in Python code in an external module.
Will be use to make a pure python method of an object, or or a module.
Data :
- name : name given in Python
- doc : the doc string.
- module : module path to the function [pure python only]
"""
def __init__(self, name, module) :
""" """
self.py_name, self.module = name, module
try :
m = __import__(module.rsplit('.')[-1])
f = getattr(m,name)
self.doc = f.__doc__ # get the doc and check the function can be loaded.
except :
print " I cannot import the function %s from the module %s"%(name,module)
raise
def _generate_doc(self) :
return self.doc
class python_function:
"""
A python function, given as a function.
Its code gets analysed and will be put into the C++ wrapper, to avoid import.
"""
def __init__(self, name, f) :
""" """
self.name, self.f = name,f
import inspect as ins
self.code = "\n".join(['"%s\\n"'%line.rstrip().replace('"', '\\"') for line in ins.getsourcelines(self.f)[0]])
self.doc = f.__doc__ # UNUSED AT THE MOMENT ??? REALLY ???
class pyfunction :
"""
Representation of one python function of the extension
It is basically :
- a python name
- a list of overload
- possibly some preprocessing/postprocessing python code.
"""
def __init__(self, name, arity = None, is_method = False, is_static = False, doc = '', python_precall = None, python_postcall = None):
"""
- name : name given in Python
- arity : arity of the function
- is_method : boolean
- is_static : boolean. Is is a static method
- doc : the doc string.
- overloads : a list of cfunction objects representing the various C++ overloads of the function
- python_precall : a python function_ to be called before the call of the C++ function
The function must take F(*args, **kw) and return (args, kw)
- python_postcall : a python function_ to be called after the call of the C++ function
The function must take a python object, and return one...
"""
self.py_name =name # name given in python
self.arity = arity
self.is_method = is_method # can be a method, a function...
self.is_static = is_static #
self.doc = doc
def analyse(f):
return python_function(f.__name__, f) if callable(f) else f
self.python_precall, self.python_postcall = analyse(python_precall), analyse(python_postcall)
self.overloads = [] # List of all C++ overloads
self.do_implement = True # in some cases, we do not want to implement it automatically, (special methods).
self.is_constructor = False
def add_overload(self, **kw) :
self.overloads.append(cfunction(**kw))
def _generate_doc(self) :
s = "\n".join([self.doc, "\n"] + [f._generate_doc() for f in self.overloads])
return repr(s)[1:-1] # remove the ' ' made by repr
def _is_type_a_view(c_type) :
return c_type.split('<', 1)[0].endswith("_view") # A bit basic ?
def _regular_type_if_view_else_type(c_type) :
return "typename %s::regular_type"%c_type if _is_type_a_view(c_type) else c_type
class class_ :
"""
Representation of a wrapped type
"""
hidden_python_function = {} # global dict of the python function to add to the module, hidden for the user, for precompute and so on
def __init__(self, py_type, c_type, c_type_absolute = None, hdf5 = False, arithmetic = None, serializable = None, is_printable = False, doc = '' ) :
"""
- py_type : Name given in Python
- c_type : C++ type to be wrapped.
- c_type_absolute : full path of c_type, no using, no alias (need for the py_converter hpp file)
- hdf5 : generate the hdf5 write/read function from C++ triqs hdf5 protocol and register them in the hdf_archive
- arithmetic : determines the operations to be implemented.
- The idea is to give an abstract description of the mathematical structure to be implemented :
an algebra, a group, a vector space, and so on.
The generator will then implement all necessary functions, by calling their C++ counterparts.
- Possible values :
- ("abelian_group") : implements + and -
- ("vector_space", Scalar) : implements a vector_space, with scalar Scalar
- ("algebra", Scalar) : implements an algebra, with scalar Scalar
- ("algebra_with_unit", with_options..., Scalars...) :
implements an algebra, with:
- scalars Scalar... : the scalars
- with_options is (possibly empty) list of options :
- with_unit : +/- of an element with a scalar (injection of the scalar with the unit)
- with_unary_minus : implement unary minus
- "add_only" : implements only +
- with_inplace_operators : option to deduce the +=, -=, ...
operators from +,-, .. It deduces the possibles terms to put at the rhs, looking at the
case of the +,- operators where the lhs is of the type of self.
NB : The operator is mapped to the corresponding C++ operators (for some objects, this may be faster)
so it has to be defined in C++ as well....
- .... more to be defined.
- serializable : Whether and how the object is to be serialized. Possible values are :
- "tuple" : reduce it to a tuple of smaller objects, using the
boost serialization compatible template in C++, and the converters of the smaller objects.
- "via_string" : serialize via a string, made by
triqs::serialize/triqs::deserialize
On modern hdf5 (>1.8.9) it uses hdf5 to make the string, on older version it will use boost serialization
(which generates a very heavy code, sometimes can x2 the code size of the wrapper, just for this function !).
- is_printable = If true, generate the str, repr from the C++ << stream operator
- doc : the doc string.
"""
self.c_type = c_type
self.c_type_absolute = c_type_absolute or c_type
self.c_type_is_view = _is_type_a_view(c_type)
self.implement_regular_type_converter = self.c_type_is_view # by default, it will also make the converter of the associated regular type
if self.c_type_is_view :
self.regular_type = 'typename ' + self.c_type + '::regular_type'
self.regular_type_absolute = 'typename ' + self.c_type_absolute + '::regular_type'
self.py_type = py_type
c_to_py_type[self.c_type] = self.py_type # register the name translation for the doc generation
self.hdf5 = hdf5
assert serializable in [None, "via_string", "tuple"]
self.serializable = serializable
self.is_printable = is_printable
self.iterator = None
self.doc = doc
self.methods = {} # a dict : string -> pyfunction for each method name
self.pure_python_methods= {}
self.constructor = None # a pyfunction for the constructors.
self.members= [] # a list of _member
self.properties= [] # a list of _property
# Init arithmetic
# expect a tuple : "algebra", "scalar1", "scalar2", etc...
self.number_protocol = {}
if arithmetic :
if not isinstance(arithmetic, tuple) : arithmetic = (arithmetic,)
# read the with_... option and clean them for the list
with_unary_minus = 'with_unary_minus' in arithmetic
with_unit = 'with_unit' in arithmetic
with_inplace_operators = 'with_inplace_operators' in arithmetic
arithmetic = [x for x in arithmetic if not x.startswith("with_")]
add = arithmetic[0] in ("algebra", "abelian_group", "vector_space", "only_add")
abelian_group = arithmetic[0] in ("algebra", "abelian_group", "vector_space")
vector_space = arithmetic[0] in ("algebra", "vector_space")
algebra = arithmetic[0] in ("algebra",)
if add :
# add
add = pyfunction(name ="__add__",arity = 2)
add.add_overload (calling_pattern = "+", signature = {'args' : [(self.c_type,'x'), (self.c_type,'y')], 'rtype' :self.c_type})
self.number_protocol['add'] = add
if abelian_group :
#sub
sub = pyfunction(name ="__sub__",arity = 2)
sub.add_overload (calling_pattern = "-", signature = {'args' :[(self.c_type,'x'), (self.c_type,'y')], 'rtype' : self.c_type})
self.number_protocol['subtract'] = sub
if vector_space :
# mul
mul = pyfunction(name ="__mul__", arity = 2)
for scalar in arithmetic[1:] :
mul.add_overload (calling_pattern = "*", signature = {'args' :[(self.c_type,'x'), (scalar,'y')], 'rtype' : self.c_type})
mul.add_overload (calling_pattern = "*", signature = {'args' :[(scalar,'x'), (self.c_type,'y')], 'rtype' : self.c_type})
self.number_protocol['multiply'] = mul
# div
div = pyfunction(name ="__div__", arity = 2)
for scalar in arithmetic[1:] :
div.add_overload (calling_pattern = "/", signature = {'args' :[(self.c_type,'x'), (scalar,'y')], 'rtype' : self.c_type})
self.number_protocol['divide'] = div
if algebra :
mul.add_overload (calling_pattern = "*", signature = {'args' :[(self.c_type,'x'), (self.c_type,'y')], 'rtype' : self.c_type})
if with_unit: # Allow + and - between scalar and operator
assert algebra, "The with_unit option only makes sense for algebra"
for scal in arithmetic[1:] :
add = self.number_protocol['add']
add.add_overload (calling_pattern = "+", signature = {'args' :[(self.c_type,'x'), (scal,'y')], 'rtype' : self.c_type})
add.add_overload (calling_pattern = "+", signature = {'args' :[(scal,'x'), (self.c_type,'y')], 'rtype' : self.c_type})
sub = self.number_protocol['subtract']
sub.add_overload (calling_pattern = "-", signature = {'args' :[(self.c_type,'x'), (scal,'y')], 'rtype' : self.c_type})
sub.add_overload (calling_pattern = "-", signature = {'args' :[(scal,'x'), (self.c_type,'y')], 'rtype' : self.c_type})
if with_unary_minus :
# Allow unary - on an operator
neg = pyfunction(name = "__neg__", arity = 1)
neg.add_overload (calling_pattern = "-", signature = {'args' :[(self.c_type,'x')], 'rtype' : self.c_type})
self.number_protocol['negative'] = neg
if with_inplace_operators : self.deduce_inplace_arithmetic()
def deduce_inplace_arithmetic(self) :
"""Deduce all the +=, -=, *=, /= operators from the +, -, *, / operators"""
def one_op(op, name, iname) :
if name not in self.number_protocol : return
impl = pyfunction(name = iname, arity = 2)
for overload in self.number_protocol[name].overloads :
x_t,y_t = overload.args[0][0], overload.args[1][0]
if x_t == self.c_type : # only when first the object
impl.add_overload (calling_pattern = op+"=", signature = {'args' : [(x_t,'x'), (y_t,'y')], 'rtype' :overload.rtype})
self.number_protocol['inplace_'+name] = impl
one_op('+',"add","__iadd__")
one_op('-',"subtract","__isub__")
one_op('*',"multiply","__imul__")
one_op('/',"divide","__idiv__")
def add_constructor(self, signature, calling_pattern = None, python_precall = None, python_postcall = None, build_from_regular_type_if_view = True, doc = ''):
"""
- signature : signature of the function, with types, parameter names and defaut value
rtype( arg1 name1, arg2 name2 = default2, ....)
signature can be :
- a string of 2 possible forms (i.e. c_name can be omitted) :
- rtype (arg1 name1, arg2 name2 = default2, ....)
- rtype c_name ( arg1 name1, arg2 name2 = default2, ....)
- a dict : rtype -> string , args -> list of tuples [ (c_type, variable_name, default_value)]
- rtype : the C++ type returned by the function. None for constructor
default_value is None when there is no default.
- calling_pattern [expert only]:
- Pattern to rewrite the call of the c++ constructor.
- It is a string, argument name and defining a result of the c_type
e.g., the default pattern is ::
auto result = c_type (a,b,c)
- build_from_regular_type_if_view : boolean.
- If True, and the type is a view, the wrapper calls the C++ constructor *of the corresponding regular type*.
- If False, it simply calls the constructor the C++ type.
- This allows to construct object which are wrapped by view (like gf e.g.), by calling the
constructor of the regular type, much simpler, than the view.
- python_precall :
- A string of the type "module.function_name"
where function_name is a python function to be called before the call of the C++ function.
- It must take F(*args, **kw) and return (args, kw)
- python_postcall :
- A string of the type "module.function_name"
where function_name is a python function to be called after the call of the C++ function.
- The function must take a python object, and return one...
- doc : the doc string.
"""
f = cfunction(signature, calling_pattern = calling_pattern, is_constructor = True, is_method = True, doc = doc)
all_args = ",".join([ ('*' if t in module_._wrapped_types else '') + n for t,n,d in f.args])
f._calling_pattern = ''
if calling_pattern is not None :
f._calling_pattern, all_args = calling_pattern + '\n', "std::move(result)"
if self.c_type_is_view and build_from_regular_type_if_view :
f._calling_pattern += "((%s *)self)->_c = new %s(%s (%s));"%(self.py_type, self.c_type,_regular_type_if_view_else_type(self.c_type),all_args)
else :
f._calling_pattern += "((%s *)self)->_c = new %s (%s);"%(self.py_type, self.c_type,all_args)
if not self.constructor :
self.constructor = pyfunction(name = "__init__", is_method = True, doc = doc, python_precall = python_precall, python_postcall = python_postcall)
self.constructor.is_constructor = True
self.constructor.overloads.append(f)
def add_method(self, signature, name =None, calling_pattern = None, no_self_c = False, is_method = False, is_static = False,
python_precall = None, python_postcall = None, doc = '', release_GIL_and_enable_signal = False, c_name = None):
"""
Add a C++ overload to a method of name name.
- signature : signature of the function, with types, parameter names and defaut value
rtype( arg1 name1, arg2 name2 = default2, ....)
signature can be :
- a string of 2 possible forms (i.e. c_name can be omitted) :
- rtype (arg1 name1, arg2 name2 = default2, ....)
- rtype c_name ( arg1 name1, arg2 name2 = default2, ....)
- a dict : rtype -> string , args -> list of tuples [ (c_type, variable_name, default_value)]
- rtype : the C++ type returned by the function. None for constructor
default_value is None when there is no default.
- name : name given in Python
If None, the C++ name extracted from the signature is used.
- calling_pattern :
- Pattern to rewrite the call of the c++ function,
- It is a string, using self_c, argument name and defining result at the end if rtype != void
e.g., the default pattern is :
auto result = self_c.method_name(a,b,c).
- If None, the signature must contain c_name
- no_self_c : boolean. do not generate self_c reference in C++ code, in
some rare calling_pattern. Avoid a compiler warning.
- is_method : boolean
- is_static : boolean. Is is a static method
- python_precall :
- A string of the type "module.function_name"
where function_name is a python function to be called before the call of the C++ function.
- It must take F(*args, **kw) and return (args, kw)
- python_postcall :
- A string of the type "module.function_name"
where function_name is a python function to be called after the call of the C++ function.
- The function must take a python object, and return one...
- doc : the doc string.
- release_GIL_and_enable_signal [expert only] :
- For long functions in pure C++.
- If True, the GIL is released in the call of the C++ function and restored after the call.
- It also saves the signal handler of python and restores it after the call,
and enables the C++ triqs signal_handler.
- This allows e.g. to intercept Ctrl-C during the long C++ function.
- **Requirement** :
The function wrapped must be pure C++, i.e. no call whatsoever to the python C API, directly or indirectly.
otherwise the behaviour is undefined.
"""
f = cfunction(signature, calling_pattern = calling_pattern, no_self_c = no_self_c, is_constructor = False,
is_method = True, is_static = is_static, release_GIL_and_enable_signal = release_GIL_and_enable_signal, doc = doc, c_name = c_name or name)
name = name or f.c_name
if name not in self.methods :
self.methods[name] = pyfunction(name = name, is_method = True, is_static = is_static, doc = doc, python_precall = python_precall, python_postcall = python_postcall)
self.methods[name].overloads.append(f)
def add_call(self, **kw) :
"""
Add the __call__ operator.
It just call add_method, for the operator(), with name = "__call__"
Cf add_method documentation.
"""
if 'c_name' not in kw and 'calling_pattern' not in kw : kw['c_name']= "operator()"
self.add_method(name = "__call__", **kw)
class _iterator :
def __init__(self,c_type, c_cast_type, begin, end) :
self.c_type, self.c_cast_type, self.begin, self.end = c_type, c_cast_type, begin, end
def add_iterator(self, c_type = "const_iterator", c_cast_type = None, begin = "std::begin", end = "std::end") :
"""
Add an iterator, wrapping a C++ iterator.
Parameters :
- c_type : type of the C++ variable
- c_cast_type : If not None, the result of the C++ iterator dereference if converted to the cast_type.
- begin, end :
"""
self.iterator = self._iterator(c_type, c_cast_type, begin, end)
def add_pure_python_method(self, f, rename = None):
"""
Add a method name (or an overload of method name).
f can be :
- a string module1.module2.fnt_name
- a function in python
"""
def process_doc(doc) :
return doc.replace('\n','\\n') if doc else ''
if type(f) ==type('') :
module, name = f.rsplit('.',1)
try :
m = __import__(module.rsplit('.')[-1])
doc = m.__dict__[name].__doc__
except :
raise
self.pure_python_methods[rename or name] = pure_pyfunction_from_module(name = name, module = module), 'module', process_doc(doc)
elif callable(f) :
2014-06-03 15:08:24 +02:00
assert rename == None
self.hidden_python_function[f.__name__] = f
self.pure_python_methods[f.__name__] = f.__name__, 'inline', process_doc(f.__doc__)
else : raise ValueError, "argument f must be callable or a string"
class _member :
def __init__(self, c_name, c_type, py_name, read_only, doc) :
self.c_name, self.c_type, self.py_name, self.doc, self.read_only = c_name, c_type, py_name or c_name, doc, read_only
def add_member(self, c_name, c_type, py_name = None, read_only = False, doc = ''):
"""
Add a class member
Parameters :
- c_name : name of the variable in C++
- c_type : type of the C++ variable
- py_name : name of the variable in python. If None, use c_name.
- read_only : bool
- doc : the doc string.
"""
self.members.append( self._member(c_name, c_type, py_name, read_only, doc))
class _property :
def __init__(self, name, getter, setter, doc) :
self.name, self.getter, self.setter, self.doc = name, getter, setter, doc
def add_property(self, getter, setter = None, name = None, doc = ''):
"""
Add a property
Parameters :
- getter : the cfunction representing the get part
- setter : the cfunction representing the set part or None if the property if read only
- name : name in python. If None, try to use the C++ name of the getter.
- doc : the doc string.
"""
if not isinstance(getter, str) : getter.is_method = True
self.properties.append( self._property(name or getter.c_name, getter, setter, doc) )
def add_len(self, c_name = None, calling_pattern = None, doc = "Length") :
"""
Add the len operator
"""
if not c_name and not calling_pattern : c_name = "size"
self.add_method(name = "__len__impl", calling_pattern = calling_pattern, signature="int %s()"%c_name, doc= doc)
self.methods['__len__impl'].do_implement = False # do not implement automatically, the signature is special
def add_getitem(self, signature, calling_pattern = None, doc = "operator[]" ) :
"""
Add a the __getitem__ operator
"""
self.add_method(name = "__getitem__impl", calling_pattern = calling_pattern, doc = doc, signature = signature, c_name = "operator[]")
def add_setitem(self, signature, calling_pattern = None, doc = "operator[]", **d ) :
"""
Add a the __setitem__ operator
"""
self.add_method(name = "__setitem__impl", calling_pattern = calling_pattern or "self_c[i] = v", doc = doc, signature = signature, **d)
def add_method_copy(self) :
"""Add a method copy, that make a **deep** copy, using triqs::make_clone"""
self.add_method(name = "copy", calling_pattern = self.c_type + " result = triqs::make_clone(self_c)", signature = self.c_type +"()", doc = "Make a copy (clone) of self")
def add_method_copy_from(self) :
"""Add a copy_from, using C++ assignment"""
# other by pointer, it is necessarly a wrapped type
self.add_method(name = "copy_from", calling_pattern = " self_c = *other", signature = 'void(' + self.c_type +" other)", doc = "Assignment")
def _prepare_for_generation(self) :
"""Internal : Called just before the code generation"""
self.has_mapping_protocol = '__getitem__impl' in self.methods or '__len__impl' in self.methods
if '__setitem__impl' in self.methods and not '__getitem__impl' in self.methods : raise RuntimeError, "Cannot generate a class with a setter and no getter"
class module_ :
"""
Representation of a module
"""
_wrapped_types = []
def __init__(self, full_name, doc = '') :
"""
- full_name = complete name of the module (after install, e.g. pytriqs.gf.local.gf
- doc : doc string
"""
self.full_name = full_name
self.name = full_name.rsplit('.',1)[-1]
self.doc = doc
self.classes = {} # dict : string -> class_. Key is the Python type
self.functions = {} # functions : dict : string -> function_. Modules functions. Key is the python name.
self.include_list = []
self.enums = []
self.using =[]
self.python_functions = {}
self.hidden_python_functions = {}
self.module_path_list = []
self._preamble = ''
def add_class(self, cls):
"""
Add a class into the module.
It should not exist in the module already.
"""
if cls.py_type in self.classes : raise IndexError, "The class %s already exists"%cls.py_type
self.classes[cls.py_type] = cls
self._wrapped_types += [cls.c_type, cls.c_type_absolute] # we can call is by its name or its absolute name
def add_function(self, signature, name =None, calling_pattern = None, python_precall = None, python_postcall = None, doc = '', release_GIL_and_enable_signal = False):
"""
Add a C++ overload to function of the module
- signature : signature of the function, with types, parameter names and defaut value
rtype( arg1 name1, arg2 name2 = default2, ....)
signature can be :
- a string of 2 possible forms (i.e. c_name can be omitted) :
- rtype (arg1 name1, arg2 name2 = default2, ....)
- rtype c_name ( arg1 name1, arg2 name2 = default2, ....)
- a dict : rtype -> string , args -> list of tuples [ (c_type, variable_name, default_value)]
- rtype : the C++ type returned by the function. None for constructor
default_value is None when there is no default.
- name : name given in Python
If None, the C++ name extracted from the signature is used.
- calling_pattern :
- Pattern to rewrite the call of the c++ function,
- It is a string, using self_c, argument name and defining result at the end if rtype != void
e.g., the default pattern is :
auto result = self_c.method_name(a,b,c).
- If None, the signature must contain c_name
- python_precall :
- A string of the type "module.function_name"
where function_name is a python function to be called before the call of the C++ function.
- It must take F(*args, **kw) and return (args, kw)
- python_postcall :
- A string of the type "module.function_name"
where function_name is a python function to be called after the call of the C++ function.
- The function must take a python object, and return one...
- doc : the doc string.
- release_GIL_and_enable_signal [expert only] :
- For long functions in pure C++.
- If True, the GIL is released in the call of the C++ function and restored after the call.
- It also saves the signal handler of python and restores it after the call,
and enables the C++ triqs signal_handler.
- This allows e.g. to intercept Ctrl-C during the long C++ function.
- **Requirement** :
The function wrapped must be pure C++, i.e. no call whatsoever to the python C API, directly or indirectly.
otherwise the behaviour is undefined.
"""
f = cfunction(signature, calling_pattern = calling_pattern, release_GIL_and_enable_signal = release_GIL_and_enable_signal, doc = doc,c_name = name)
name = name or f.c_name
if name not in self.functions :
self.functions[name] = pyfunction(name = name, doc = doc, python_precall = python_precall, python_postcall = python_postcall)
self.functions[name].overloads.append(f)
def add_python_function(self, f, name = None, hidden = False) :
assert callable(f)
if not hidden :
self.python_functions[name or f.__name__] = python_function(name or f.__name__, f)
else :
self.hidden_python_functions[name or f.__name__] = python_function(name or f.__name__, f)
def add_include(self, *filenames) :
"""
Add the filenames as C++ include in the generated wrapper and header.
"""
self.include_list.extend(filenames)
def add_using(self,ns) :
"""
Add the using statement into the generated wrapper (and NOT the header).
"""
self.using.append(ns)
def add_preamble(self, preamble) :
"""
Add the using statement into the generated wrapper (and NOT the header).
"""
self._preamble += preamble + '\n'
def use_module(self, modulename) :
"""
From the name of the module :
- add the header file generated for this module to the C++ include list
- read this file, extract the list of _wrapped_types, and add it to the wrapped_type list.
"""
f = None
for path in module_path_list :
hppfile = path + '/' + modulename + '.hpp'
if os.path.exists(hppfile) :
f = open(hppfile ,'r')
break
if not f : raise RuntimeError, "Cannot find the module %s.\n ... module_path_list = %s"%(modulename, self.module_path_list)
while f.readline().strip() != "// WrappedTypeList" :
pass
l = f.readline()[3:] # // strip "// "
self._wrapped_types += eval(l)
self.add_include(hppfile)
2014-06-03 15:08:24 +02:00
#print "Loading triqs wrapped module %s"%modulename
#print " ... found C++ header file %s"%hppfile
#print " ... found wrapped types %s"%l
class _enum :
def __init__(self, c_name, values, c_namespace, doc) :
self.c_name, self.c_namespace, self.values, self.doc = c_name, c_namespace + "::", values, doc
self.c_name_absolute = self.c_namespace + self.c_name
def add_enum(self, c_name, values, c_namespace ="", doc = '') :
"""
Add an enum into the module.
Parameters :
- c_name : name in C++
- c_namespace: namespace of the enum
- values : list of string representing the C++ enum values
- doc : the doc string.
"""
self.enums.append( self._enum(c_name, values, c_namespace, doc))
def _get_proper_converter(self, t) :
if t in basic_types_formatting : return ''
if t in self._wrapped_types : return ',converter_for_parser_wrapped_type<'+t+'>'
if t.split('<',1)[0].endswith("_view") : return ',converter_for_parser_view_type<'+t+'>'
return ',converter_for_parser_non_wrapped_type<'+t+'>'
def _all_args_kw_functions(self) :
l = [ (f, self.name, None) for f in self.functions.values()]
for c in self.classes.values() :
l += [(m,c.py_type, c.c_type) for m in c.methods.values() if m.do_implement]
if c.constructor :
l.append( (c.constructor,c.py_type, c.c_type))
return l
def _prepare_for_generation(self) :
for c in self.classes.values() : c._prepare_for_generation()
for n,f in class_.hidden_python_function.items() :
self.add_python_function(f,name = n, hidden=True)
def _generate_wrapper_code(self, mako_template, wrap_file) :
self._prepare_for_generation()
tpl = Template(filename=mako_template)
rendered = tpl.render(module=self, regular_type_if_view_else_type= _regular_type_if_view_else_type, is_type_a_view = _is_type_a_view, python_function = python_function)
with open(wrap_file,'w') as f:
f.write(rendered)
def _generate_py_converter_header(self, mako_template, wrap_file) :
self._prepare_for_generation()
tpl = Template(filename=mako_template)
rendered = tpl.render(module=self)
with open(wrap_file,'w') as f:
f.write(rendered)
def generate_code(self) :
"""
Generate the wrapper and the header.
The filenames are given in the sys.argv
"""
self._generate_wrapper_code(mako_template = wrapper_mako, wrap_file = wrapper_target)
self._generate_py_converter_header(mako_template = header_mako, wrap_file = header_target)