3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-07 11:53:08 +01:00
dft_tools/doc/reference/plotting_protocols/hdf5/ref.rst

218 lines
6.2 KiB
ReStructuredText
Raw Normal View History

Reference manual
##############################
The :class:`HDFArchive` class offers a convenient interface between the python objects and the HDF5 files,
similar to a dictionary (or a shelve).
The module contains two classes:
* :class:`HDFArchiveGroup`: operates on a subtree of the HDF5 file
* :class:`HDFArchive`: an :class:`HDFArchiveGroup` at the root path, with a simple constructor.
* :class:`HDFArchiveInert`:
Typically, one constructs an :class:`HDFArchive` explicitely, the :class:`HDFArchiveGroup` is created during operations, e.g.::
h = HDFArchive( "myfile.h5", 'r')
g = h['subgroup1'] # g is a HDFArchiveGroup.
Apart from the root path and the constructor, the classes are the same (in fact :class:`HDFArchive` `is a` :class:`HDFArchiveGroup`).
Let us first document :class:`HDFArchive`.
.. warning::
:class:`HDFArchive` and :class:`HDFArchiveGroup` do **NOT** handle parallelism.
Check however the :class:`HDFArchiveInert` below.
HDFArchive
=======================================
.. autoclass:: pytriqs.archive.HDFArchive
HDFArchiveGroup
=======================================
.. class:: HDFArchiveGroup
There is no explicit constructor for the user of the class.
The :class:`HDFArchiveGroup` support most of the operations supported by dictionaries. In the following, *H* is a :class:`HDFArchiveGroup`.
.. describe:: len(H)
Return the number of items in the :class:`HDFArchiveGroup` *H*.
.. describe:: H[key]
Return the item of *H* with key *key*, retrieved from the file. Raises a :exc:`KeyError` if *key*
is not in the :class:`HDFArchiveGroup`.
.. method:: get_raw (key)
Returns the subgroup key, **without any reconstruction**, ignoring the HDF5_data_scheme.
.. describe:: H[key] = value
Set ``H[key]`` to *value*.
.. describe:: del H[key]
Remove ``H[key]`` from *H*. Raises a :exc:`KeyError` if *key* is not in the
:class:`HDFArchiveGroup`.
.. describe:: key in H
Return ``True`` if *H* has a key *key*, else ``False``.
.. describe:: key not in H
Equivalent to ``not key in H``.
.. describe:: iter(H)
Return an iterator over the keys of the dictionary. This is a shortcut
for :meth:`iterkeys`.
.. method:: items()
Generator returning couples (key, values) in the group.
.. warning::
Note that in all these iterators, the objects will only be retrieved from the file and loaded into memory
one by one.
.. method:: keys()
Generator returning the keys of the group.
.. method:: update(d)
Add into the archive the content of any mapping *d*: keys->values, with
hfd-compliant values.
.. method:: values()
Generator returning the values in the group
.. method:: create_group(K)
Creates a new subgroup named `K` to the root path of the group.
Raises exception if the subgroup already exists.
.. method:: is_group(K)
Return True iif K is a subgroup.
.. method:: is_data(K)
Return True iif K is a leaf.
.. method:: read_attr(AttributeName)
Return the attribute `AttributeName` of the root path of the group.
If there is no attribute, return None.
.. method:: root_path()
Return the root path of the group
.. method:: apply_on_leaves (f)
For each named leaf (name,value) of the tree, it calls `f(name,value)`.
f should return:
- `None` : no action is taken
- an `empty tuple` () : the leaf is removed from the tree
- an hdf-compliant value : the leaf is replaced by the value
HDFArchiveInert
=======================================
.. class:: HDFArchiveInert
:class:`HDFArchive` and :class:`HDFArchiveGroup` do **NOT** handle parallelism.
In general, it is good practive to write/read only on the master node. Reading from all nodes on a cluster may lead to communication problems.
To simplify the writing of code, the simple HDFArchiveInert class may be useful.
It is basically inert but does not fail.
.. describe:: H[key]
Return H and never raise exception. E.g. H['a']['b'] never raises an exception.
.. describe:: H[key] = value
Does nothing.
Usage in a mpi code, e.g. ::
R = HDFArchive("Results.h5",'w') if mpi.is_master_node() else HDFArchiveInert()
a= mpi.bcast(R['a']) # properly broadcast the R['a'] from the master to the nodes.
R['b'] = X # sets R['b'] in the file on the master only, does nothing on the nodes.
.. highlight:: python
.. _HDF_Protocol:
Hdf-compliant objects
=======================================
By definition, hdf-compliant objects are those which can be stored/retrieved in an :class:`HDFArchive`.
In order to be hdf-compliant, a class must:
* have a `HDF5_data_scheme` tag properly registered.
* implement one of the two protocols described below.
.. _HDF_Protocol_data_scheme:
HDF5 data scheme
-----------------------
To each hdf-compliant object, we associate
a `data scheme` which describes how the data is stored in the hdf5 tree,
i.e. the tree structure with the name of the nodes and their contents.
This `data scheme` is added in the attribute `HDF5_data_scheme`
at the node corresponding to the object in the file.
For a given class `Cls`, the `HDF5_data_scheme` is `Cls._hdf5_data_scheme_` if it exists or the name of the class `Cls.__name__`.
The `HDF5_data_scheme` of a class must be registered in order for :class:`HDFArchive` to properly reconstruct the object when rereading.
The class is registered using the module `hdf_archive_schemes` ::
class myclass :
pass #....
from pytriqs.archive.hdf_archive_schemes import register_class
register_class (myclass)
The function is
.. py:function:: register_class (cls [, doc = None] )
:param cls: the class to be registered.
:param doc: a doc directory
Register the class for :class:`HDFArchive` use.
The name of `data scheme` will be `myclass._hdf5_data_scheme_` if it is defined, or the name of the class otherwise.
.. _HDF_Protocol_details:
How does a class become hdf-compliant ?
---------------------------------------
There are two ways in which a class can become hdf-compliant:
.. toctree::
:maxdepth: 1
protocol1
protocol2