3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 03:33:50 +01:00
dft_tools/pytriqs/gf/local/descriptors.py

341 lines
11 KiB
Python
Raw Normal View History

################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
r""" """
import numpy
from math import *
from gf import MeshImFreq, MeshReFreq
from lazy_expressions import LazyExprTerminal, LazyExpr, transform
def is_lazy(y):
#return type(y) in [ Omega_, LazyExpr]
return isinstance(y,(Omega_, LazyExpr, LazyExprTerminal))
def is_scalar(x):
return type(x) in [ type(1), type(1.0), type(1j), numpy.ndarray, numpy.int, numpy.int_, numpy.int8, numpy.int16, numpy.int32, numpy.float, numpy.float_, numpy.float32, numpy.float64, numpy.complex, numpy.complex_, numpy.complex64, numpy.complex128 ]
def convert_scalar_to_const(expr):
# if the expression is a pure scalar, replace it by Const
t= expr.get_terminal()
if is_scalar(t): return LazyExpr( Const(t) )
# otherwise: replace all scalar appearing in +/- operations by Const
def act (tag, childs):
if tag in ["+", "-"]:
for n,c in enumerate(childs):
t = c.get_terminal()
if is_scalar(t): childs[n] = Const (t)
return (tag,childs)
return transform(expr, act)
#########################################################################
class Base (LazyExprTerminal):
def __init__(self,**kargs):
self.__dict__.update(kargs)
#########################################################################
class Function (Base):
r"""
Stores a python function and a tail.
If the Green's function is defined on an array of points:math:`x_i`, then it will be initialized to:math:`F(x_i)`.
"""
def __init__ (self, function, tail=None):
r"""
:param function: the function:math:`\omega \rightarrow function(\omega)`
:param tail: The tail. Use None if you don't use any tail (will be put to 0)
"""
Base.__init__(self, function=function, tail=tail)
def __call__(self,G):
if not(callable(self.function)): raise RuntimeError, "GFInitializer.Function: f must be callable"
res = G.data[:,:,:]
try:
for n,om in enumerate(G.mesh): res[n,:,:] = self.function(om)
except:
print "The given function has a problem..."
raise
if self.tail: G.tail.copy_from(self.tail)
return G
#########################################################################
class Const(Base):
def __init__ (self, C):
Base.__init__(self, C=C)
def __call__(self,G):
C = self.C
if G.mesh.__class__.__name__ not in ['MeshImFreq', 'MeshReFreq']:
raise TypeError, "This initializer is only correct in frequency"
if not isinstance(C,numpy.ndarray):
assert G.N1==G.N2, "Const only applies to square G"
C = C*numpy.identity(G.N1)
if C.shape !=(G.N1,G.N2): raise RuntimeError, "Size of constant incorrect"
G.tail.zero()
G.tail[0][:,:] = C
Function(lambda om: C, None)(G)
return G
#########################################################################
class Omega_(Base):
r"""The function:math:`\omega \rightarrow \omega` """
def __str__(self): return "Omega"
def __call__(self,G):
if G.mesh.__class__.__name__ not in ['MeshImFreq', 'MeshReFreq']:
raise TypeError, "This initializer is only correct in frequency"
Id = numpy.identity(G.N1)
G.tail.zero()
G.tail[-1][:,:] = Id
for n,om in enumerate(G.mesh): G.data[n,:,:] = om*Id
return G
##########################################################################
Omega = Omega_()
iOmega_n = Omega_()
##########################################################################
class A_Omega_Plus_B(Base):
"deprecated. do not use"
def __init__ (self, A=1, B=0, Invert= False):
Base.__init__(self, A=A, B=B,Invert=Invert)
def __call__(self,G):
A,B = self.A, self.B
if G.mesh.__class__.__name__ not in ['MeshImFreq', 'MeshReFreq']:
raise TypeError, "This initializer is only correct in frequency"
if not isinstance(A,numpy.ndarray): A = A*numpy.identity(G.N1)
if not isinstance(B,numpy.ndarray): B = B*numpy.identity(G.N1)
if A.shape !=(G.N1,G.N2): raise RuntimeError, "Size of A incorrect"
if B.shape !=(G.N1,G.N2): raise RuntimeError, "Size of B incorrect"
G.tail.zero()
G.tail[-1][:,:] = A
G.tail[0][:,:] = B
Function(lambda om: A*om + B, None)(G)
if self.Invert: G.invert()
return G
#######################################
class OneFermionInTime(Base):
def __init__ (self, l =0):
Base.__init__(self, L=l)
def __call__(self,G):
L = self.L
if G.mesh.TypeGF not in [GF_Type.Imaginary_Time]:
raise TypeError, "This initializer is only correct in frequency"
Id = numpy.identity(G.N1)
G.tail.zero()
G.tail[1][:,:] = 1*Id
G.tail[2][:,:] = L*Id
G.tail[3][:,:] = L*L*Id
G.tail.mask.fill(3)
fact = -1/(1+exp(-L*G.beta))
Function(lambda t: fact* exp(-L*t) *Id, None)(G)
return G
##################################################
def _SemiCircularDOS(half_bandwidth):
"""
Semi_Circular DOS function
Input: the 1/2 bandwidth
Returns: a function omega-> dos(omega)
"""
from math import sqrt,pi
larg = half_bandwidth
def semi(x):
if (abs(x)<larg): return sqrt( 1 - (x/larg)**2 )*2/pi/larg
else: return 0.0
return semi
def semi(x):
return _SemiCircularDOS(x)
##################################################
class SemiCircular (Base):
r"""Hilbert transform of a semi circular density of state, i.e.
.. math::
g(z) = \int \frac{A(\omega)}{z-\omega} d\omega
where :math:`A(\omega) = \theta( D - |\omega|) 2 \sqrt{ D^2 - \omega^2}/(\pi D^2)`
(only works in combination with frequency Green's functions).
"""
def __init__ (self, half_bandwidth):
""":param half_bandwidth: :math:`D`, the half bandwidth of the semicircular"""
Base.__init__(self, half_bandwidth=half_bandwidth)
def __str__(self): return "SemiCircular(%s)"%self.half_bandwidth
def __call__(self,G):
D= self.half_bandwidth
Id = numpy.identity(G.N1,numpy.complex_)
if type(G.mesh) == MeshImFreq:
f = lambda om: (om - 1j*copysign(1,om.imag)*sqrt(abs(om)**2 + D*D))/D/D*2*Id
elif type(G.mesh) == MeshReFreq:
def f(om_):
om = om_.real
if (om > -D) and (om < D):
return (2.0/D**2) * (om - 1j* sqrt(D**2 - om**2))
else:
return (2.0/D**2) * (om - copysign(1,om) * sqrt(om**2 - D**2))
else:
raise TypeError, "This initializer is only correct in frequency"
# Let's create a new tail
Id = numpy.identity(G.N1)
G.tail.zero()
G.tail[1][:,:] = 1.0*Id
G.tail[3][:,:] = D**2/4.0*Id
G.tail[5][:,:] = D**4/8.0*Id
G.tail.mask.fill(6)
Function(f,None)(G)
return G
##################################################
class Wilson (Base):
r"""The Hilbert transform of a flat density of states, with cut-off
.. math::
g(z) = \int \frac{A(\omega)}{z-\omega} d\omega
where :math:`A(\omega) = \theta( D^2 - \omega^2)/(2D)`
(only works in combination with frequency Green's functions).
"""
def __init__ (self, half_bandwidth):
""":param half_bandwidth: :math:`D`, the half bandwidth """
Base.__init__(self, half_bandwidth=half_bandwidth)
def __str__(self): return "Wilson(%s)"%half_bandwidth
def __call__(self,G):
D = self.half_bandwidth
Id = numpy.identity(G.N1,numpy.complex_)
if type(G.mesh) == MeshImFreq:
f = lambda om: (-1/(2.0*D)) * numpy.log((om-D)/(om+D)) * Id
elif type(G.mesh) == MeshReFreq:
def f(om):
if (om.real > -D) and (om.real < D):
return -numpy.log(abs(om-D)/abs(om+D))*Id/(2*D) - 1j*pi*Id/(2*D)
else:
return -numpy.log(abs(om-D)/abs(om+D))*Id/(2*D)
else:
raise TypeError, "This initializer is only correct in frequency"
# Let's create a new tail
Id = numpy.identity(G.N1)
G.tail.zero()
G.tail[1][:,:] = 1.0*Id
G.tail[3][:,:] = D**2/3.0*Id
G.tail[5][:,:] = D**4/5.0*Id
G.tail.mask.fill(6)
Function(f,None)(G)
return G
##################################################
class Fourier (Base):
r"""
The Fourier transform as a lazy expression
"""
def __init__ (self, G):
""":param G: :math:`G`, the function to be transformed. Must in the time domain"""
Base.__init__(self, G = G)
def __str__(self): return "Fourier(%s)"%self.G.name
def __call__(self,G2):
G2.set_from_fourier(self.G)
return G2
class InverseFourier (Base):
r"""
The Inverse Fourier transform as a lazy expression
"""
def __init__ (self, G):
""":param G: :math:`G`, the function to be transformed. Must in the frequency domain"""
Base.__init__(self, G = G)
def __str__(self): return "InverseFourier(%s)"%self.G.name
def __call__(self,G2):
G2.set_from_inverse_fourier(self.G)
return G2
class LegendreToMatsubara (Base):
r"""
The transformation from Legendre to Matsubara as a lazy expression
"""
def __init__ (self, G):
""":param G: :math:`G`, the function to be transformed. Must in the Legendre domain"""
Base.__init__(self, G = G)
def __str__(self): return "LegendreToMatsubara(%s)"%self.G.name
def __call__(self,G2):
G2.set_from_legendre(self.G)
return G2
class MatsubaraToLegendre (Base):
r"""
The transformation from Legendre to Matsubara as a lazy expression
"""
def __init__ (self, G):
""":param G: :math:`G`, the function to be transformed. Must in the Matsubara domain"""
Base.__init__(self, G = G)
def __str__(self): return "MatsubaraToLegendre(%s)"%self.G.name
def __call__(self,G2):
G2.set_from_imfreq(self.G)
return G2