mirror of
https://github.com/triqs/dft_tools
synced 2024-12-27 06:43:40 +01:00
173 lines
7.4 KiB
C++
173 lines
7.4 KiB
C++
|
/*******************************************************************************
|
||
|
*
|
||
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||
|
*
|
||
|
* Copyright (C) 2011 by O. Parcollet
|
||
|
*
|
||
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
||
|
* terms of the GNU General Public License as published by the Free Software
|
||
|
* Foundation, either version 3 of the License, or (at your option) any later
|
||
|
* version.
|
||
|
*
|
||
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||
|
* details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along with
|
||
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
#ifndef TRIQS_ARRAYS_NUMPY_EXTRACTOR_H
|
||
|
#define TRIQS_ARRAYS_NUMPY_EXTRACTOR_H
|
||
|
|
||
|
#ifdef TRIQS_WITH_PYTHON_SUPPORT
|
||
|
#include "../storages/shared_block.hpp"
|
||
|
#include "triqs/utility/exceptions.hpp"
|
||
|
#include "numpy/arrayobject.h"
|
||
|
|
||
|
namespace triqs { namespace arrays { namespace numpy_interface {
|
||
|
|
||
|
inline std::string object_to_string (PyObject * p) {
|
||
|
if (!PyString_Check(p)) TRIQS_RUNTIME_ERROR<<" Internal error, expected a python string .....";
|
||
|
return PyString_AsString(p);
|
||
|
}
|
||
|
|
||
|
template <class T> struct numpy_to_C_type;
|
||
|
#define CONVERT(C,P) template <> struct numpy_to_C_type<C> { enum {arraytype = P}; }
|
||
|
CONVERT(bool, NPY_BOOL);
|
||
|
CONVERT(char, NPY_CHAR);
|
||
|
CONVERT(signed char, NPY_BYTE);
|
||
|
CONVERT(unsigned char, NPY_UBYTE);
|
||
|
CONVERT(short, NPY_SHORT);
|
||
|
CONVERT(unsigned short, NPY_USHORT);
|
||
|
CONVERT(int, NPY_INT);
|
||
|
CONVERT(unsigned int, NPY_UINT);
|
||
|
CONVERT(long, NPY_LONG);
|
||
|
CONVERT(unsigned long, NPY_ULONG);
|
||
|
CONVERT(long long, NPY_LONGLONG);
|
||
|
CONVERT(unsigned long long, NPY_ULONGLONG);
|
||
|
CONVERT(float, NPY_FLOAT);
|
||
|
CONVERT(double, NPY_DOUBLE);
|
||
|
CONVERT(long double, NPY_LONGDOUBLE);
|
||
|
CONVERT(std::complex<float>, NPY_CFLOAT);
|
||
|
CONVERT(std::complex<double>, NPY_CDOUBLE);
|
||
|
CONVERT(std::complex<long double>, NPY_CLONGDOUBLE);
|
||
|
#undef CONVERT
|
||
|
|
||
|
struct copy_exception : public triqs::runtime_error {};
|
||
|
|
||
|
// return a NEW (owned) reference
|
||
|
//
|
||
|
inline PyObject * numpy_extractor_impl ( PyObject * X, bool allow_copy, std::string type_name,
|
||
|
int elementsType, int rank, size_t * lengths, std::ptrdiff_t * strides, size_t size_of_ValueType) {
|
||
|
|
||
|
PyObject * numpy_obj;
|
||
|
|
||
|
if (X==NULL) TRIQS_RUNTIME_ERROR<<"numpy interface : the python object is NULL !";
|
||
|
if (_import_array()!=0) TRIQS_RUNTIME_ERROR <<"Internal Error in importing numpy";
|
||
|
|
||
|
static const char * error_msg = " A deep copy of the object would be necessary while views are supposed to guarantee to present a *view* of the python data.\n";
|
||
|
|
||
|
if (!allow_copy) {
|
||
|
if (!PyArray_Check(X)) throw copy_exception () << error_msg<<" Indeed the object was not even an array !\n";
|
||
|
if ( elementsType != PyArray_TYPE((PyArrayObject*)X))
|
||
|
throw copy_exception () << error_msg<<" The deep copy is caused by a type mismatch of the elements. Expected "<< type_name<< " and found XXX \n";
|
||
|
PyArrayObject *arr = (PyArrayObject *)X;
|
||
|
#ifdef TRIQS_NUMPY_VERSION_LT_17
|
||
|
if ( arr->nd != rank) throw copy_exception () << error_msg<<" Rank mismatch . numpy array is of rank "<< arr->nd << "while you ask for rank "<< rank<<". \n";
|
||
|
#else
|
||
|
if ( PyArray_NDIM(arr) != rank) throw copy_exception () << error_msg<<" Rank mismatch . numpy array is of rank "<< PyArray_NDIM(arr) << "while you ask for rank "<< rank<<". \n";
|
||
|
#endif
|
||
|
numpy_obj = X; Py_INCREF(X);
|
||
|
}
|
||
|
else {
|
||
|
// From X, we ask the numpy library to make a numpy, and of the correct type.
|
||
|
// This handles automatically the cases where :
|
||
|
// - we have list, or list of list/tuple
|
||
|
// - the numpy type is not the one we want.
|
||
|
// - adjust the dimension if needed
|
||
|
// If X is an array :
|
||
|
// - if Order is same, don't change it
|
||
|
// - else impose it (may provoque a copy).
|
||
|
// if X is not array :
|
||
|
// - Order = FortranOrder or SameOrder - > Fortran order otherwise C
|
||
|
|
||
|
//bool ForceCast = false;// Unless FORCECAST is present in flags, this call will generate an error if the data type cannot be safely obtained from the object.
|
||
|
int flags = 0; //(ForceCast ? NPY_FORCECAST : 0) ;// do NOT force a copy | (make_copy ? NPY_ENSURECOPY : 0);
|
||
|
if (!(PyArray_Check(X) ))
|
||
|
//flags |= ( IndexMapType::traversal_order == indexmaps::mem_layout::c_order(rank) ? NPY_C_CONTIGUOUS : NPY_F_CONTIGUOUS); //impose mem order
|
||
|
#ifdef TRIQS_NUMPY_VERSION_LT_17
|
||
|
flags |= (NPY_C_CONTIGUOUS); //impose mem order
|
||
|
#else
|
||
|
flags |= (NPY_ARRAY_C_CONTIGUOUS); //impose mem order
|
||
|
#endif
|
||
|
numpy_obj= PyArray_FromAny(X,PyArray_DescrFromType(elementsType), rank,rank, flags , NULL );
|
||
|
|
||
|
// do several checks
|
||
|
if (!numpy_obj) {// The convertion of X to a numpy has failed !
|
||
|
if (PyErr_Occurred()) {PyErr_Print();PyErr_Clear();}
|
||
|
TRIQS_RUNTIME_ERROR<<"numpy interface : the python object is not convertible to a numpy. ";
|
||
|
}
|
||
|
assert (PyArray_Check(numpy_obj)); assert((numpy_obj->ob_refcnt==1) || ((numpy_obj ==X)));
|
||
|
|
||
|
PyArrayObject *arr_obj;
|
||
|
arr_obj = (PyArrayObject *)numpy_obj;
|
||
|
try {
|
||
|
#ifdef TRIQS_NUMPY_VERSION_LT_17
|
||
|
if (arr_obj->nd!=rank) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : dimensions do not match";
|
||
|
if (arr_obj->descr->type_num != elementsType)
|
||
|
TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : incorrect type of element :" <<arr_obj->descr->type_num <<" vs "<<elementsType;
|
||
|
#else
|
||
|
if ( PyArray_NDIM(arr_obj) !=rank) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : dimensions do not match";
|
||
|
if ( PyArray_DESCR(arr_obj)->type_num != elementsType)
|
||
|
TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : incorrect type of element :" <<PyArray_DESCR(arr_obj)->type_num <<" vs "<<elementsType;
|
||
|
#endif
|
||
|
}
|
||
|
catch(...) { Py_DECREF(numpy_obj); throw;} // make sure that in case of problem, the reference counting of python is still ok...
|
||
|
}
|
||
|
|
||
|
// extract strides and lengths
|
||
|
PyArrayObject *arr_obj;
|
||
|
arr_obj = (PyArrayObject *)numpy_obj;
|
||
|
#ifdef TRIQS_NUMPY_VERSION_LT_17
|
||
|
const size_t dim =arr_obj->nd; // we know that dim == rank
|
||
|
for (size_t i=0; i< dim ; ++i) {
|
||
|
lengths[i] = size_t(arr_obj-> dimensions[i]);
|
||
|
strides[i] = std::ptrdiff_t(arr_obj-> strides[i])/ size_of_ValueType;
|
||
|
}
|
||
|
#else
|
||
|
const size_t dim = PyArray_NDIM(arr_obj); // we know that dim == rank
|
||
|
for (size_t i=0; i< dim ; ++i) {
|
||
|
lengths[i] = size_t( PyArray_DIMS(arr_obj)[i]);
|
||
|
strides[i] = std::ptrdiff_t( PyArray_STRIDES(arr_obj)[i])/ size_of_ValueType;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
return numpy_obj;
|
||
|
}
|
||
|
|
||
|
// a little template class
|
||
|
template<typename IndexMapType, typename ValueType > struct numpy_extractor {
|
||
|
|
||
|
numpy_extractor (PyObject * X, bool allow_copy) {
|
||
|
numpy_obj = numpy_extractor_impl (X, allow_copy, typeid(ValueType).name(), numpy_to_C_type<typename boost::remove_const<ValueType>::type>::arraytype, IndexMapType::rank,
|
||
|
&lengths[0], &strides[0],sizeof(ValueType));
|
||
|
}
|
||
|
|
||
|
~numpy_extractor(){ Py_DECREF(numpy_obj);}
|
||
|
|
||
|
IndexMapType indexmap() const { return IndexMapType (lengths,strides,0); }
|
||
|
|
||
|
storages::shared_block<ValueType> storage() const { return storages::shared_block<ValueType> (numpy_obj,true); }
|
||
|
// true means borrowed : object is owned by this class, which will decref it in case of exception ...
|
||
|
|
||
|
private:
|
||
|
PyObject * numpy_obj;
|
||
|
mini_vector<size_t,IndexMapType::rank> lengths;
|
||
|
mini_vector<std::ptrdiff_t,IndexMapType::rank> strides;
|
||
|
};
|
||
|
}}}
|
||
|
#endif
|
||
|
#endif
|