3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 11:43:47 +01:00
dft_tools/triqs/gfs/domains/matsubara.hpp

115 lines
4.5 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include "../tools.hpp"
#include <triqs/utility/arithmetic_ops_by_cast.hpp>
#include <triqs/utility/kronecker.hpp>
namespace triqs {
namespace gfs {
/**
* A matsubara frequency, i.e.
* * n : int, the index
* * beta : double, the temperature inverse
* * statistic : Fermion or Boson
*
* * Can be casted into a complex.
*
* * Every operations is done by casting to complex, except addition and substraction of matsubara_freq, which return matsubara_freq
* and work on the index
**/
struct matsubara_freq : public utility::arithmetic_ops_by_cast_disable_same_type<matsubara_freq, std::complex<double>> {
int n;
double beta;
statistic_enum statistic;
matsubara_freq() : n(0), beta(1), statistic(Fermion) {}
matsubara_freq(int n_, double beta_, statistic_enum stat_) : n(n_), beta(beta_), statistic(stat_) {}
using cast_t = std::complex<double>;
operator cast_t() const {
return {0, M_PI * (2 * n + statistic) / beta};
}
};
inline std::ostream &operator<<(std::ostream &out, matsubara_freq const &y) { return out << std::complex<double>(y); }
inline matsubara_freq operator+(matsubara_freq const &x, matsubara_freq const &y) {
return {x.n + y.n + (x.statistic & y.statistic), x.beta, ((x.statistic ^ y.statistic) == 1 ? Fermion : Boson)};
}
inline matsubara_freq operator-(matsubara_freq const &x, matsubara_freq const &y) {
return {x.n - y.n - (~x.statistic & y.statistic), x.beta, ((x.statistic ^ y.statistic) == 1 ? Fermion : Boson)};
}
inline matsubara_freq operator-(matsubara_freq const &mp) {
return {-(mp.n + (mp.statistic == Fermion ? 1 : 0)), mp.beta, mp.statistic};
}
//---------------------------------------------------------------------------------------------------------
/// The domain
template <bool IsFreq> struct matsubara_domain {
using point_t = typename std::conditional<IsFreq, std::complex<double>, double>::type;
double beta;
statistic_enum statistic;
matsubara_domain(double beta, statistic_enum s) : beta(beta), statistic(s) {
if (beta < 0) TRIQS_RUNTIME_ERROR << "Matsubara domain construction : beta <0 : beta =" << beta << "\n";
}
matsubara_domain() : matsubara_domain(1, Fermion) {}
[API change] gf : factories -> constructors - Make more general constructors for the gf. gf( mesh, target_shape_t) - remove the old make_gf for the basic gf. - 2 var non generic gf removed. - clean evaluator - add tensor_valued - add a simple vertex test. - clean specialisation - Fix bug introduced in 1906dc3 - forgot to resize the gf in new version of operator = - Fix make_singularity in gf.hpp - clean resize in operator = - update h5 read/write for block gf - changed a bit the general trait to save *all* the gf. - allows a more general specialization, then a correct for blocks - NOT FINISHED : need to save the block indice for python. How to reread ? Currently it read the blocks names and reconstitute the mesh from it. Is it sufficient ? - clean block constructors - block constructors simplest possible : an int for the number of blocks - rest in free factories. - fixed the generic constructor from GfType for the regular type : only enable iif GfType is ImmutableGreenFunction - multivar. fix linear index in C, and h5 format - linear index now correctly flatten in C mode (was in fortran mode), using a simple reverse of the tuple in the folding. - fix the h5 read write of the multivar fonctions in order to write an array on dimension # variables + dim_target i.e. without flattening the indices of the meshes. Easier for later data analysis, e.g. in Python. - merge matrix/tensor_valued. improve factories - matrix_valued now = tensor_valued<2> (simplifies generic code for h5). - factories_one_var -> factories : this is the generic case ... only a few specialization, code is simpler. - clef expression call with rvalue for *this - generalize matrix_proxy to tensor and clean - clean exception catch in tests - exception catching catch in need in test because the silly OS X does not print anything, just "exception occurred". Very convenient for the developer... - BUT, one MUST add return 1, or the make test will *pass* !! - --> systematically replace the catch by a macro TRIQS_CATCH_AND_ABORT which return a non zero error code. - exception : curry_and_fourier which does not work at this stage (mesh incompatible). - gf: clean draft of gf 2 times - comment the python interface for the moment. - rm useless tests
2013-10-16 23:55:26 +02:00
matsubara_domain(matsubara_domain const &) = default;
matsubara_domain(matsubara_domain<!IsFreq> const &x) : matsubara_domain(x.beta, x.statistic) {}
bool operator==(matsubara_domain const &D) const { return ((std::abs(beta - D.beta) < 1.e-15) && (statistic == D.statistic)); }
/// Write into HDF5
friend void h5_write(h5::group fg, std::string subgroup_name, matsubara_domain const &d) {
h5::group gr = fg.create_group(subgroup_name);
h5_write(gr, "beta", d.beta);
h5_write(gr, "statistic", (d.statistic == Fermion ? "F" : "B"));
}
/// Read from HDF5
friend void h5_read(h5::group fg, std::string subgroup_name, matsubara_domain &d) {
h5::group gr = fg.open_group(subgroup_name);
double beta;
std::string statistic;
h5_read(gr, "beta", beta);
h5_read(gr, "statistic", statistic);
d = matsubara_domain(beta, (statistic == "F" ? Fermion : Boson));
}
// BOOST Serialization
friend class boost::serialization::access;
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
ar &TRIQS_MAKE_NVP("beta", beta);
ar &TRIQS_MAKE_NVP("statistic", statistic);
}
};
using matsubara_freq_domain = matsubara_domain<true>;
using matsubara_time_domain = matsubara_domain<false>;
// ----- kronecker function : overload for matsubara_freq
inline bool kronecker(matsubara_freq const & freq) { return freq.n == 0; }
inline bool kronecker(matsubara_freq const & f1, matsubara_freq const &f2) { return f1.n == f2.n; }
}
}