3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-04 02:25:48 +01:00
dft_tools/doc/reference/c++/arrays/map.rst

131 lines
3.5 KiB
ReStructuredText
Raw Normal View History

.. highlight:: c
2013-08-27 19:17:17 +02:00
.. _arr_map_fold:
Functional constructs : map & fold
###########################################
Two standard functional constructs are provided :
* *map* that promotes a function of the array element to a function of the array,
element by element.
* *fold* is the reduction of a function on the array.
2013-08-22 16:55:51 +02:00
.. _map:
map
========================================================
* **Purpose** :
map promotes any function into an `array function`, acting term by term.
* **Synopsis** ::
template<class F> auto map (F f);
If `f` is a function, or a function object ::
ValueType2 f(ValueType1)
Then map(f) is a function::
2013-08-27 19:17:17 +02:00
template<ImmutableCuboidArray A> auto map(f) (A const &)
2013-08-27 19:17:17 +02:00
with :
* A::value_type == ValueType1
* The returned type of map(f) models the :ref:`ImmutableCuboidArray` concept
2013-08-27 19:17:17 +02:00
* with the same domain as A
* with value_type == ValueType2
* N.B. : Some cases require explicit cast, e.g. for the standard abs function (already defined in arrays/mapped_function.hpp) ,
or the compiler does not know which std::abs you are talking about ::
auto Abs = map( std::function<double(double)>(static_cast< double (*)(double)> (std::abs)) );
* TO DO : clarify the F f or F const & : check code and put an example with std::ref.
* **Example** :
.. compileblock::
#include <triqs/arrays.hpp>
2013-08-27 19:17:17 +02:00
using triqs::arrays::matrix; using triqs::arrays::make_matrix; using triqs::clef::placeholder;
int main() {
// declare and init a matrix
placeholder<0> i_; placeholder<1> j_;
matrix<int> A (2,2); A(i_,j_) << i_ + j_ ;
// the mapped function
auto F = triqs::arrays::map([](int i) { return i*2.5;});
2013-08-27 19:17:17 +02:00
std::cout<< "A = " << A << std::endl;
std::cout<< "F(A) = " << F(A) << std::endl; // oops no computation done
std::cout<< "F(A) = " << make_matrix(F(A)) << std::endl;
std::cout<< "3*F(2*A) = " << make_matrix(3*F(2*A)) << std::endl;
}
fold
========================================================
* **Purpose** :
fold implements the folding (or reduction) on the array.
* **Syntax** :
If `f` is a function, or a function object of synopsis (T, R being 2 types) ::
R f ( T, R )
then ::
auto F = fold(f);
is a callable object which can fold any array of value_type T.
So, if
2013-08-22 16:55:51 +02:00
* A is a type which models the :ref:`ImmutableCuboidArray` concept
(e.g. an array , a matrix, a vector, an expression, ...)
* A::value_type is T
then ::
fold (f) ( A, R init = R() ) = f( f( f( ... f( a(0,1), f(a(0,0), init)))))
Note that :
* The order of traversal is the same as foreach.
* The precise return type of fold is an implementation detail, depending on the precise type of f,
use auto to keep it.
* The function f will be inlined if possible, leading to efficient algorithms.
* fold is implemented using a foreach loop, hence it is efficient.
* **Example** :
Many algorithms can be written in form of map/fold.
2013-08-27 19:17:17 +02:00
The function :ref:`arr_fnt_sum` which returns the sum of all the elements of the array is implemented as ::
template <class A>
typename A::value_type sum(A const & a) { return fold ( std::plus<typename A::value_type>()) (a); }
2013-08-27 19:17:17 +02:00
Note in this example :
* the simplicity of the code
* the genericity : it is valid for any dimension of array.
* internally, the library will rewrite it as a series of for loop, ordered in the TraversalOrder of the array
and inline the plus operator.
2013-08-22 16:55:51 +02:00