mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 11:43:47 +01:00
165 lines
6.5 KiB
C++
165 lines
6.5 KiB
C++
|
/*******************************************************************************
|
||
|
*
|
||
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||
|
*
|
||
|
* Copyright (C) 2012 by H. Hafermann, O. Parcollet
|
||
|
*
|
||
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
||
|
* terms of the GNU General Public License as published by the Free Software
|
||
|
* Foundation, either version 3 of the License, or (at your option) any later
|
||
|
* version.
|
||
|
*
|
||
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||
|
* details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along with
|
||
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
#ifndef TRIQS_GF_LOCAL_FIT_TAIL_H
|
||
|
#define TRIQS_GF_LOCAL_FIT_TAIL_H
|
||
|
#include <triqs/gfs/imfreq.hpp>
|
||
|
#include <triqs/gfs/block.hpp>
|
||
|
#include <triqs/gfs/local/tail.hpp>
|
||
|
#include <triqs/arrays/blas_lapack/gelss.hpp>
|
||
|
#include <triqs/python_tools/cython_proxy.hpp>
|
||
|
|
||
|
namespace triqs {
|
||
|
namespace gfs {
|
||
|
namespace local {
|
||
|
|
||
|
using triqs::gfs::imfreq;
|
||
|
using triqs::gfs::block_index;
|
||
|
using triqs::gfs::block_index;
|
||
|
|
||
|
namespace tgl = triqs::gfs::local;
|
||
|
|
||
|
// routine for fitting the tail (singularity) of a Matsubara Green's function
|
||
|
// this is a *linear* least squares problem (with non-linear basis functions)
|
||
|
// which is solved by singular value decomposition of the design matrix
|
||
|
// the routine fits the real part (even moments) and the imaginary part
|
||
|
//(odd moments) separately, since this is more stable
|
||
|
|
||
|
// input:
|
||
|
// the input gf<imfreq> Green's function: gf
|
||
|
// the known moments in the form of a tail(_view): known_moments
|
||
|
// the TOTAL number of desired moments (including the known ones): n_moments
|
||
|
// the index of the first and last frequency to fit (the last one is included): wn_min, wn_max
|
||
|
|
||
|
// output: returns the tail obtained by fitting
|
||
|
|
||
|
tail fit_tail_impl(gf<imfreq> &gf, const tail_view known_moments, int n_moments, int wn_min, int wn_max) {
|
||
|
|
||
|
tail res(get_target_shape(gf), n_moments, known_moments.order_min());
|
||
|
if (known_moments.size())
|
||
|
for (int i = known_moments.order_min(); i <= known_moments.order_max(); i++) res(i) = known_moments(i);
|
||
|
|
||
|
// if known_moments.size()==0, the lowest order to be obtained from the fit is determined by order_min in known_moments
|
||
|
// if known_moments.size()==0, the lowest order is the one following order_max in known_moments
|
||
|
|
||
|
const double beta = gf.mesh().domain().beta;
|
||
|
|
||
|
int n_unknown_moments = n_moments - known_moments.size();
|
||
|
if (n_unknown_moments < 1) return known_moments;
|
||
|
|
||
|
// get the number of even unknown moments: it is n_unknown_moments/2+1 if the first
|
||
|
// moment is even and n_moments is odd; n_unknown_moments/2 otherwise
|
||
|
int omin = known_moments.size() == 0 ? known_moments.order_min() : known_moments.order_max() + 1; // smallest unknown moment
|
||
|
int omin_even = omin % 2 == 0 ? omin : omin + 1;
|
||
|
int omin_odd = omin % 2 != 0 ? omin : omin + 1;
|
||
|
int size_even = n_unknown_moments / 2;
|
||
|
if (n_unknown_moments % 2 != 0 && omin % 2 == 0) size_even += 1;
|
||
|
int size_odd = n_unknown_moments - size_even;
|
||
|
|
||
|
int size1 = wn_max - wn_min + 1;
|
||
|
// size2 is the number of moments
|
||
|
|
||
|
arrays::matrix<double, 2> A(size1, std::max(size_even, size_odd), FORTRAN_LAYOUT);
|
||
|
arrays::matrix<double, 2> B(size1, 1, FORTRAN_LAYOUT);
|
||
|
arrays::vector<double> S(std::max(size_even, size_odd));
|
||
|
const double rcond = 0.0;
|
||
|
int rank;
|
||
|
|
||
|
for (size_t i = 0; i < get_target_shape(gf)[0]; i++) {
|
||
|
for (size_t j = 0; j < get_target_shape(gf)[1]; j++) {
|
||
|
|
||
|
// fit the odd moments
|
||
|
// S.resize(size_odd);
|
||
|
// A.resize(size1,size_odd); //when resizing, gelss segfaults
|
||
|
for (int k = 0; k < size1; k++) {
|
||
|
auto n = wn_min + k;
|
||
|
auto iw = std::complex<double>(0.0, (2 * n + 1) * M_PI / beta);
|
||
|
|
||
|
B(k, 0) = imag(gf.data()(n, i, j));
|
||
|
// subtract known tail if present
|
||
|
if (known_moments.size() > 0)
|
||
|
B(k, 0) -= imag(slice_target(known_moments, arrays::range(i, i + 1), arrays::range(j, j + 1)).evaluate(iw)(0, 0));
|
||
|
|
||
|
for (int l = 0; l < size_odd; l++) {
|
||
|
int order = omin_odd + 2 * l;
|
||
|
A(k, l) = imag(pow(iw, -1.0 * order)); // set design matrix for odd moments
|
||
|
}
|
||
|
}
|
||
|
|
||
|
arrays::lapack::gelss(A, B, S, rcond, rank);
|
||
|
for (int m = 0; m < size_odd; m++) {
|
||
|
res(omin_odd + 2 * m)(i, j) = B(m, 0);
|
||
|
}
|
||
|
|
||
|
// fit the even moments
|
||
|
// S.resize(size_even);
|
||
|
// A.resize(size1,size_even); //when resizing, gelss segfaults
|
||
|
for (int k = 0; k < size1; k++) {
|
||
|
auto n = wn_min + k;
|
||
|
auto iw = std::complex<double>(0.0, (2 * n + 1) * M_PI / beta);
|
||
|
|
||
|
B(k, 0) = real(gf.data()(n, i, j));
|
||
|
// subtract known tail if present
|
||
|
if (known_moments.size() > 0)
|
||
|
B(k, 0) -= real(slice_target(known_moments, arrays::range(i, i + 1), arrays::range(j, j + 1)).evaluate(iw)(0, 0));
|
||
|
|
||
|
for (int l = 0; l < size_even; l++) {
|
||
|
int order = omin_even + 2 * l;
|
||
|
A(k, l) = real(pow(iw, -1.0 * order)); // set design matrix for odd moments
|
||
|
}
|
||
|
}
|
||
|
|
||
|
arrays::lapack::gelss(A, B, S, rcond, rank);
|
||
|
for (int m = 0; m < size_even; m++) {
|
||
|
res(omin_even + 2 * m)(i, j) = B(m, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return res; // return tail
|
||
|
}
|
||
|
|
||
|
|
||
|
void set_tail_from_fit(gf<imfreq> &gf, tail_view known_moments, int n_moments, size_t wn_min, size_t wn_max,
|
||
|
bool replace_by_fit = false) {
|
||
|
if (get_target_shape(gf) != known_moments.shape()) TRIQS_RUNTIME_ERROR << "shape of tail does not match shape of gf";
|
||
|
gf.singularity() = fit_tail_impl(gf, known_moments, n_moments, wn_min, wn_max);
|
||
|
|
||
|
if (replace_by_fit) { // replace data in the fitting range by the values from the fitted tail
|
||
|
size_t i = 0;
|
||
|
for (auto iw : gf.mesh()) { // (arrays::range(wn_min,wn_max+1)) {
|
||
|
if ((i >= wn_min) && (i <= wn_max)) gf[iw] = gf.singularity().evaluate(iw);
|
||
|
i++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void set_tail_from_fit(gf<block_index, gf<imfreq>> &block_gf, tail_view known_moments, int n_moments, size_t wn_min,
|
||
|
size_t wn_max, bool replace_by_fit = false) {
|
||
|
// for(auto &gf : block_gf) set_tail_from_fit(gf, known_moments, n_moments, wn_min, wn_max, replace_by_fit);
|
||
|
for (size_t i = 0; i < block_gf.mesh().size(); i++)
|
||
|
set_tail_from_fit(block_gf[i], known_moments, n_moments, wn_min, wn_max, replace_by_fit);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} // namespace
|
||
|
#endif
|