mirror of
https://github.com/triqs/dft_tools
synced 2024-12-27 14:53:39 +01:00
148 lines
6.3 KiB
Python
148 lines
6.3 KiB
Python
|
|
||
|
################################################################################
|
||
|
#
|
||
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||
|
#
|
||
|
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
||
|
#
|
||
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||
|
# terms of the GNU General Public License as published by the Free Software
|
||
|
# Foundation, either version 3 of the License, or (at your option) any later
|
||
|
# version.
|
||
|
#
|
||
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||
|
# details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU General Public License along with
|
||
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||
|
#
|
||
|
################################################################################
|
||
|
|
||
|
from pytriqs.gf.local import *
|
||
|
import pytriqs.utility.mpi as mpi
|
||
|
from itertools import *
|
||
|
import inspect
|
||
|
import copy,numpy
|
||
|
|
||
|
class SumkDiscrete:
|
||
|
"""
|
||
|
INTERNAL USE
|
||
|
The function to compute \[ G \leftarrow \sum_k (\omega + \mu - eps_k - Sigma(k,\omega))^{-1} \]
|
||
|
for GF functions with blocks of the size of the matrix eps_k with a discrete sum.
|
||
|
The class contains the discretized hoppings and points in the arrays
|
||
|
Hopping, BZ_Points,BZ_weights,Mu_Pattern,Overlap (IF non orthogonal)
|
||
|
It can also generate a grid (ComputeGrid) for a regular grid or a Gauss-Legendre sum.
|
||
|
"""
|
||
|
def __init__ (self, dim, gf_struct, orthogonal_basis = True ):
|
||
|
"""
|
||
|
Just constructs the arrays, but without initializing them
|
||
|
- dim is the dimension
|
||
|
- gf_struct : Indices of the Green function
|
||
|
- orthogonal_basis : True by default
|
||
|
"""
|
||
|
self.__GFBLOC_Structure = copy.deepcopy(gf_struct)
|
||
|
self.orthogonal_basis,self.dim = orthogonal_basis,dim
|
||
|
|
||
|
#-------------------------------------------------------------
|
||
|
|
||
|
def resize_arrays (self, nk):
|
||
|
"""
|
||
|
Just constructs the arrays, but without initializing them
|
||
|
- nk : total number of k points
|
||
|
"""
|
||
|
# constructs the arrays.
|
||
|
no = len(self.__GFBLOC_Structure)
|
||
|
self.Hopping = numpy.zeros([nk,no,no],numpy.complex_) # t(k_index,a,b)
|
||
|
self.BZ_Points = numpy.zeros([nk,self.dim],numpy.float_) # k(k_index,:)
|
||
|
self.BZ_weights = numpy.ones([nk],numpy.float_)/ float(nk) # w(k_kindex) , default normalisation
|
||
|
self.Mu_Pattern = numpy.identity(no,numpy.complex_) if self.orthogonal_basis else numpy.zeros([no,no,nk],numpy.complex_)
|
||
|
self.Overlap = numpy.array(self.Mu_Pattern, copy=True)
|
||
|
|
||
|
#-------------------------------------------------------------
|
||
|
|
||
|
def __get_GFBloc_Structure(self) :
|
||
|
"""Returns the ONLY block indices accepted for the G and Sigma argument of the
|
||
|
SumK function"""
|
||
|
return self.__GFBLOC_Structure
|
||
|
|
||
|
GFBlocIndices = property(__get_GFBloc_Structure)
|
||
|
|
||
|
#-------------------------------------------------------------
|
||
|
|
||
|
def __call__ (self, Sigma, mu=0, eta=0, field=None, epsilon_hat=None, result=None, selected_blocks=()):
|
||
|
"""
|
||
|
- Computes :
|
||
|
result <- \[ \sum_k (\omega + \mu - field - t(k) - Sigma(k,\omega)) \]
|
||
|
if result is None, it returns a new GF with the results.
|
||
|
otherwise, result must be a GF, in which the calculation is done, and which is then returned.
|
||
|
(this allows chain calculation : SK(mu = mu,Sigma = Sigma, result = G).total_density()
|
||
|
which computes the sumK into G, and returns the density of G.
|
||
|
|
||
|
- Sigma can be a X, or a function k-> X or a function k,eps ->X where :
|
||
|
- k is expected to be a 1d-numpy array of size self.dim of float,
|
||
|
containing the k vector in the basis of the RBZ (i.e. -0.5< k_i <0.5)
|
||
|
- eps is t(k)
|
||
|
- X is anything such that X[BlockName] can be added/subtracted to a GFBloc for BlockName in selected_blocks.
|
||
|
e.g. X can be a BlockGf(with at least the selected_blocks), or a dictionnary Blockname -> array
|
||
|
if the array has the same dimension as the GF blocks (for example to add a static Sigma).
|
||
|
|
||
|
- field : Any k independant object to be added to the GF
|
||
|
|
||
|
- epsilon_hat : a function of eps_k returning a matrix, the dimensions of Sigma
|
||
|
|
||
|
- selected_blocks : The calculation is done with the SAME t(k) for all blocks. If this list is not None
|
||
|
only the blocks in this list are calculated.
|
||
|
e.g. G and Sigma have block indices 'up' and 'down'.
|
||
|
if selected_blocks ==None : 'up' and 'down' are calculated
|
||
|
if selected_blocks == ['up'] : only 'up' is calculated. 'down' is 0.
|
||
|
|
||
|
|
||
|
"""
|
||
|
S = Sigma.view_selected_blocks(selected_blocks) if selected_blocks else Sigma
|
||
|
Gres = result if result else Sigma.copy()
|
||
|
G = Gres.view_selected_blocks(selected_blocks) if selected_blocks else Gres
|
||
|
|
||
|
# check input
|
||
|
assert self.orthogonal_basis, "Local_G : must be orthogonal. non ortho cases not checked."
|
||
|
assert isinstance(G,BlockGf), "G must be a BlockGf"
|
||
|
assert len(list(set([g.N1 for i,g in G]))) == 1
|
||
|
assert self.BZ_weights.shape[0] == self.n_kpts(), "Internal Error"
|
||
|
no = list(set([g.N1 for i,g in G]))[0]
|
||
|
Sigma_Nargs = len(inspect.getargspec(Sigma)[0]) if callable (Sigma) else 0
|
||
|
assert Sigma_Nargs <=2 , "Sigma function is not of the correct type. See Documentation"
|
||
|
|
||
|
# Initialize
|
||
|
G.zero()
|
||
|
tmp,tmp2 = G.copy(),G.copy()
|
||
|
mupat = mu * numpy.identity(no, numpy.complex_)
|
||
|
tmp <<= iOmega_n
|
||
|
if field != None : tmp -= field
|
||
|
if Sigma_Nargs==0: tmp -= Sigma # substract Sigma once for all
|
||
|
|
||
|
# Loop on k points...
|
||
|
for w, k, eps_k in izip(*[mpi.slice_array(A) for A in [self.BZ_weights, self.BZ_Points, self.Hopping]]):
|
||
|
|
||
|
eps_hat = epsilon_hat(eps_k) if epsilon_hat else eps_k
|
||
|
tmp2 <<= tmp
|
||
|
tmp2 -= tmp2.n_blocks * [eps_hat - mupat]
|
||
|
|
||
|
if Sigma_Nargs == 1: tmp2 -= Sigma (k)
|
||
|
elif Sigma_Nargs ==2: tmp2 -= Sigma (k,eps_k)
|
||
|
|
||
|
tmp2.invert()
|
||
|
tmp2 *= w
|
||
|
G += tmp2
|
||
|
|
||
|
G <<= mpi.all_reduce(mpi.world,G,lambda x,y : x+y)
|
||
|
mpi.barrier()
|
||
|
|
||
|
return Gres
|
||
|
|
||
|
#-------------------------------------------------------------
|
||
|
|
||
|
def n_kpts(self) :
|
||
|
""" Returns the number of k points"""
|
||
|
return self.BZ_Points.shape[0]
|