mirror of
https://github.com/triqs/dft_tools
synced 2025-01-01 00:55:48 +01:00
82 lines
2.6 KiB
Python
82 lines
2.6 KiB
Python
|
# Visualization of the Mott transition
|
||
|
|
||
|
from math import *
|
||
|
import os
|
||
|
import numpy
|
||
|
|
||
|
from pytriqs.gf.local import *
|
||
|
from pytriqs.gf.local import Omega, SemiCircular, inverse
|
||
|
from pytriqs.archive import *
|
||
|
from pytriqs.plot.mpl_interface import oplot
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
import ipt
|
||
|
|
||
|
beta = 40 # Inverse temperature
|
||
|
U = numpy.arange(0,4.05,0.1) # Range of interaction constants to scan
|
||
|
t = 0.5 # Scaled hopping constant on the Bethe lattice
|
||
|
|
||
|
N_loops = 20 # Number of DMFT loops
|
||
|
|
||
|
# Pade-related
|
||
|
DOSMesh = numpy.arange(-4,4,0.02) # Mesh to plot densities of states
|
||
|
eta = 0.00 # Imaginary frequency offset to use with Pade
|
||
|
Pade_L = 201 # Number of Matsubara frequencies to use with Pade
|
||
|
|
||
|
# Bare Green's function of the Bethe lattice (semicircle)
|
||
|
def Initial_G0(G0):
|
||
|
G0 <<= SemiCircular(2*t)
|
||
|
|
||
|
# Self-consistency condition
|
||
|
def Self_Consistency(G0,G):
|
||
|
G0['0'] <<= inverse(Omega - (t**2)*G['0'])
|
||
|
|
||
|
# Save results to an HDF5-archive
|
||
|
ar = HDFArchive('Mott.h5','w')
|
||
|
ar['beta'] = beta
|
||
|
ar['t'] = t
|
||
|
|
||
|
# List of files with DOS figures
|
||
|
DOS_files=[]
|
||
|
|
||
|
# Scan over values of U
|
||
|
for u in U:
|
||
|
print "Running DMFT calculation for beta=%.2f, U=%.2f, t=%.2f" % (beta,u,t)
|
||
|
ipt.run(N_loops = N_loops, beta=beta, U=u, Initial_G0=Initial_G0, Self_Consistency=Self_Consistency)
|
||
|
|
||
|
# The resulting local GF on the real axis
|
||
|
g_real = GfReFreq(indices = [0], beta = beta, mesh_array = DOSMesh, name = '0')
|
||
|
G_real = BlockGf(name_list = ('0',), block_list = (g_real,), make_copies = True)
|
||
|
|
||
|
# Analytic continuation with Pade
|
||
|
G_real['0'].set_from_pade(ipt.S.G['0'], N_Matsubara_Frequencies=Pade_L, Freq_Offset=eta)
|
||
|
|
||
|
# Save data to the archive
|
||
|
ar['U' + str(u)] = {'G0': ipt.S.G0, 'G': ipt.S.G, 'Sigma': ipt.S.Sigma, 'G_real':G_real}
|
||
|
|
||
|
# Plot the DOS
|
||
|
fig = plt.figure()
|
||
|
oplot(G_real['0'][0,0], RI='S', name="DOS", figure = fig)
|
||
|
|
||
|
# Adjust 'y' axis limits accordingly to the Luttinger sum rule
|
||
|
fig.axes[0].set_ylim(0,1/pi/t*1.1)
|
||
|
|
||
|
# Set title of the plot
|
||
|
fig_title = "Local DOS, IPT, Bethe lattice, $\\beta=%.2f$, $U=%.2f$" % (beta,u)
|
||
|
plt.title(fig_title)
|
||
|
|
||
|
# Save the figure as a PNG file
|
||
|
DOS_file = "DOS_beta%.2fU%.2f.png" % (beta,u)
|
||
|
fig.savefig(DOS_file, format="png", transparent=False)
|
||
|
DOS_files.append(DOS_file)
|
||
|
plt.close(fig)
|
||
|
|
||
|
# Create an animated GIF
|
||
|
# (you need to have 'convert' utility installed; it is a part of ImageMagick suite)
|
||
|
convert_cmd = "convert -delay 25 -loop 0"
|
||
|
convert_cmd += " " + ' '.join(DOS_files)
|
||
|
convert_cmd += " " + "DOS.gif"
|
||
|
|
||
|
print "Creating an animated DOS plot..."
|
||
|
os.system(convert_cmd)
|