3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-01 00:55:48 +01:00
dft_tools/doc/reference/c++/mctools/ising.rst

220 lines
5.9 KiB
ReStructuredText
Raw Normal View History

.. highlight:: c
.. _ising_solution:
The Ising chain in a magnetic field
-----------------------------------
Here is the a simple Monte-Carlo for a one-dimensional Ising chain. The
problem is described in detail in this section about :ref:`the Ising model
<isingex>`.
The configuration
*****************
We start by defining a configuration class on which the move and measure
classes will act. We write this class in a file :file:`configuration.hpp`::
#ifndef configuration_hpp
#define configuration_hpp
// The configuration of the system
struct configuration {
// N is the length of the chain, M the total magnetization
// beta the inverse temperature, J the coupling , field the magnetic field and energy the energy of the configuration
// field the magnetic field and energy the energy of the configuration
int N, M;
double beta, J, field, energy;
// the chain of spins: true means "up", false means "down"
std::vector<bool> chain;
// constructor
configuration(int N_, double beta_, double J_, double field_):
N(N_), M(-N), beta(beta_), J(J_), field(field_), energy(-N*(J-field)), chain(N,false) {}
};
#endif
The move
********
The move class should have three methods: `attempt()`, `accept()` and `reject()`::
#ifndef moves_hpp
#define moves_hpp
#include <triqs/mc_tools/random_generator.hpp>
#include <vector>
#include "configuration.hpp"
// A move flipping a random spin
struct flip {
configuration * config;
triqs::mc_tools::random_generator &RNG;
int site;
double delta_energy;
// constructor
flip(configuration & config_, triqs::mc_tools::random_generator & RNG_) :
config(&config_), RNG(RNG_) {}
double attempt() {
// pick a random site
site = RNG(config->N);
// find the neighbors with periodicity
int left = (site==0 ? config->N-1 : site-1);
int right = (site==config->N-1 ? 0 : site+1);
// compute energy difference from field
delta_energy = (config->chain[site] ? 2 : -2) * config->field;
// compute energy difference from J
if(config->chain[left] == config->chain[right]) {
delta_energy += (config->chain[left] == config->chain[site] ? 4 : -4) * config->J;
}
// return Metroplis ratio
return std::exp(-config->beta * delta_energy);
}
// if move accepted just flip site and update energy and magnetization
double accept() {
config->M += (config->chain[site] ? -2 : 2);
config->chain[site] = !config->chain[site];
config->energy += delta_energy;
return 1.0;
}
// nothing to do if the move is rejected
void reject() {}
};
#endif
Measure
*******
The measure class has two methods, `accumulate` and `collect_results`::
#ifndef MEASURES_HPP
#define MEASURES_HPP
#include "configuration.hpp"
// The measure of the magnetization
struct compute_m {
configuration * config;
double Z, M;
compute_m(configuration & config_) : config(&config_), Z(0), M(0) {}
// accumulate Z and magnetization
void accumulate(int sign) {
Z += sign;
M += config->M;
}
// get final answer M / (Z*N)
void collect_results(boost::mpi::communicator const &c) {
double sum_Z, sum_M;
boost::mpi::reduce(c, Z, sum_Z, std::plus<double>(), 0);
boost::mpi::reduce(c, M, sum_M, std::plus<double>(), 0);
if (c.rank() == 0) {
std::cout << "Magnetization: " << sum_M / (sum_Z*config->N) << std::endl << std::endl;
}
}
};
#endif
Main program
************
The Monte-Carlo itself can now be written::
#include <iostream>
#include <boost/python.hpp>
#include <triqs/mc_tools/mc_generic.hpp>
#include <triqs/utility/callbacks.hpp>
#include "moves.hpp"
#include "configuration.hpp"
#include "measures.hpp"
int main(int argc, char* argv[]) {
// initialize mpi
boost::mpi::environment env(argc, argv);
boost::mpi::communicator world;
// greeting
if (world.rank() == 0) std::cout << "Ising chain" << std::endl;
// Prepare the MC parameters
int N_Cycles = 500000;
int Length_Cycle = 50;
int N_Warmup_Cycles = 100000;
std::string Random_Name = "";
int Random_Seed = 374982 + world.rank() * 273894;
int Verbosity = (world.rank() == 0 ? 2 : 0);
// Construct a Monte Carlo loop
triqs::mc_tools::mc_generic<double> IsingMC(N_Cycles, Length_Cycle, N_Warmup_Cycles,
Random_Name, Random_Seed, Verbosity);
// parameters of the model
int length = 100;
double J = -1.0;
double field = 0.5;
double beta = 0.5;
// construct configuration
configuration config(length, beta, J, field);
// add moves and measures
IsingMC.add_move(flip(config, IsingMC.RandomGenerator), "spin flip");
IsingMC.add_measure(compute_m(config), "measure magnetization");
// Run and collect results
IsingMC.start(1.0, triqs::utility::clock_callback(-1));
IsingMC.collect_results(world);
return 0;
}
This yields::
Ising chain
1%; 2%; 3%; 4%; 5%; 6%; 7%; 8%; 9%; 10%; 11%; 12%; 13%; 14%; 15%; 16%; 17%;
18%; 19%; 20%; 21%; 22%; 23%; 24%; 25%; 26%; 27%; 28%; 29%; 30%; 31%; 32%; 33%;
34%; 35%; 36%; 37%; 38%; 39%; 40%; 41%; 42%; 43%; 44%; 45%; 46%; 47%; 48%; 49%;
50%; 51%; 52%; 53%; 54%; 55%; 56%; 57%; 58%; 59%; 60%; 61%; 62%; 63%; 64%; 65%;
66%; 67%; 68%; 69%; 70%; 71%; 72%; 73%; 74%; 75%; 76%; 77%; 78%; 79%; 80%; 81%;
82%; 83%; 84%; 85%; 86%; 87%; 88%; 89%; 90%; 91%; 92%; 93%; 94%; 95%; 96%; 97%;
98%; 99%; 100%;
Total number of measures: 500000
Average sign: 1
Magnetization: 0.0927603