3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-07 20:03:08 +01:00
dft_tools/fortran/dmftproj/set_rotloc.f

369 lines
17 KiB
FortranFixed
Raw Normal View History

2013-07-23 19:49:42 +02:00
c ******************************************************************************
c
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
c
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
c
c TRIQS is free software: you can redistribute it and/or modify it under the
c terms of the GNU General Public License as published by the Free Software
c Foundation, either version 3 of the License, or (at your option) any later
c version.
c
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
c details.
c
c You should have received a copy of the GNU General Public License along with
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
c
c *****************************************************************************/
SUBROUTINE set_rotloc
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C %% %%
C %% This subroutine sets up the Global->local coordinates %%
C %% rotational matrices for each atom of the system. %%
C %% These matrices will be used to create the projectors. %%
C %% (They are the SR matrices defined in the tutorial file.) %%
C %% %%
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C Definiton of the variables :
C ----------------------------
USE common_data
USE reps
USE symm
USE prnt
IMPLICIT NONE
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_rot, spinrot
REAL(KIND=8) :: alpha, beta, gama, factor
INTEGER :: iatom, jatom, imu, isrt
INTEGER :: is, is1, isym, l, lm
INTEGER :: ind1, ind2, inof1, inof2
COMPLEX(KIND=8) :: ephase
C
C ====================================================
C Multiplication by an S matrix for equivalent sites :
C ====================================================
C Up to now, rotloc is the rotloc matrix (from Global to local coordinates rotation : (rotloc)_ij = <x_global_i | x_local_j >)
C The matrix S to go from the representative atom of the sort to another one must be introduced. That's what is done here-after.
DO isrt=1,nsort
iatom=SUM(nmult(0:isrt-1))+1
DO imu=1,nmult(isrt)
jatom=iatom+imu-1
DO isym=1,nsym
C If the symmetry operation isym transforms the representative atom iatom in the jatom,
C the matrix rotloc is multiplied by the corresponding srot matrix, for each orbital number l.
C if R[isym](iatom) = jatom, rotloc is multiplied by R[isym] and Rloc is finally R[isym] X rotloc = <x_global|x_sym><x_sym|x_local>
IF(srot(isym)%perm(iatom)==jatom) THEN
WRITE(17,*) ' For jatom = ',jatom, ', isym =', isym
rotloc(jatom)%srotnum=isym
C Calculation of krotm and iprop.
rotloc(jatom)%krotm(1:3,1:3)=
= MATMUL(srot(isym)%krotm(1:3,1:3),
& rotloc(jatom)%krotm(1:3,1:3))
rotloc(jatom)%iprop=rotloc(jatom)%iprop*
* srot(isym)%iprop
C Evaluation of the Euler angles of the final operation Rloc
CALL euler(TRANSPOSE(rotloc(jatom)%krotm(1:3,1:3)),
& alpha,beta,gama)
C According to Wien convention, euler takes in argument the transpose
C of the matrix rotloc(jatom)%krotm to give a,b anc c of rotloc(jatom).
rotloc(jatom)%a=alpha
rotloc(jatom)%b=beta
rotloc(jatom)%g=gama
C
C =============================================================================================================
C Calculation of the rotational matrices and evaluation of the fields timeinv and phase for the Rloc matrices :
C =============================================================================================================
IF(ifSP.AND.ifSO) THEN
C No time reversal operation is applied to rotloc (alone). If a time reversal operation must be applied,
C it comes from the symmetry operation R[isym]. That is why the field timeinv is the same as the one from srot.
rotloc(jatom)%timeinv=srot(isym)%timeinv
rotloc(jatom)%phase=0.d0
DO l=1,lmax
ALLOCATE(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)))
tmp_rot=0.d0
C Whatever the value of beta (0 or Pi), the spinor rotation matrix of isym is block-diagonal.
C because the time-reversal operation have been applied if necessary.
factor=srot(isym)%phase/2.d0
ephase=EXP(CMPLX(0.d0,factor))
C We remind that the field phase is (g-a) if beta=Pi. As a result, ephase = exp(+i(g-a)/2) = -exp(+i(alpha-gamma)/2)
C We remind that the field phase is (a+g) if beta=0. As a result, ephase = exp(+i(a+g)/2)=-exp(-i(alpha+gamma)/2)
C in good agreement with Wien conventions for the definition of this phase factor.
C Up/up block :
tmp_rot(1:2*l+1,1:2*l+1)=ephase*
& srot(isym)%rotl(-l:l,-l:l,l)
C Dn/dn block :
ephase=CONJG(ephase)
C now, ephase = exp(+i(a-g)/2) = -exp(-i(alpha-gamma)/2) if beta=Pi
C now, ephase = exp(-i(a+g)/2) = -exp(+i(alpha+gamma)/2) if beta=0
tmp_rot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
& ephase*srot(isym)%rotl(-l:l,-l:l,l)
IF (rotloc(jatom)%timeinv) THEN
C In this case, the time reversal operator was applied to srot.
rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)=
& MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),CONJG(
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)))
C rotloc(jatom)%rotl now contains D(Rloc) = D(R[isym])*transpose[D(rotloc)].
ELSE
C In this case, no time reversal operator was applied to srot.
rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)=
& MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
C rotloc(jatom)%rotl now contains D(Rloc) = D(R[isym])*D(rotloc).
ENDIF
DEALLOCATE(tmp_rot)
ENDDO
ELSE
C Calculation of the rotational matrices associated to Rloc
ALLOCATE(tmp_rot(1:2*lmax+1,1:2*lmax+1))
DO l=1,lmax
C Use of the subroutine dmat to compute the rotational matrix
C associated to the Rloc operation in a (2*l+1) space :
tmp_rot=0.d0
CALL dmat(l,rotloc(jatom)%a,rotloc(jatom)%b,
& rotloc(jatom)%g,
& REAL(rotloc(jatom)%iprop,KIND=8),tmp_rot,2*lmax+1)
rotloc(jatom)%rotl(-l:l,-l:l,l)=
= tmp_rot(1:2*l+1,1:2*l+1)
C rotloc(jatom)%rotl = table of the rotational matrices of the symmetry operation
C for the different l orbital (from 1 to lmax), in the usual complex basis : dmat = D(R[isym])_l
C rotloc(jatom)%rotl = D(Rloc[jatom])_{lm}
ENDDO
DEALLOCATE(tmp_rot)
ENDIF ! End of the "ifSO-ifSP" if-then-else
C
EXIT
C Only one symmetry operation is necessary to be applied to R to get the complete rotloc matrix.
C This EXIT enables to leave the loop as soon as a symmetry operation which transforms the representative atom in jatom is found.
ENDIF ! End of the "perm" if-then-else
ENDDO ! End of the isym loop
C
C
C ===========================================================
C Computation of the rotational matrices in each sort basis :
C ===========================================================
ALLOCATE(rotloc(jatom)%rotrep(lmax))
C
C Initialization of the rotloc(jatom)%rotrep field = D(Rloc)_{new_i}
C This field is a table of size lmax which contains the rotloc matrices
C in the representation basis associated to each included orbital of the jatom.
DO l=1,lmax
ALLOCATE(rotloc(jatom)%rotrep(l)%mat(1,1))
rotloc(jatom)%rotrep(l)%mat(1,1)=0.d0
ENDDO
C
C Computation of the elements 'mat' in rotloc(jatom)%rotrep(l)
DO l=1,lmax
C The considered orbital is not included, hence no computation
IF (lsort(l,isrt)==0) cycle
C The considered orbital is included
IF (ifSP.AND.ifSO) THEN
C In this case, the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
C --------------------------------------------------------------------------------------------------------------
DEALLOCATE(rotloc(jatom)%rotrep(l)%mat)
ALLOCATE(rotloc(jatom)%rotrep(l)%mat
& (1:2*(2*l+1),1:2*(2*l+1)))
ALLOCATE(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)))
C Computation of rotloc(jatom)%rotrep(l)%mat
IF (reptrans(l,isrt)%ifmixing) THEN
C In this case, the basis representation requires a complete spinor rotation approach too.
IF(rotloc(jatom)%timeinv) THEN
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)),
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))=
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
& TRANSPOSE(reptrans(l,isrt)%transmat
& (1:2*(2*l+1),1:2*(2*l+1))))
C Since the operation is antilinear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*conjugate(inverse(reptrans))
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} [<lm|new_i>]^*
C which is exactly the expression of the spinor rotation matrix in the new basis.
ELSE
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)),
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))=
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
& TRANSPOSE(CONJG(reptrans(l,isrt)%transmat
& (1:2*(2*l+1),1:2*(2*l+1)))))
C Since the operation is linear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*inverse(reptrans)
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i>
C which is exactly the expression of the spinor rotation matrix in the new basis.
ENDIF
ELSE
C In this case, the basis representation is reduced to the up/up block and must be extended.
ALLOCATE(spinrot(1:2*(2*l+1),1:2*(2*l+1)))
spinrot(1:2*(2*l+1),1:2*(2*l+1))=0.d0
spinrot(1:2*l+1,1:2*l+1)=
& reptrans(l,isrt)%transmat(-l:l,-l:l)
spinrot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
& reptrans(l,isrt)%transmat(-l:l,-l:l)
IF(rotloc(jatom)%timeinv) THEN
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
& spinrot(1:2*(2*l+1),1:2*(2*l+1)),
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))=
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
& TRANSPOSE(spinrot(1:2*(2*l+1),1:2*(2*l+1))))
C Since the operation is antilinear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*conjugate(inverse(reptrans))
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} [<lm|new_i>]^*
C which is exactly the expression of the spinor rotation matrix in the new basis.
ELSE
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
& spinrot(1:2*(2*l+1),1:2*(2*l+1)),
& rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))
rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))=
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
& TRANSPOSE(CONJG(spinrot(1:2*(2*l+1),1:2*(2*l+1)))))
C Since the operation is linear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*inverse(reptrans)
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i>
C which is exactly the expression of the spinor rotation matrix in the new basis.
ENDIF
DEALLOCATE(spinrot)
ENDIF ! End of the if mixing if-then-else
DEALLOCATE(tmp_rot)
C
ELSE
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
C --------------------------------------------------------------------------------------------
DEALLOCATE(rotloc(jatom)%rotrep(l)%mat)
ALLOCATE(rotloc(jatom)%rotrep(l)%mat(-l:l,-l:l))
ALLOCATE(tmp_rot(-l:l,-l:l))
C Computation of rotloc(jatom)%rotrep(l)%mat
tmp_rot(-l:l,-l:l)=MATMUL(
& reptrans(l,isrt)%transmat(-l:l,-l:l),
& rotloc(jatom)%rotl(-l:l,-l:l,l))
rotloc(jatom)%rotrep(l)%mat(-l:l,-l:l)=
= MATMUL(tmp_rot(-l:l,-l:l),
& TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l))))
C the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*rotl*inverse(reptrans)
C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i>
C which is exactly the expression of the rotation matrix for the up/up block in the new basis.
DEALLOCATE(tmp_rot)
ENDIF
ENDDO ! End of the l loop
ENDDO ! End of the jatom loop
ENDDO ! End of the isrt loop
C
RETURN
END
SUBROUTINE euler(Rot,a,b,c)
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C %% %%
C %% This subroutine calculates the Euler angles a, b and c of Rot. %%
C %% The result are stored in a,b,c. (same as in SRC_lapwdm/euler.f) %%
C %% %%
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C
IMPLICIT NONE
REAL(KIND=8) :: a,aa,b,bb,c,cc,zero,pi,y_norm,dot
REAL(KIND=8), DIMENSION(3,3) :: Rot, Rot_temp
REAL(KIND=8), DIMENSION(3) :: z,zz,y,yy,yyy,pom,x,xx
INTEGER :: i,j
C Definition of the constants
zero=0d0
pi=ACOS(-1d0)
C Definition of Rot_temp=Id
DO i=1,3
DO j=1,3
Rot_temp(i,j)=0
IF (i.EQ.j) Rot_temp(i,i)=1
ENDDO
ENDDO
C Initialization of y=e_y, z=e_z, yyy and zz
DO j=1,3
y(j)=Rot_temp(j,2)
yyy(j)=Rot(j,2)
z(j)=Rot_temp(j,3)
zz(j)=Rot(j,3)
ENDDO
C Calculation of yy
CALL vecprod(z,zz,yy)
y_norm=DSQRT(dot(yy,yy))
IF (y_norm.lt.1d-10) THEN
C If yy=0, this implies that b is zero or pi
IF (ABS(dot(y,yyy)).gt.1d0) THEN
aa=dot(y,yyy)/ABS(dot(y,yyy))
a=ACOS(aa)
ELSE
a=ACOS(dot(y,yyy))
ENDIF
C
IF (dot(z,zz).gt.zero) THEN
c=zero
b=zero
IF (yyy(1).gt.zero) a=2*pi-a
ELSE
c=a
a=zero
b=pi
IF (yyy(1).lt.zero) c=2*pi-c
ENDIF
ELSE
C If yy is not 0, then b belongs to ]0,pi[
DO j=1,3
yy(j)=yy(j)/y_norm
ENDDO
C
aa=dot(y,yy)
bb=dot(z,zz)
cc=dot(yy,yyy)
IF (ABS(aa).gt.1d0) aa=aa/ABS(aa)
IF (ABS(bb).gt.1d0) bb=bb/ABS(bb)
IF (ABS(cc).gt.1d0) cc=cc/ABS(cc)
b=ACOS(bb)
a=ACOS(aa)
c=ACOS(cc)
IF (yy(1).gt.zero) a=2*pi-a
CALL vecprod(yy,yyy,pom)
IF (dot(pom,zz).lt.zero) c=2*pi-c
ENDIF
C
END
SUBROUTINE vecprod(a,b,c)
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C %% %%
C %% This subroutine calculates the vector product of a and b. %%
C %% The result is stored in c. (same as in SRC_lapwdm/euler.f) %%
C %% %%
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C
IMPLICIT NONE
REAL(KIND=8), DIMENSION(3) :: a,b,c
C
c(1)=a(2)*b(3)-a(3)*b(2)
c(2)=a(3)*b(1)-a(1)*b(3)
c(3)=a(1)*b(2)-a(2)*b(1)
C
END
REAL(KIND=8) FUNCTION dot(a,b)
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C %% %%
C %% This function calculates the scalar product of a and b. %%
C %% The result is stored in dot. (same as in SRC_lapwdm/euler.f) %%
C %% %%
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C
IMPLICIT NONE
REAL(KIND=8) :: a,b
INTEGER :: i
dimension a(3),b(3)
dot=0
DO i=1,3
dot=dot+a(i)*b(i)
ENDDO
C
END