3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 11:43:47 +01:00
dft_tools/pytriqs/sumk/sumk_discrete.py

148 lines
6.3 KiB
Python
Raw Normal View History

################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
from pytriqs.gf.local import *
import pytriqs.utility.mpi as mpi
from itertools import *
import inspect
import copy,numpy
class SumkDiscrete:
"""
INTERNAL USE
The function to compute \[ G \leftarrow \sum_k (\omega + \mu - eps_k - Sigma(k,\omega))^{-1} \]
for GF functions with blocks of the size of the matrix eps_k with a discrete sum.
The class contains the discretized hoppings and points in the arrays
Hopping, BZ_Points,BZ_weights,Mu_Pattern,Overlap (IF non orthogonal)
It can also generate a grid (ComputeGrid) for a regular grid or a Gauss-Legendre sum.
"""
def __init__ (self, dim, gf_struct, orthogonal_basis = True ):
"""
Just constructs the arrays, but without initializing them
- dim is the dimension
- gf_struct : Indices of the Green function
- orthogonal_basis : True by default
"""
self.__GFBLOC_Structure = copy.deepcopy(gf_struct)
self.orthogonal_basis,self.dim = orthogonal_basis,dim
#-------------------------------------------------------------
def resize_arrays (self, nk):
"""
Just constructs the arrays, but without initializing them
- nk : total number of k points
"""
# constructs the arrays.
no = len(self.__GFBLOC_Structure)
self.Hopping = numpy.zeros([nk,no,no],numpy.complex_) # t(k_index,a,b)
self.BZ_Points = numpy.zeros([nk,self.dim],numpy.float_) # k(k_index,:)
self.BZ_weights = numpy.ones([nk],numpy.float_)/ float(nk) # w(k_kindex) , default normalisation
self.Mu_Pattern = numpy.identity(no,numpy.complex_) if self.orthogonal_basis else numpy.zeros([no,no,nk],numpy.complex_)
self.Overlap = numpy.array(self.Mu_Pattern, copy=True)
#-------------------------------------------------------------
def __get_GFBloc_Structure(self) :
"""Returns the ONLY block indices accepted for the G and Sigma argument of the
SumK function"""
return self.__GFBLOC_Structure
GFBlocIndices = property(__get_GFBloc_Structure)
#-------------------------------------------------------------
def __call__ (self, Sigma, mu=0, eta=0, field=None, epsilon_hat=None, result=None, selected_blocks=()):
"""
- Computes :
result <- \[ \sum_k (\omega + \mu - field - t(k) - Sigma(k,\omega)) \]
if result is None, it returns a new GF with the results.
otherwise, result must be a GF, in which the calculation is done, and which is then returned.
(this allows chain calculation : SK(mu = mu,Sigma = Sigma, result = G).total_density()
which computes the sumK into G, and returns the density of G.
- Sigma can be a X, or a function k-> X or a function k,eps ->X where :
- k is expected to be a 1d-numpy array of size self.dim of float,
containing the k vector in the basis of the RBZ (i.e. -0.5< k_i <0.5)
- eps is t(k)
- X is anything such that X[BlockName] can be added/subtracted to a GFBloc for BlockName in selected_blocks.
e.g. X can be a BlockGf(with at least the selected_blocks), or a dictionnary Blockname -> array
if the array has the same dimension as the GF blocks (for example to add a static Sigma).
- field : Any k independant object to be added to the GF
- epsilon_hat : a function of eps_k returning a matrix, the dimensions of Sigma
- selected_blocks : The calculation is done with the SAME t(k) for all blocks. If this list is not None
only the blocks in this list are calculated.
e.g. G and Sigma have block indices 'up' and 'down'.
if selected_blocks ==None : 'up' and 'down' are calculated
if selected_blocks == ['up'] : only 'up' is calculated. 'down' is 0.
"""
S = Sigma.view_selected_blocks(selected_blocks) if selected_blocks else Sigma
Gres = result if result else Sigma.copy()
G = Gres.view_selected_blocks(selected_blocks) if selected_blocks else Gres
# check input
assert self.orthogonal_basis, "Local_G : must be orthogonal. non ortho cases not checked."
assert isinstance(G,BlockGf), "G must be a BlockGf"
assert len(list(set([g.N1 for i,g in G]))) == 1
assert self.BZ_weights.shape[0] == self.n_kpts(), "Internal Error"
no = list(set([g.N1 for i,g in G]))[0]
Sigma_Nargs = len(inspect.getargspec(Sigma)[0]) if callable (Sigma) else 0
assert Sigma_Nargs <=2 , "Sigma function is not of the correct type. See Documentation"
# Initialize
G.zero()
tmp,tmp2 = G.copy(),G.copy()
mupat = mu * numpy.identity(no, numpy.complex_)
tmp <<= iOmega_n
if field != None : tmp -= field
if Sigma_Nargs==0: tmp -= Sigma # substract Sigma once for all
# Loop on k points...
for w, k, eps_k in izip(*[mpi.slice_array(A) for A in [self.BZ_weights, self.BZ_Points, self.Hopping]]):
eps_hat = epsilon_hat(eps_k) if epsilon_hat else eps_k
tmp2 <<= tmp
tmp2 -= tmp2.n_blocks * [eps_hat - mupat]
if Sigma_Nargs == 1: tmp2 -= Sigma (k)
elif Sigma_Nargs ==2: tmp2 -= Sigma (k,eps_k)
tmp2.invert()
tmp2 *= w
G += tmp2
G <<= mpi.all_reduce(mpi.world,G,lambda x,y : x+y)
mpi.barrier()
return Gres
#-------------------------------------------------------------
def n_kpts(self) :
""" Returns the number of k points"""
return self.BZ_Points.shape[0]