3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-27 13:00:49 +01:00
dft_tools/triqs/arrays/python/array_view_to_python.hpp

77 lines
3.1 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_ARRAYS_TO_PYTHON_H
#define TRIQS_ARRAYS_TO_PYTHON_H
#ifndef TRIQS_WITH_PYTHON_SUPPORT
#error "You must define the macro TRIQS_WITH_PYTHON_SUPPORT to use Python interface"
#endif
#include <complex>
#include "../impl/indexmap_storage_pair.hpp"
//#include "../array.hpp"
namespace triqs { namespace arrays { namespace numpy_interface {
template<typename ArrayViewType >
PyObject * array_view_to_python ( ArrayViewType const & A, bool copy=false) {
//_import_array();
typedef typename ArrayViewType::value_type value_type;
static const int rank = ArrayViewType::rank;
const int elementsType (numpy_to_C_type<typename boost::remove_const<value_type>::type>::arraytype);
npy_intp dims[rank], strides[rank];
for(size_t i =0; i<rank; ++i) { dims[i] = A.indexmap().lengths()[i]; strides[i] = A.indexmap().strides()[i]*sizeof(value_type); }
const value_type * data = A.data_start();
//int flags = NPY_ARRAY_BEHAVED & ~NPY_ARRAY_OWNDATA;;// for numpy2
#ifdef TRIQS_NUMPY_VERSION_LT_17
int flags = NPY_BEHAVED & ~NPY_OWNDATA;
#else
int flags = NPY_ARRAY_BEHAVED & ~NPY_ARRAY_OWNDATA;
#endif
PyObject* res = PyArray_NewFromDescr(&PyArray_Type, PyArray_DescrFromType(elementsType), (int) rank, dims, strides, (void*) data, flags, NULL);
if (!res) {
if (PyErr_Occurred()) {PyErr_Print();PyErr_Clear();}
TRIQS_RUNTIME_ERROR<<" array_view_from_numpy : the python numpy object could not be build";
}
if (!PyArray_Check(res)) TRIQS_RUNTIME_ERROR<<" array_view_from_numpy : internal error : the python object is not a numpy";
PyArrayObject * arr = (PyArrayObject *)(res);
//PyArray_SetBaseObject(arr, A.storage().new_python_ref());
#ifdef TRIQS_NUMPY_VERSION_LT_17
arr->base = A.storage().new_python_ref();
assert( arr->flags == (arr->flags & ~NPY_OWNDATA));
#else
int r = PyArray_SetBaseObject(arr,A.storage().new_python_ref());
if (r!=0) TRIQS_RUNTIME_ERROR << "Internal Error setting the guard in numpy !!!!";
assert( PyArray_FLAGS(arr) == (PyArray_FLAGS(arr) & ~NPY_ARRAY_OWNDATA));
#endif
if (copy) {
PyObject * na = PyObject_CallMethod(res,(char*)"copy",NULL);
Py_DECREF(res);
// POrt this for 1.7
//assert(((PyArrayObject *)na)->base ==NULL);
res = na;
}
return res;
}
}}}
#endif