2020-10-09 14:35:28 +02:00
##########################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2019 by A. D. N. James, A. Hampel and M. Aichhorn
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
##########################################################################
2022-03-01 23:51:39 +01:00
"""
Elk converter
"""
2020-10-09 14:35:28 +02:00
from types import *
import numpy
from . converter_tools import *
import os . path
from h5 import *
from locale import atof
from triqs_dft_tools . converters . elktools import readElkfiles as read_Elk
from triqs_dft_tools . converters . elktools import ElkConverterTools as Elk_tools
class ElkConverter ( ConverterTools , Elk_tools , read_Elk ) :
"""
Conversion from Elk output to an hdf5 file that can be used as input for the SumkDFT class .
"""
def __init__ ( self , filename , hdf_filename = None ,
dft_subgrp = ' dft_input ' , symmcorr_subgrp = ' dft_symmcorr_input ' ,
bc_subgrp = ' dft_bandchar_input ' , symmpar_subgrp = ' dft_symmpar_input ' ,
bands_subgrp = ' dft_bands_input ' , misc_subgrp = ' dft_misc_input ' ,
2023-04-15 00:43:23 +02:00
transp_subgrp = ' dft_transp_input ' , cont_subgrp = ' dft_contours_input ' ,
2020-10-09 14:35:28 +02:00
repacking = False ) :
"""
Initialise the class .
Parameters
- - - - - - - - - -
filename : string
Base name of DFT files .
hdf_filename : string , optional
Name of hdf5 archive to be created .
dft_subgrp : string , optional
Name of subgroup storing necessary DFT data .
symmcorr_subgrp : string , optional
Name of subgroup storing correlated - shell symmetry data .
parproj_subgrp : string , optional
Name of subgroup storing partial projector data .
symmpar_subgrp : string , optional
Name of subgroup storing partial - projector symmetry data .
bands_subgrp : string , optional
Name of subgroup storing band data .
misc_subgrp : string , optional
Name of subgroup storing miscellaneous DFT data .
transp_subgrp : string , optional
Name of subgroup storing transport data .
repacking : boolean , optional
Does the hdf5 archive need to be repacked to save space ?
"""
assert isinstance ( filename , str ) , " ElkConverter: Please provide the DFT files ' base name as a string. "
if hdf_filename is None :
hdf_filename = filename + ' .h5 '
self . hdf_file = hdf_filename
self . dft_file = ' PROJ.OUT '
self . band_file = ' BAND.OUT '
self . eval_file = ' EIGVAL.OUT '
self . efermi_file = ' EFERMI.OUT '
self . kp_file = ' KPOINTS.OUT '
self . geom_file = ' GEOMETRY.OUT '
self . dft_subgrp = dft_subgrp
self . symmcorr_subgrp = symmcorr_subgrp
self . bc_subgrp = bc_subgrp
self . symmpar_subgrp = symmpar_subgrp
self . bands_subgrp = bands_subgrp
self . misc_subgrp = misc_subgrp
self . transp_subgrp = transp_subgrp
2023-04-15 00:43:23 +02:00
self . cont_subgrp = cont_subgrp
2020-10-09 14:35:28 +02:00
self . fortran_to_replace = { ' D ' : ' E ' }
# Checks if h5 file is there and repacks it if wanted:
if ( os . path . exists ( self . hdf_file ) and repacking ) :
ConverterTools . repack ( self )
def check_dens ( self , n_k , nstsv , occ , bz_weights , n_spin_blocs , band_window , SO ) :
"""
Check the charge density below the correlated energy window and up to the Fermi level
"""
density_required = 0.0E-7
charge_below = 0.0E-7
#calculate the valence charge and charge below lower energy window bound
#Elk does not use the tetrahedron method when calculating these charges
for ik in range ( n_k ) :
for ist in range ( nstsv ) :
#calculate the charge over all the bands
density_required + = occ [ ik ] [ ist ] * bz_weights [ ik ]
for isp in range ( n_spin_blocs ) :
#Convert occ list from elk to two index format for spins
jst = int ( ( isp ) * nstsv * 0.5 )
#Take lowest index in band_window for SO system
if ( SO == 0 ) :
nst = band_window [ isp ] [ ik , 0 ] - 1
else :
band = [ band_window [ 0 ] [ ik , 0 ] , band_window [ 1 ] [ ik , 0 ] ]
nst = min ( band ) - 1
#calculate the charge below energy window
for ist in range ( jst , nst ) :
charge_below + = occ [ ik ] [ ist ] * bz_weights [ ik ]
#return charges
return ( density_required , charge_below )
def rotsym ( self , n_shells , shells , n_symm , ind , basis , T , mat ) :
"""
Rotates the symmetry matrices into basis defined by the T unitary matrix
the outputted projectors are rotated to the irreducible representation
and then reduced in size to the orbitals used to construct the projectors .
"""
for ish in range ( n_shells ) :
#check that the T matrix is not the Identity (i.e. not using spherical
#harmonics).
if ( basis [ ish ] != 0 ) :
#put mat into temporary matrix
temp = mat
#index range of lm values used to create the Wannier projectors
min_ind = numpy . min ( ind [ ish ] [ : ] )
max_ind = numpy . max ( ind [ ish ] [ : ] ) + 1
#dimension of lm values used to construct the projectors
dim = shells [ ish ] [ ' dim ' ]
#loop over all symmetries
for isym in range ( n_symm ) :
#rotate symmetry matrix into basis defined by T
mat [ isym ] [ ish ] = numpy . matmul ( T [ ish ] , mat [ isym ] [ ish ] )
2021-12-15 13:57:57 +01:00
mat [ isym ] [ ish ] = numpy . matmul ( mat [ isym ] [ ish ] , T [ ish ] . conjugate ( ) . transpose ( ) )
2020-10-09 14:35:28 +02:00
#put desired subset of transformed symmetry matrix into temp matrix for symmetry isym
for id in range ( len ( ind [ ish ] ) ) :
i = ind [ ish ] [ id ]
for jd in range ( len ( ind [ ish ] [ : ] ) ) :
j = ind [ ish ] [ jd ]
temp [ isym ] [ ish ] [ id , jd ] = mat [ isym ] [ ish ] [ i , j ]
#put temp matrix into mat
mat = temp
#reduce size of lm arrays in mat lm dim
for isym in range ( n_symm ) :
dim = shells [ ish ] [ ' dim ' ]
mat [ isym ] [ ish ] = mat [ isym ] [ ish ] [ : dim , : dim ]
return mat
def update_so_quatities ( self , n_shells , shells , n_corr_shells , corr_shells , n_inequiv_shells , dim_reps , n_k , n_symm , n_orbitals , proj_mat , T , su2 , mat , sym = True ) :
"""
Changes the array sizes and elements for arrays used in spin - orbit coupled calculations .
"""
#change dim for each shell
for ish in range ( n_shells ) :
2022-11-10 17:11:28 +01:00
shells [ ish ] [ ' dim ' ] * = 2
2020-10-09 14:35:28 +02:00
for ish in range ( n_corr_shells ) :
2022-11-10 17:11:28 +01:00
corr_shells [ ish ] [ ' dim ' ] * = 2
2020-10-09 14:35:28 +02:00
for ish in range ( n_inequiv_shells ) :
dim_reps [ ish ] = [ 2 * dim_reps [ ish ] [ i ] for i in range ( len ( dim_reps [ ish ] ) ) ]
#Make temporary array of original n_orbitals
n_orbitals_orig = n_orbitals
#Make SO n_orbitals array
#loop over k-points
for ik in range ( n_k ) :
#new orbital array
n_orbitals [ ik , 0 ] = max ( n_orbitals [ ik , : ] )
#reduce array size
n_orbitals = n_orbitals [ : , : 1 ]
#Resize proj_mat, mat, T
#make temporary projector array
2023-01-23 21:40:57 +01:00
proj_mat_tmp = numpy . zeros ( [ n_k , 1 , n_corr_shells , max ( [ crsh [ ' dim ' ] for crsh in corr_shells ] ) , numpy . max ( n_orbitals ) ] , complex )
2020-10-09 14:35:28 +02:00
for ish in range ( n_corr_shells ) :
#update proj_mat
for ik in range ( n_k ) :
#extra array elements in "dim" dimension
size = int ( 0.5 * corr_shells [ ish ] [ ' dim ' ] )
#put each spinor into tmp array and ensure elements are assigned correctly in case of change of max(n_orbitals)
proj_mat_tmp [ ik ] [ 0 ] [ ish ] [ 0 : size ] [ 0 : n_orbitals_orig [ ik , 0 ] ] = proj_mat [ ik ] [ 0 ] [ ish ] [ 0 : size ] [ 0 : n_orbitals_orig [ ik , 0 ] ]
#put other spinor projectors into extra "dim" elements
proj_mat_tmp [ ik ] [ 0 ] [ ish ] [ size : 2 * size ] [ 0 : n_orbitals_orig [ ik , 1 ] ] = proj_mat [ ik ] [ 1 ] [ ish ] [ 0 : size ] [ 0 : n_orbitals_orig [ ik , 1 ] ]
#update T
#extra array elements in each dimension
size = 2 * corr_shells [ ish ] [ ' l ' ] + 1
#extend the arrays
T [ ish ] = numpy . lib . pad ( T [ ish ] , ( ( 0 , size ) , ( 0 , size ) ) , ' constant ' , constant_values = ( 0.0 ) )
#make block diagonal
T [ ish ] [ size : 2 * size , size : 2 * size ] = T [ ish ] [ 0 : size , 0 : size ]
#update the symmetries arrays if needed
if ( sym ) :
#update mat - This includes the spin SU(2) matrix for spin-coupled calculations
#size of each quadrant in the lm symmetry array.
size = int ( 0.5 * corr_shells [ ish ] [ ' dim ' ] )
#temporary spin block array for SU(2) spin operations on mat
2023-01-23 21:40:57 +01:00
spinmat = numpy . zeros ( [ size , 2 , size , 2 ] , complex )
2020-10-09 14:35:28 +02:00
for isym in range ( n_symm ) :
#expand size of array
mat [ isym ] [ ish ] = numpy . lib . pad ( mat [ isym ] [ ish ] , ( ( 0 , size ) , ( 0 , size ) ) , ' constant ' , constant_values = ( 0.0 ) )
#make arraye block diagonal
mat [ isym ] [ ish ] [ size : 2 * size , size : 2 * size ] = mat [ isym ] [ ish ] [ 0 : size , 0 : size ]
#apply SU(2) spin matrices to lm symmetries
#put mat into array of spin blocks
for i1 , i2 in numpy . ndindex ( 2 , 2 ) :
spinmat [ 0 : size , i1 , 0 : size , i2 ] = mat [ isym ] [ ish ] [ i1 * size : ( i1 + 1 ) * size , i2 * size : ( i2 + 1 ) * size ]
#apply the SU(2) spin matrices
for ilm , jlm in numpy . ndindex ( size , size ) :
spinmat [ ilm , : , jlm , : ] = numpy . dot ( su2 [ isym ] [ : , : ] , spinmat [ ilm , : , jlm , : ] )
#put spinmat into back in mat format
for i1 , i2 in numpy . ndindex ( 2 , 2 ) :
mat [ isym ] [ ish ] [ i1 * size : ( i1 + 1 ) * size , i2 * size : ( i2 + 1 ) * size ] = spinmat [ 0 : size , i1 , 0 : size , i2 ]
#assign arrays and delete temporary arrays
del proj_mat
proj_mat = proj_mat_tmp
del proj_mat_tmp , n_orbitals_orig
return shells , corr_shells , dim_reps , n_orbitals , proj_mat , T , mat
def sort_dft_eigvalues ( self , n_spin_blocs , SO , n_k , n_orbitals , band_window , en , energy_unit ) :
"""
Rearranges the energy eigenvalue arrays into TRIQS format
"""
2023-01-23 21:40:57 +01:00
hopping = numpy . zeros ( [ n_k , n_spin_blocs , numpy . max ( n_orbitals ) , numpy . max ( n_orbitals ) ] , complex )
2020-10-09 14:35:28 +02:00
#loop over spin
for isp in range ( n_spin_blocs ) :
#loop over k-points
for ik in range ( n_k ) :
#loop over bands
for ist in range ( 0 , n_orbitals [ ik , isp ] ) :
#converter index for spin polarised Elk indices and take SO into consideration
if ( SO == 0 ) :
jst = int ( band_window [ isp ] [ ik , 0 ] - 1 + ist )
else :
band = [ band_window [ 0 ] [ ik , 0 ] , band_window [ 1 ] [ ik , 0 ] ]
jst = int ( min ( band ) - 1 + ist )
#correlated window energies
hopping [ ik , isp , ist , ist ] = en [ ik ] [ jst ] * energy_unit
return hopping
def convert_dft_input ( self ) :
"""
Reads the appropriate files and stores the data for the
- dft_subgrp
- symmcorr_subgrp
- misc_subgrp
in the hdf5 archive .
"""
# Read and write only on the master node
if not ( mpi . is_master_node ( ) ) :
return
filext = ' .OUT '
dft_file = ' PROJ ' + filext
mpi . report ( " Reading %s " % dft_file )
#Energy conversion - Elk uses Hartrees
energy_unit = 27.2113850560 # Elk uses hartrees
#The projectors change size per k-point
k_dep_projection = 1
#Symmetries are used
symm_op = 1 # Use symmetry groups for the k-sum
shells = [ ]
#read information about projectors calculated in the Elk calculation
[ gen_info , n_corr_shells , n_inequiv_shells , corr_to_inequiv , inequiv_to_corr , corr_shells , n_reps , dim_reps , ind , basis , T ] = read_Elk . read_proj ( self , dft_file )
#get info for HDF5 file from gen_info
n_k = gen_info [ ' n_k ' ]
SP = gen_info [ ' spinpol ' ] - 1
#Elk uses spinor wavefunctions. Therefore these two spinor wavefunctions have spin-orbit coupling incorporated in them. Here we read in the spinors
n_spin_blocs = SP + 1
SO = gen_info [ ' SO ' ]
n_atoms = gen_info [ ' natm ' ]
#Elk only calculates Wannier projectors (no theta projectors generated):
n_shells = n_corr_shells
for ish in range ( n_shells ) :
shells . append ( corr_shells [ ish ] . copy ( ) )
#remove last 2 entries from corr_shlls
del shells [ ish ] [ ' SO ' ]
del shells [ ish ] [ ' irep ' ]
shells [ ish ] [ ' dim ' ] = 2 * shells [ ish ] [ ' l ' ] + 1
#read eigenvalues calculated in the Elk calculation
mpi . report ( " Reading %s and EFERMI.OUT " % self . eval_file )
[ en , occ , nstsv ] = read_Elk . read_eig ( self )
#read projectors calculated in the Elk calculation
2023-01-23 21:40:57 +01:00
proj_mat = numpy . zeros ( [ n_k , n_spin_blocs , n_corr_shells , max ( [ crsh [ ' dim ' ] for crsh in corr_shells ] ) , nstsv ] , complex )
2020-10-09 14:35:28 +02:00
mpi . report ( " Reading projector(s) " )
for ish in range ( n_corr_shells ) :
[ n_orbitals , band_window , rep , proj_mat ] = read_Elk . read_projector ( self , corr_shells , n_spin_blocs , ish , proj_mat , ind , T , basis , filext )
#read kpoints calculated in the Elk calculation
mpi . report ( " Reading %s " % self . kp_file )
[ bz_weights , vkl ] = read_Elk . read_kpoints ( self )
#symmetry matrix
mpi . report ( " Reading GEOMETRY.OUT " )
2022-11-10 17:11:28 +01:00
#read in atom positions, the symmetry operators (in lattice coordinates) and lattice vectors
2020-10-09 14:35:28 +02:00
[ ns , na , atpos ] = read_Elk . read_geometry ( self )
#Read symmetry files
mpi . report ( " Reading SYMCRYS.OUT " )
[ n_symm , spinmat , symmat , tr ] = read_Elk . readsym ( self )
mpi . report ( " Reading LATTICE.OUT " )
2023-01-04 23:16:57 +01:00
[ amat , amatinv , bmat , bmatinv , cell_vol ] = read_Elk . readlat ( self )
2020-10-09 14:35:28 +02:00
#calculating atom permutations
perm = Elk_tools . gen_perm ( self , n_symm , ns , na , n_atoms , symmat , tr , atpos )
#determine the cartesian lattice symmetries and the spin axis rotations
#required for the spinors (for SO for now)
su2 = [ ]
symmatc = [ ]
for isym in range ( n_symm ) :
#convert the lattice symmetry matrices into cartesian coordinates
tmp = numpy . matmul ( amat , symmat [ isym ] )
symmatc . append ( numpy . matmul ( tmp , amatinv ) )
#convert the spin symmetry matrices into cartesian coordinates
spinmatc = numpy . matmul ( amat , spinmat [ isym ] )
spinmatc = numpy . matmul ( spinmatc , amatinv )
#calculate the rotation angle and spin axis vector in cartesian coordinates
[ v , th ] = self . rotaxang ( spinmatc [ : , : ] )
#calculate the SU(2) matrix from the angle and spin axis vector
su2 . append ( self . axangsu2 ( v , th ) )
del tmp
#calculating the symmetries in complex harmonics
mat = Elk_tools . symlat_to_complex_harmonics ( self , n_symm , n_corr_shells , symmatc , corr_shells )
mat = self . rotsym ( n_corr_shells , corr_shells , n_symm , ind , basis , T , mat )
#The reading is done. Some variables may need to change for TRIQS compatibility.
#Alter size of some of the arrays if spin orbit coupling is enabled.
#For SO in Elk, the eigenvalues and eigenvector band indices are in asscending order w.r.t energy
if ( SO == 1 ) :
[ shells , corr_shells , dim_reps , n_orbitals , proj_mat , T , mat ] = self . update_so_quatities ( n_shells , shells , n_corr_shells , corr_shells , n_inequiv_shells , dim_reps , n_k , n_symm , n_orbitals , proj_mat , T , su2 , mat )
#reduce n_spin_blocs
n_spin_blocs = SP + 1 - SO
#put the energy eigenvalues arrays in TRIQS format
hopping = self . sort_dft_eigvalues ( n_spin_blocs , SO , n_k , n_orbitals , band_window , en , energy_unit )
#Elk does not use global to local matrix rotation (Rotloc) as is done in Wien2k. However, the projectors
#require a symmetry matrix to rotate from jatom to iatom. Below finds the non inversion
#symmetric matrices which were used in calculating the projectors
use_rotations = 1
2023-01-23 21:40:57 +01:00
rot_mat = [ numpy . identity ( corr_shells [ icrsh ] [ ' dim ' ] , complex ) for icrsh in range ( n_corr_shells ) ]
2020-10-09 14:35:28 +02:00
for icrsh in range ( n_corr_shells ) :
2022-11-10 17:11:28 +01:00
#return inequivalent index
incrsh = corr_to_inequiv [ icrsh ]
#return first inequivalent corr_shell index
jcrsh = inequiv_to_corr [ incrsh ]
2021-12-15 13:57:57 +01:00
#want to rotate atom to first inequivalent atom in list
2022-11-10 17:11:28 +01:00
iatom = corr_shells [ jcrsh ] [ ' atom ' ]
2020-10-09 14:35:28 +02:00
for isym in range ( n_symm ) :
jatom = perm [ isym ] [ corr_shells [ icrsh ] [ ' atom ' ] - 1 ]
#determinant determines if crystal symmetry matrix has inversion symmetry (=-1)
det = numpy . linalg . det ( symmat [ isym ] [ : , : ] )
if ( ( jatom == iatom ) & ( det > 0.0 ) ) :
2021-12-15 13:57:57 +01:00
#local rotation which rotates equivalent atom into its local coordinate system
#(inverse of the symmetry operator applied to the projectors in Elk)
rot_mat [ icrsh ] [ : , : ] = mat [ isym ] [ icrsh ] [ : , : ] . conjugate ( ) . transpose ( )
#used first desired symmetry in crystal symmetry list
2020-10-09 14:35:28 +02:00
break
# Elk does not currently use time inversion symmetry
rot_mat_time_inv = [ 0 for i in range ( n_corr_shells ) ]
#Check that the charge of all the bands and below the correlated window have been calculated correctly
[ density_required , charge_below ] = self . check_dens ( n_k , nstsv , occ , bz_weights , n_spin_blocs , band_window , SO )
#calculate the required charge (density_required) to remain charge neutral
mpi . report ( " The total charge of the system = %f " % density_required )
mpi . report ( " The charge below the correlated window = %f " % charge_below )
mpi . report ( " The charge within the correlated window = %f " % ( density_required - charge_below ) )
#Elk interface does not calculate theta projectors, hence orbits are the same as Wannier projectors
orbits = [ ]
#remove the spatom index to avoid errors in the symmetry routines
for ish in range ( n_corr_shells ) :
#remove "spatom"
del corr_shells [ ish ] [ ' spatom ' ]
orbits . append ( corr_shells [ ish ] . copy ( ) )
for ish in range ( n_shells ) :
#remove "spatom"
del shells [ ish ] [ ' spatom ' ]
n_orbits = len ( orbits )
#Note that the T numpy array is defined for all shells.
2023-01-04 23:16:57 +01:00
#new variable: dft_code - this determines which DFT code the inputs come from.
#used for certain routines within dft_tools if treating the inputs differently is required.
dft_code = ' elk '
2020-10-09 14:35:28 +02:00
# Save it to the HDF:
ar = HDFArchive ( self . hdf_file , ' a ' )
if not ( self . dft_subgrp in ar ) :
ar . create_group ( self . dft_subgrp )
# The subgroup containing the data. If it does not exist, it is
# created. If it exists, the data is overwritten!
things_to_save = [ ' energy_unit ' , ' n_k ' , ' k_dep_projection ' , ' SP ' , ' SO ' , ' charge_below ' , ' density_required ' ,
' symm_op ' , ' n_shells ' , ' shells ' , ' n_corr_shells ' , ' corr_shells ' , ' use_rotations ' , ' rot_mat ' ,
' rot_mat_time_inv ' , ' n_reps ' , ' dim_reps ' , ' T ' , ' n_orbitals ' , ' proj_mat ' , ' bz_weights ' , ' hopping ' ,
2023-01-04 23:16:57 +01:00
' n_inequiv_shells ' , ' corr_to_inequiv ' , ' inequiv_to_corr ' , ' dft_code ' ]
2020-10-09 14:35:28 +02:00
for it in things_to_save :
ar [ self . dft_subgrp ] [ it ] = locals ( ) [ it ]
del ar
# Save it to the HDF:
ar = HDFArchive ( self . hdf_file , ' a ' )
symm_subgrp = self . symmcorr_subgrp
#Elk does not use time inversion symmetry
time_inv = [ 0 for j in range ( n_symm ) ]
2023-01-23 21:40:57 +01:00
mat_tinv = [ numpy . identity ( orbits [ orb ] [ ' dim ' ] , complex )
2020-10-09 14:35:28 +02:00
for orb in range ( n_orbits ) ]
#Save all the symmetry data
if not ( symm_subgrp in ar ) :
ar . create_group ( symm_subgrp )
things_to_save_sym = [ ' n_symm ' , ' n_atoms ' , ' perm ' ,
' orbits ' , ' SO ' , ' SP ' , ' time_inv ' , ' mat ' , ' mat_tinv ' ]
for it in things_to_save_sym :
ar [ symm_subgrp ] [ it ] = locals ( ) [ it ]
del ar
#Save misc info
things_to_save_misc = [ ' band_window ' , ' vkl ' , ' nstsv ' ]
# Save it to the HDF:
ar = HDFArchive ( self . hdf_file , ' a ' )
if not ( self . misc_subgrp in ar ) :
ar . create_group ( self . misc_subgrp )
for it in things_to_save_misc :
ar [ self . misc_subgrp ] [ it ] = locals ( ) [ it ]
del ar
mpi . report ( ' Converted the Elk ground state data ' )
def convert_bands_input ( self ) :
"""
Reads the appropriate files and stores the data for the bands_subgrp in the hdf5 archive .
"""
# Read and write only on the master node
if not ( mpi . is_master_node ( ) ) :
return
filext = ' _WANBAND.OUT '
dft_file = ' PROJ ' + filext
mpi . report ( " Reading %s " % dft_file )
#Energy conversion - Elk uses Hartrees
energy_unit = 27.2113850560 # Elk uses hartrees
shells = [ ]
#read information about projectors calculated in the Elk calculation
[ gen_info , n_corr_shells , n_inequiv_shells , corr_to_inequiv , inequiv_to_corr , corr_shells , n_reps , dim_reps , ind , basis , T ] = read_Elk . read_proj ( self , dft_file )
#get info for HDF5 file from gen_info
n_k = gen_info [ ' n_k ' ]
SP = gen_info [ ' spinpol ' ] - 1
#Elk uses spinor wavefunctions. Therefore these two spinor wavefunctions have spin-orbit coupling incorporated in them. Here we read in the spinors
n_spin_blocs = SP + 1
SO = gen_info [ ' SO ' ]
#Elk only calculates Wannier projectors (no theta projectors generated):
n_shells = n_corr_shells
for ish in range ( n_shells ) :
shells . append ( corr_shells [ ish ] . copy ( ) )
#remove last 2 entries from corr_shlls
del shells [ ish ] [ ' SO ' ]
del shells [ ish ] [ ' irep ' ]
shells [ ish ] [ ' dim ' ] = 2 * shells [ ish ] [ ' l ' ] + 1
#read in the band eigenvalues
mpi . report ( " Reading BAND.OUT " )
en = numpy . loadtxt ( ' BAND.OUT ' )
nstsv = int ( len ( en [ : , 1 ] ) / n_k )
#convert the en array into a workable format
2023-01-23 21:40:57 +01:00
entmp = numpy . zeros ( [ n_k , nstsv ] , complex )
2020-10-09 14:35:28 +02:00
enj = 0
for ist in range ( nstsv ) :
for ik in range ( n_k ) :
entmp [ ik , ist ] = en [ enj , 1 ]
enj + = 1
del en
#read projectors
2023-01-23 21:40:57 +01:00
proj_mat = numpy . zeros ( [ n_k , n_spin_blocs , n_corr_shells , max ( [ crsh [ ' dim ' ] for crsh in corr_shells ] ) , nstsv ] , complex )
2020-10-09 14:35:28 +02:00
mpi . report ( " Reading projector(s) " )
for ish in range ( n_corr_shells ) :
[ n_orbitals , band_window , rep , proj_mat ] = read_Elk . read_projector ( self , corr_shells , n_spin_blocs , ish , proj_mat , ind , T , basis , filext )
#alter arrays for spin-orbit coupling
if ( SO == 1 ) :
mat = [ ]
su2 = [ ]
n_symm = 1
[ shells , corr_shells , dim_reps , n_orbitals , proj_mat , T , mat ] = self . update_so_quatities ( n_shells , shells , n_corr_shells , corr_shells , n_inequiv_shells , dim_reps , n_k , n_symm , n_orbitals , proj_mat , T , su2 , mat , sym = False )
#reduce n_spin_blocs
n_spin_blocs = SP + 1 - SO
#put the energy eigenvalues arrays in TRIQS format
hopping = self . sort_dft_eigvalues ( n_spin_blocs , SO , n_k , n_orbitals , band_window , entmp , energy_unit )
2022-11-10 17:11:28 +01:00
# No partial projectors generated here, so set to 0:
2020-10-09 14:35:28 +02:00
n_parproj = numpy . array ( [ 0 ] )
proj_mat_all = numpy . array ( [ 0 ] )
# Save it to the HDF:
ar = HDFArchive ( self . hdf_file , ' a ' )
if not ( self . bands_subgrp in ar ) :
ar . create_group ( self . bands_subgrp )
# The subgroup containing the data. If it does not exist, it is
# created. If it exists, the data is overwritten!
things_to_save = [ ' n_k ' , ' n_orbitals ' , ' proj_mat ' ,
' hopping ' , ' n_parproj ' , ' proj_mat_all ' ]
for it in things_to_save :
ar [ self . bands_subgrp ] [ it ] = locals ( ) [ it ]
del ar
mpi . report ( ' Converted the band data ' )
2023-04-15 00:43:23 +02:00
def convert_contours_input ( self , kgrid = None , ngrid = None ) :
2023-06-15 21:09:14 +02:00
r """
2023-04-15 00:43:23 +02:00
Reads the appropriate files and stores the data for the cont_subgrp in the hdf5 archive .
2023-06-15 21:09:14 +02:00
Parameters
- - - - - - - - - -
2023-04-15 00:43:23 +02:00
kgrid : size ( 4 , 3 ) double numpy array , optional
2023-06-15 21:09:14 +02:00
Numpy array defining the reciprocal lattice vertices used in the Elk Fermi
surface calculation . Each row has the following meaning :
grid3d [ 0 , : ] - origin lattice vertex
grid3d [ 1 , : ] - b1 lattice vertex
grid3d [ 2 , : ] - b2 lattice vertex
grid3d [ 3 , : ] - b3 lattice vertex
2023-04-15 00:43:23 +02:00
ngrid : size ( 3 ) integer numpy array , optional
2023-06-15 21:09:14 +02:00
Numpy array for the number of points along each ( b1 , b2 , b3 ) lattice vertices
2023-04-15 00:43:23 +02:00
Note that these inputs relate to the plot3d input of Elk .
2020-10-09 14:35:28 +02:00
"""
2023-04-15 00:43:23 +02:00
2020-10-09 14:35:28 +02:00
if not ( mpi . is_master_node ( ) ) :
return
filext = ' _FS.OUT '
dft_file = ' PROJ ' + filext
mpi . report ( " Reading %s " % dft_file )
2023-04-15 00:43:23 +02:00
#read the symmetries and k-points first
#read kpoints calculated in the Elk FS calculation
mpi . report ( " Reading KPOINT_FS.OUT " )
[ bz_weights , vkl ] = read_Elk . read_kpoints ( self , filext = filext )
n_k = vkl [ : , 0 ] . size
#Need lattice symmetries to unfold the irreducible BZ
#Read symmetry files
mpi . report ( " Reading SYMCRYS.OUT " )
[ n_symm , spinmat , symlat , tr ] = read_Elk . readsym ( self )
#generate full vectors for Fermi surface plotting along with index mapping
#to irreducible vector set.
if ( ngrid is not None and kgrid is not None ) :
mpi . report ( ' Using User defined k-mesh ' )
#check variables are in correct format
if ngrid . size != 3 :
assert 0 , " The input numpy ngrid is not the required size of 3! "
2023-04-17 11:58:53 +02:00
elif ngrid . dtype != int :
2023-04-15 00:43:23 +02:00
assert 0 , " The input numpy ngrid is not an array of integers. "
elif kgrid . shape != ( 4 , 3 ) :
assert 0 , " The input numpy kgrid is not the required size of (4x3)! "
#generate full set of k-points with mapping to reduced set
[ BZ_vkl , BZ_iknr , BZ_n_k ] = Elk_tools . plotpt3d ( self , n_k , vkl , n_symm , symlat , kgrid , ngrid )
elif ( ngrid is None and kgrid is None ) :
mpi . report ( ' No grid dimension input for Fermi surface. ' )
mpi . report ( ' Calculating k-points by folding out irreducible vectors instead if using symmetries. ' )
mpi . report ( ' Warning! This may not equate to the same set of vectors used to generate the Fermi surface data. ' )
[ BZ_vkl , BZ_iknr , BZ_n_k ] = Elk_tools . bzfoldout ( self , n_k , vkl , n_symm , symlat )
else :
assert 0 , " Either input both ngrid and kgrid numpy arrays or neither. "
#return all threads apart from master
if not ( mpi . is_master_node ( ) ) :
return
# Read and write the following only on the master thread
2020-10-09 14:35:28 +02:00
#Energy conversion - Elk uses Hartrees
energy_unit = 27.2113850560 # Elk uses hartrees
shells = [ ]
#read information about projectors calculated in the Elk calculation
[ gen_info , n_corr_shells , n_inequiv_shells , corr_to_inequiv , inequiv_to_corr , corr_shells , n_reps , dim_reps , ind , basis , T ] = read_Elk . read_proj ( self , dft_file )
#get info for HDF5 file from gen_info
n_k = gen_info [ ' n_k ' ]
SP = gen_info [ ' spinpol ' ] - 1
#Elk uses spinor wavefunctions. Therefore these two spinor wavefunctions have spin-orbit coupling incorporated in them. Here we read in the spinors
n_spin_blocs = SP + 1
SO = gen_info [ ' SO ' ]
#Elk only calculates Wannier projectors (no theta projectors generated):
n_shells = n_corr_shells
for ish in range ( n_shells ) :
shells . append ( corr_shells [ ish ] . copy ( ) )
#remove last 2 entries from corr_shlls
del shells [ ish ] [ ' SO ' ]
del shells [ ish ] [ ' irep ' ]
shells [ ish ] [ ' dim ' ] = 2 * shells [ ish ] [ ' l ' ] + 1
#read in the eigenvalues used for the FS calculation
mpi . report ( " Reading EIGVAL_FS.OUT and EFERMI.OUT " )
[ en , occ , nstsv ] = read_Elk . read_eig ( self , filext = filext )
#read projectors
2023-04-17 11:58:53 +02:00
proj_mat = numpy . zeros ( [ n_k , n_spin_blocs , n_corr_shells , max ( [ crsh [ ' dim ' ] for crsh in corr_shells ] ) , nstsv ] , complex )
2020-10-09 14:35:28 +02:00
mpi . report ( " Reading projector(s) " )
for ish in range ( n_corr_shells ) :
[ n_orbitals , band_window , rep , proj_mat ] = read_Elk . read_projector ( self , corr_shells , n_spin_blocs , ish , proj_mat , ind , T , basis , filext )
mpi . report ( " Reading LATTICE.OUT " )
2023-04-15 00:43:23 +02:00
[ amat , amatinv , bmat , bmatinv , cell_vol ] = read_Elk . readlat ( self )
2020-10-09 14:35:28 +02:00
#Put eigenvalues into array of eigenvalues for the correlated window
#alter arrays for spin-orbit coupling
if ( SO == 1 ) :
mat = [ ]
su2 = [ ]
[ shells , corr_shells , dim_reps , n_orbitals , proj_mat , T , mat ] = self . update_so_quatities ( n_shells , shells , n_corr_shells , corr_shells , n_inequiv_shells , dim_reps , n_k , n_symm , n_orbitals , proj_mat , T , su2 , mat , sym = False )
2023-04-15 00:43:23 +02:00
#reduce n_spin_blocs
2020-10-09 14:35:28 +02:00
n_spin_blocs = SP + 1 - SO
#put the energy eigenvalues arrays in TRIQS format
hopping = self . sort_dft_eigvalues ( n_spin_blocs , SO , n_k , n_orbitals , band_window , en , energy_unit )
# Save it to the HDF:
ar = HDFArchive ( self . hdf_file , ' a ' )
2023-04-15 00:43:23 +02:00
if not ( self . cont_subgrp in ar ) :
ar . create_group ( self . cont_subgrp )
2020-10-09 14:35:28 +02:00
# The subgroup containing the data. If it does not exist, it is
# created. If it exists, the data is overwritten!
2023-04-15 00:43:23 +02:00
things_to_save = [ ' n_k ' , ' n_orbitals ' , ' proj_mat ' , ' bmat ' ,
' BZ_n_k ' , ' BZ_iknr ' , ' BZ_vkl ' , ' hopping ' ]
2020-10-09 14:35:28 +02:00
for it in things_to_save :
2023-04-15 00:43:23 +02:00
ar [ self . cont_subgrp ] [ it ] = locals ( ) [ it ]
2020-10-09 14:35:28 +02:00
del ar
2023-04-15 00:43:23 +02:00
mpi . report ( ' Converted the Contours data ' )
2023-06-19 15:34:47 +02:00
# commented out for now - unsure using this produces DFT+DMFT PDOS.
# The data from BC.OUT are the band-resolved diagonal muffin-tin DFT density matrix elements used in Elk to calculate PDOS
# (the PDOS is calculated from the Trace over the bands indices). Although this is equivalent to using using projectors in DFT and is likely valid for DFT+DMFT,
# the equivalence needs to be thoroughly checked for DFT+DMFT, but would require theta (or similar) projectors from Elk to do so.
# code left here just in case.
2023-04-15 00:43:23 +02:00
# def dft_band_characters(self):
# """
# Reads in the band-resolved muffin-tin density matrix (band characters) generated in Elk
# to be used for PDOS plots.
# """
# #determine file extension
# fileext='.OUT'
# #read number of k-points and eigenstates
# things_to_read = ['n_k','n_orbitals']
# ar = HDFArchive(self.hdf_file, 'r')
# for it in things_to_read:
# setattr(self, it, ar[self.dft_subgrp][it])
# del ar
# if not (mpi.is_master_node()):
# return
# mpi.report("Reading BC%s"%(fileext))
# # get needed data from hdf file
# # from general info
# ar = HDFArchive(self.hdf_file, 'a')
# things_to_read = ['SP', 'SO']
# for it in things_to_read:
# if not hasattr(self, it):
# setattr(self, it, ar[self.dft_subgrp][it])
# #from misc info
# things_to_read = ['nstsv','band_window']
# for it in things_to_read:
# if not hasattr(self, it):
# setattr(self, it, ar[self.misc_subgrp][it])
# #from sym info
# things_to_read = ['n_atoms','perm']
# symm_subgrp=self.symmcorr_subgrp
# for it in things_to_read:
# if not hasattr(self, it):
# setattr(self, it, ar[symm_subgrp][it])
# del ar
# #read in band characters
# [bc,maxlm] = read_Elk.read_bc(self,fileext)
#note that bc is the band resolved inner product of the Elk muffin-tin wave functions in
#a diagonal lm basis (by default). These are used in Elk to calculate the DOS in a diagonal
#irreducible lm basis. This band resolved density matrix in the lm basis will be used
#to project to spectral funtion to get the muffin-tin contributions. There will be an
#interstitial contribution (as Elk uses an APW+lo basis) which is the difference between
#the total and summed muffin-tin contributions. Also note that the bc array should be
#symmetrised within Elk.
#general variables
# lmax = int(numpy.sqrt(maxlm)-1)
# n_spin_blocs = self.SP + 1 - self.SO
# so = self.SO + 1
# #get the sort entry which is just the species index for Elk
# [ns, na, atpos]=read_Elk.read_geometry(self)
# isrt=0
2023-04-17 11:58:53 +02:00
# sort=numpy.zeros([self.n_atoms],int)
2023-04-15 00:43:23 +02:00
# #arrange sort(species) order
# for i in range(ns):
# for ia in range(na[i]):
# sort[isrt]=i
# isrt+=1
# #updating n_shells to include all the atoms and l used in the Elk calculation.
# n_shells = self.n_atoms * (lmax+1)
# shells = []
# shell_entries = ['atom', 'sort', 'l', 'dim']
# for iat in range(self.n_atoms):
# for l in range(lmax+1):
# #sort is not known from Elk outputs
# tmp = [iat+1, sort[iat]+1, l, so*(2*l+1)]
# shells.append({name: int(val) for name, val in zip(shell_entries, tmp)})
# del tmp, ns, na, atpos, isrt, shell_entries
# #overwrite n_shells and shells
# things_to_save = ['n_shells', 'shells']
# ar = HDFArchive(self.hdf_file, 'a')
# for it in things_to_save:
# ar[self.dft_subgrp][it] = locals()[it]
# # Initialise P, here a double list of matrices:
2023-04-17 11:58:53 +02:00
# band_dens_muffin = numpy.zeros([self.n_k, n_spin_blocs, n_shells, so*(2*lmax+1), numpy.max(self.n_orbitals)], float)
2023-04-15 00:43:23 +02:00
# for ik in range(self.n_k):
# for isp in range(n_spin_blocs):
# ish=0
# for iat in range(self.n_atoms):
# for l in range(lmax+1):
# #variables for putting subset of bc in proj_mat_all
# lm_min=l**2
# lm_max=(l+1)**2
# nst=self.n_orbitals[ik,isp]
# ibot=self.band_window[isp][ik, 0]-1
# itop=ibot+nst
# dim=l*2+1
#check use of abs (negative values should be close to 0)
# band_dens_muffin[ik,isp,ish,0:dim,0:nst] = \
# bc[lm_min:lm_max,isp,iat,ibot:itop,ik]
# if(self.SO==1):
# band_dens_muffin[ik,isp,ish,dim:2*dim,0:nst] = \
# bc[lm_min:lm_max,1,iat,ibot:itop,ik]
# ish+=1
# things_to_save = ['band_dens_muffin']
# # Save it all to the HDF:
# with HDFArchive(self.hdf_file, 'a') as ar:
# if not (self.bc_subgrp in ar):
# ar.create_group(self.bc_subgrp)
# # The subgroup containing the data. If it does not exist, it is
# # created. If it exists, the data is overwritten!
# things_to_save = ['band_dens_muffin']
# for it in things_to_save:
# ar[self.bc_subgrp][it] = locals()[it]
2020-10-09 14:35:28 +02:00
2023-01-04 23:16:57 +01:00
def convert_transport_input ( self ) :
"""
Reads the necessary information for transport calculations on :
- the optical band window and the velocity matrix elements from : file : ` case . pmat `
and stores the data in the hdf5 archive .
"""
if not ( mpi . is_master_node ( ) ) :
return
# get needed data from hdf file
with HDFArchive ( self . hdf_file , ' r ' ) as ar :
if not ( self . dft_subgrp in ar ) :
raise IOError ( " convert_transport_input: No %s subgroup in hdf file found! Call convert_dft_input first. " % self . dft_subgrp )
things_to_read = [ ' SP ' , ' SO ' , ' n_k ' , ' n_orbitals ' ]
for it in things_to_read :
if not hasattr ( self , it ) :
setattr ( self , it , ar [ self . dft_subgrp ] [ it ] )
#from misc info
things_to_read = [ ' band_window ' , ' vkl ' , ' nstsv ' ]
for it in things_to_read :
if not hasattr ( self , it ) :
setattr ( self , it , ar [ self . misc_subgrp ] [ it ] )
#unlike in WIEN2k, Elk writes the velocities (momentum) matrix elements for all bands.
#Therefore, we can use the indices in the n_orbitals array to extract the desired elements.
#However, the PMAT.OUT file is in Fortran-binary, so the file is read in by python wrappers
#around the reading fortran code.
# Read relevant data from PMAT.OUT binary file
###########################################
# band_window_optics: same as Elk converter's band_window, but rearranged to be compatible
# for the transport calculations.
# velocities_k: velocity (momentum) matrix elements between all bands in band_window_optics
# and each k-point.
#load fortran wrapper module
import triqs_dft_tools . converters . elktools . elkwrappers . getpmatelk as et
#elk velocities for all bands
pmat = numpy . zeros ( [ self . nstsv , self . nstsv , 3 ] , dtype = complex )
n_spin_blocks = self . SP + 1 - self . SO
#TRIQS' velocities array used in its transport routines
velocities_k = [ [ ] for isp in range ( n_spin_blocks ) ]
#TRIQS' band_window array used in its transport routines
band_window_optics = [ ]
mpi . report ( " Reading PMAT.OUT " )
#read velocities for each k-point
for ik in range ( self . n_k ) :
#need to use a fortran array for wrapper
f_vkl = numpy . asfortranarray ( self . vkl [ ik , : ] )
#read the ik velocity using the wrapper
pmat [ : , : , : ] = et . getpmatelk ( ik + 1 , self . nstsv , f_vkl )
#loop over spin
for isp in range ( n_spin_blocks ) :
#no. correlated bands at ik
nu1 = self . band_window [ isp ] [ ik , 0 ] - 1
nu2 = self . band_window [ isp ] [ ik , 1 ] - 1
n_bands = nu2 - nu1 + 1
#put into velocity array (code similar to that in wien.py.
if n_bands < = 0 :
velocity_xyz = numpy . zeros ( ( 1 , 1 , 3 ) , dtype = complex )
else :
velocity_xyz = numpy . zeros (
( n_bands , n_bands , 3 ) , dtype = complex )
#CHECK these lines
velocity_xyz [ : , : , : ] = pmat [ nu1 : nu2 + 1 , nu1 : nu2 + 1 , : ]
velocities_k [ isp ] . append ( velocity_xyz )
#rearrange Elk's band_window array into band_window_optics array format
for isp in range ( n_spin_blocks ) :
band_window_optics_isp = [ ]
for ik in range ( self . n_k ) :
nu1 = self . band_window [ isp ] [ ik , 0 ]
nu2 = self . band_window [ isp ] [ ik , 1 ]
band_window_optics_isp . append ( ( nu1 , nu2 ) )
n_bands = nu2 - nu1 + 1
band_window_optics . append ( numpy . array ( band_window_optics_isp ) )
#read in the cell volume from LATTICE.OUT
mpi . report ( " Reading LATTICE.OUT " )
[ amat , amatinv , bmat , bmatinv , cell_vol ] = read_Elk . readlat ( self )
#read in the crystal symmetries
mpi . report ( " Reading SYMCRYS.OUT " )
[ n_symmetries , spinmat , rot_symmetries , tr ] = read_Elk . readsym ( self )
# Put data to HDF5 file
with HDFArchive ( self . hdf_file , ' a ' ) as ar :
if not ( self . transp_subgrp in ar ) :
ar . create_group ( self . transp_subgrp )
# The subgroup containing the data. If it does not exist, it is
# created. If it exists, the data is overwritten!!!
things_to_save = [ ' band_window_optics ' , ' velocities_k ' ]
for it in things_to_save :
ar [ self . transp_subgrp ] [ it ] = locals ( ) [ it ]
things_to_save_misc = [ ' n_symmetries ' , ' rot_symmetries ' , ' cell_vol ' ]
for it in things_to_save_misc :
ar [ self . misc_subgrp ] [ it ] = locals ( ) [ it ]
mpi . report ( " Reading complete! " )