3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/triqs/lattice/tight_binding.hpp

92 lines
3.9 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_LATTICE_TIGHTBINDINGS_H
#define TRIQS_LATTICE_TIGHTBINDINGS_H
#include "bravais_lattice_and_brillouin_zone.hpp"
namespace triqs { namespace lattice_tools {
/**
For tightbinding Hamiltonian with fully localised orbitals
Model the ShortRangeFunctionOnBravaisLattice concept.
Overlap between orbital is taken as unit matrix.
*/
class tight_binding {
typedef std::vector<std::pair<std::vector<long>, matrix<dcomplex>>> displ_value_stack_t;
displ_value_stack_t displ_value_stack;
bravais_lattice bl_;
public :
typedef std::vector<long> arg_type;
///
tight_binding (bravais_lattice const & bl) : bl_(bl) {};
/// Underlying lattice
bravais_lattice const & lattice() const { return bl_;}
/// Number of bands, i.e. size of the matrix t(k)
size_t n_bands() const { return bl_.n_orbitals();}
/**
* Push_back mechanism of a pair displacement -> matrix
* VectorIntType is anything from which a std::vector<long> can be constructed
* MatrixDComplexType is anything from which a matrix<dcomplex> can be constructed
*/
template<typename VectorIntType, typename MatrixDComplexType>
void push_back(VectorIntType && v, MatrixDComplexType && m) {
std::vector<long> V(std::forward<VectorIntType>(v));
if (v.size() != bl_.dim()) TRIQS_RUNTIME_ERROR<<"tight_binding : displacement of incorrect size : got "<< v.size() << "instead of "<< bl_.dim();
matrix<dcomplex> M(std::forward<MatrixDComplexType>(m));
if (first_dim(M) != n_bands()) TRIQS_RUNTIME_ERROR<<"tight_binding : the first dim matrix is of size "<< first_dim(M) <<" instead of "<< n_bands();
if (second_dim(M) != n_bands()) TRIQS_RUNTIME_ERROR<<"tight_binding : the first dim matrix is of size "<< second_dim(M) <<" instead of "<< n_bands();
displ_value_stack.push_back(std::make_pair(std::move(V), std::move(M)));
}
void reserve(size_t n) { displ_value_stack.reserve(n);}
// iterators
typedef displ_value_stack_t::const_iterator const_iterator;
typedef displ_value_stack_t::iterator iterator;
const_iterator begin() const { return displ_value_stack.begin();}
const_iterator end() const { return displ_value_stack.end();}
iterator begin() { return displ_value_stack.begin();}
iterator end() { return displ_value_stack.end();}
};
/**
Factorized version of hopping (for speed)
k_in[:,n] is the nth vector
In the result, R[:,:,n] is the corresponding hopping t(k)
*/
array_view <dcomplex,3> hopping_stack (tight_binding const & TB, array_view<double,2> const & k_stack);
// not optimal ordering here
std::pair<array<double,1>, array<double,2> > dos(tight_binding const & TB, size_t nkpts, size_t neps);
std::pair<array<double,1>, array<double,1> > dos_patch(tight_binding const & TB, const array<double,2> & triangles, size_t neps, size_t ndiv);
array_view<double,2> energies_on_bz_path(tight_binding const & TB, K_view_type K1, K_view_type K2, size_t n_pts);
array_view<double,2> energies_on_bz_grid(tight_binding const & TB, size_t n_pts);
}}
#endif