3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-27 13:00:49 +01:00
dft_tools/triqs/gfs/meshes/product.hpp

272 lines
9.6 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012-2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include "./mesh_tools.hpp"
#include "../domains/product.hpp"
#include <triqs/utility/tuple_tools.hpp>
#include <triqs/utility/mini_vector.hpp>
[API change] gf : factories -> constructors - Make more general constructors for the gf. gf( mesh, target_shape_t) - remove the old make_gf for the basic gf. - 2 var non generic gf removed. - clean evaluator - add tensor_valued - add a simple vertex test. - clean specialisation - Fix bug introduced in 1906dc3 - forgot to resize the gf in new version of operator = - Fix make_singularity in gf.hpp - clean resize in operator = - update h5 read/write for block gf - changed a bit the general trait to save *all* the gf. - allows a more general specialization, then a correct for blocks - NOT FINISHED : need to save the block indice for python. How to reread ? Currently it read the blocks names and reconstitute the mesh from it. Is it sufficient ? - clean block constructors - block constructors simplest possible : an int for the number of blocks - rest in free factories. - fixed the generic constructor from GfType for the regular type : only enable iif GfType is ImmutableGreenFunction - multivar. fix linear index in C, and h5 format - linear index now correctly flatten in C mode (was in fortran mode), using a simple reverse of the tuple in the folding. - fix the h5 read write of the multivar fonctions in order to write an array on dimension # variables + dim_target i.e. without flattening the indices of the meshes. Easier for later data analysis, e.g. in Python. - merge matrix/tensor_valued. improve factories - matrix_valued now = tensor_valued<2> (simplifies generic code for h5). - factories_one_var -> factories : this is the generic case ... only a few specialization, code is simpler. - clef expression call with rvalue for *this - generalize matrix_proxy to tensor and clean - clean exception catch in tests - exception catching catch in need in test because the silly OS X does not print anything, just "exception occurred". Very convenient for the developer... - BUT, one MUST add return 1, or the make test will *pass* !! - --> systematically replace the catch by a macro TRIQS_CATCH_AND_ABORT which return a non zero error code. - exception : curry_and_fourier which does not work at this stage (mesh incompatible). - gf: clean draft of gf 2 times - comment the python interface for the moment. - rm useless tests
2013-10-16 23:55:26 +02:00
#include <triqs/utility/c14.hpp>
namespace triqs {
namespace gfs {
/** Cartesian product of meshes
*/
template <typename... Meshes> struct mesh_product : tag::composite {
using domain_t = domain_product<typename Meshes::domain_t...>;
using index_t = std::c14::tuple<typename Meshes::index_t...>;
using m_tuple_t = std::tuple<Meshes...>;
using m_pt_tuple_t = std::tuple<typename Meshes::mesh_point_t...>;
using domain_pt_t = typename domain_t::point_t;
static constexpr int dim = sizeof...(Meshes);
mesh_product() {}
mesh_product(Meshes const &... meshes) : m_tuple(meshes...), _dom(meshes.domain()...) {}
domain_t const &domain() const { return _dom; }
m_tuple_t const &components() const { return m_tuple; }
m_tuple_t &components() { return m_tuple; }
private:
struct _aux0 {
template <typename M> size_t operator()(M const &m, size_t R) { return R * m.size(); }
};
public:
/// size of the mesh is the product of size
size_t size() const { return triqs::tuple::fold(_aux0(), m_tuple, 1); }
private:
struct _aux1 {
template <typename P, typename M, typename I> void operator()(P &p, M const &m, I const &i) { p = m.index_to_point(i); }
};
2013-10-06 22:10:42 +02:00
public:
/// Conversions point <-> index <-> linear_index
typename domain_t::point_t index_to_point(index_t const &ind) const {
domain_pt_t res;
triqs::tuple::apply_on_zip(_aux1(), res, m_tuple, ind);
return res;
}
private:
struct _aux2 {
template <typename I, typename M> size_t operator()(M const &m, I const &i, size_t R) {
return m.index_to_linear(i) + R * m.size();
}
};
public:
/// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....))
size_t index_to_linear(index_t const &ii) const {
return triqs::tuple::fold_on_zip(_aux2(), reverse(m_tuple), reverse(ii), size_t(0));
}
// size_t index_to_linear(index_t const & ii) const { return triqs::tuple::fold_on_zip([](auto const &m, auto const &i, auto R)
//{return m.index_to_linear(i) + R * m.size();} , m_tuple, ii, size_t(0)); }
private:
struct _aux3 {
template <typename P, typename M> size_t operator()(M const &m, P const &p, size_t R) {
return p.linear_index() + R * m.size();
}
};
public:
/// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....))
size_t mp_to_linear(m_pt_tuple_t const &mp) const {
return triqs::tuple::fold_on_zip(_aux3(), reverse(m_tuple), reverse(mp), size_t(0));
}
//
private:
struct _aux4 {
template <typename M, typename V> V *operator()(M const &m, V *v) {
*v = m.size();
return ++v;
}
};
public:
utility::mini_vector<size_t, dim> all_size_as_mini_vector() const {
utility::mini_vector<size_t, dim> res;
triqs::tuple::fold(_aux4(), m_tuple, &res[0]);
return res;
}
// Same but a variadic list of mesh_point_t
template <typename... MP> size_t mesh_pt_components_to_linear(MP const &... mp) const {
static_assert(std::is_same<std::tuple<MP...>, m_pt_tuple_t>::value, "Call incorrect ");
// static_assert(std::is_same< std::tuple<typename std::remove_cv<typename std::remove_reference<MP>::type>::type...>,
// m_pt_tuple_t>::value, "Call incorrect ");
return mp_to_linear(std::forward_as_tuple(mp...));
} // speed test ? or make a variadic fold...
/// The wrapper for the mesh point
class mesh_point_t : tag::mesh_point {
const mesh_product *m;
m_pt_tuple_t _c;
bool _atend;
struct F2 {
template <typename M> typename M::mesh_point_t operator()(M const &m, typename M::index_t const &i) const { return m[i]; }
};
struct F1 {
template <typename M> typename M::mesh_point_t operator()(M const &m) const { return {m}; }
};
public:
mesh_point_t() = default;
mesh_point_t(mesh_product const &m_, index_t index_)
: m(&m_), _c(triqs::tuple::apply_on_zip(F2(), m_.m_tuple, index_)), _atend(false) {}
mesh_point_t(mesh_product const &m_) : m(&m_), _c(triqs::tuple::apply_on_tuple(F1(), m_.m_tuple)), _atend(false) {}
m_pt_tuple_t const &components_tuple() const { return _c; }
size_t linear_index() const { return m->mp_to_linear(_c); }
const mesh_product *mesh() const { return m; }
using cast_t = domain_pt_t;
operator cast_t() const { return m->index_to_point(index); }
// index[0] +=1; if index[0]==m.component[0].size() { index[0]=0; index[1] +=1; if ....} and so on until dim
private:
struct _aux1 {
template <typename P> bool operator()(P &p, bool done) {
if (done) return true;
p.advance();
if (!p.at_end()) return true;
p.reset();
return false;
}
};
public:
void advance() { triqs::tuple::fold(_aux1(), _c, false); }
// index_t index() const { return _index;} // not implemented yet
bool at_end() const { return _atend; }
private:
struct _aux {
template <typename M> size_t operator()(M &m, size_t) {
m.reset();
return 0;
}
};
public:
void reset() {
_atend = false;
triqs::tuple::fold(_aux(), _c, 0);
}
}; // end mesh_point_t
/// Accessing a point of the mesh
mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); }
mesh_point_t operator()(typename Meshes::index_t... i) const { return (*this)[std::make_tuple(i...)]; }
[API change] gf : factories -> constructors - Make more general constructors for the gf. gf( mesh, target_shape_t) - remove the old make_gf for the basic gf. - 2 var non generic gf removed. - clean evaluator - add tensor_valued - add a simple vertex test. - clean specialisation - Fix bug introduced in 1906dc3 - forgot to resize the gf in new version of operator = - Fix make_singularity in gf.hpp - clean resize in operator = - update h5 read/write for block gf - changed a bit the general trait to save *all* the gf. - allows a more general specialization, then a correct for blocks - NOT FINISHED : need to save the block indice for python. How to reread ? Currently it read the blocks names and reconstitute the mesh from it. Is it sufficient ? - clean block constructors - block constructors simplest possible : an int for the number of blocks - rest in free factories. - fixed the generic constructor from GfType for the regular type : only enable iif GfType is ImmutableGreenFunction - multivar. fix linear index in C, and h5 format - linear index now correctly flatten in C mode (was in fortran mode), using a simple reverse of the tuple in the folding. - fix the h5 read write of the multivar fonctions in order to write an array on dimension # variables + dim_target i.e. without flattening the indices of the meshes. Easier for later data analysis, e.g. in Python. - merge matrix/tensor_valued. improve factories - matrix_valued now = tensor_valued<2> (simplifies generic code for h5). - factories_one_var -> factories : this is the generic case ... only a few specialization, code is simpler. - clef expression call with rvalue for *this - generalize matrix_proxy to tensor and clean - clean exception catch in tests - exception catching catch in need in test because the silly OS X does not print anything, just "exception occurred". Very convenient for the developer... - BUT, one MUST add return 1, or the make test will *pass* !! - --> systematically replace the catch by a macro TRIQS_CATCH_AND_ABORT which return a non zero error code. - exception : curry_and_fourier which does not work at this stage (mesh incompatible). - gf: clean draft of gf 2 times - comment the python interface for the moment. - rm useless tests
2013-10-16 23:55:26 +02:00
/// Iterating on all the points...
using const_iterator = mesh_pt_generator<mesh_product>;
const_iterator begin() const { return const_iterator(this); }
const_iterator end() const { return const_iterator(this, true); }
const_iterator cbegin() const { return const_iterator(this); }
const_iterator cend() const { return const_iterator(this, true); }
/// Mesh comparison
friend bool operator==(mesh_product const &M1, mesh_product const &M2) { return M1.m_tuple == M2.m_tuple; }
private:
/// Write into HDF5
struct _auxh5w {
h5::group gr;
_auxh5w(h5::group gr_) : gr(gr_) {} // icc has yet another bug on new initialization form with {}...
template <typename M> size_t operator()(M const &m, size_t N) {
std::stringstream fs;
fs << "MeshComponent" << N;
h5_write(gr, fs.str(), m);
return N + 1;
}
};
friend void h5_write(h5::group fg, std::string subgroup_name, mesh_product const &m) {
h5::group gr = fg.create_group(subgroup_name);
// h5_write(gr,"domain",m.domain());
triqs::tuple::fold(_auxh5w(gr), m.components(), size_t(0));
}
/// Read from HDF5
struct _auxh5r {
h5::group gr;
_auxh5r(h5::group gr_) : gr(gr_) {}
template <typename M> size_t operator()(M &m, size_t N) {
std::stringstream fs;
fs << "MeshComponent" << N;
h5_read(gr, fs.str(), m);
return N + 1;
}
};
friend void h5_read(h5::group fg, std::string subgroup_name, mesh_product &m) {
h5::group gr = fg.open_group(subgroup_name);
// h5_read(gr,"domain",m._dom);
triqs::tuple::fold(_auxh5r(gr), m.components(), size_t(0));
}
// BOOST Serialization
friend class boost::serialization::access;
template <typename Archive> struct _aux_ser {
Archive &ar;
_aux_ser(Archive &ar_) : ar(ar_) {}
template <typename M> size_t operator()(M &m, size_t N) {
std::stringstream fs;
fs << "MeshComponent" << N;
ar &boost::serialization::make_nvp(fs.str().c_str(), m);
return N + 1;
}
};
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
triqs::tuple::fold(_aux_ser<Archive>(ar), m_tuple, size_t(0));
}
friend std::ostream &operator<<(std::ostream &sout, mesh_product const &m) { return sout << "Product Mesh"; }
private:
m_tuple_t m_tuple;
domain_t _dom;
};
template <int pos, typename P> auto get_index(P const &p) DECL_AND_RETURN(std::get<pos>(p.components_tuple()).index());
template <int pos, typename P>
auto get_point(P const &p)
DECL_AND_RETURN(std::get<pos>(p.mesh() -> components()).index_to_point(std::get<pos>(p.components_tuple()).index()));
template <int pos, typename P> auto get_component(P const &p) DECL_AND_RETURN(std::get<pos>(p.components_tuple()));
// Given a composite mesh m , and a linear array of storage A
// reinterpret_linear_array(m,A) returns a d-dimensionnal view of the array
// with indices egal to the indices of the components of the mesh.
// Very useful for slicing, currying functions.
template <typename... Meshes, typename T, ull_t OptionsFlags, ull_t To, int R, bool B, bool C>
arrays::array_view<T, sizeof...(Meshes) + R - 1, OptionsFlags, To, true, C>
reinterpret_linear_array(mesh_product<Meshes...> const &m, arrays::array_view<T, R, OptionsFlags, To, B, C> A) {
return {{join(m.all_size_as_mini_vector(), get_shape(A).front_pop())}, A.storage()};
}
}
}