3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-21 11:53:41 +01:00
dft_tools/fortran/dmftproj/outband.f

288 lines
11 KiB
FortranFixed
Raw Normal View History

2013-07-23 19:49:42 +02:00
c ******************************************************************************
c
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
c
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
c
c TRIQS is free software: you can redistribute it and/or modify it under the
c terms of the GNU General Public License as published by the Free Software
c Foundation, either version 3 of the License, or (at your option) any later
c version.
c
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
c details.
c
c You should have received a copy of the GNU General Public License along with
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
c
c *****************************************************************************/
SUBROUTINE outband
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C %% %%
C %% This subroutine creates the output file case.outband, with all %%
C %% the informations necessary for the computation of the spectral %%
C %% function of the system. %%
C %% %%
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C Definition of the variables :
C -----------------------------
USE almblm_data
USE bands
USE common_data
USE file_names
USE prnt
USE projections
USE reps
IMPLICIT NONE
C
INTEGER :: iorb, icrorb, irep, isrt
INTEGER :: l, m, is, i1, i2, i
INTEGER :: ik, il, ib, ir, n
INTEGER :: ind1, ind2, iatom
C
WRITE(buf,'(a)')'Writing the file case.outband...'
CALL printout(0)
C
C ======================================
C Informations about the chosen k-path :
C ======================================
C
C Number of k-points along the chosen k-path
WRITE(ouband,'(i6)') nkband
C Description of the number of bands in the energy window at each k_point
C
DO is=1,ns
C If SO is considered, the number of up and dn bands are the same.
IF ((ifSP.AND.ifSO).and.(is.eq.2)) cycle
DO ik=1,nk
WRITE(ouband,'(i6)')
& ABS(kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1)
ENDDO ! End of the ik loop
ENDDO ! End of the is loop
C for each k-point, the number of band included in the energy window is written.
C ===========================================================
C Description of the projectors for the correlated orbitals :
C ===========================================================
DO ik=1,nk
DO icrorb=1,ncrorb
l=crorb(icrorb)%l
isrt=crorb(icrorb)%sort
C
C The case l=0 is a particular case of "non-mixing" basis.
C --------------------------------------------------------
IF (l==0) THEN
C For the s-orbitals, the only irep possible is the matrix itself.
DO is=1,ns
WRITE(ouband,*)
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(1,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
ENDDO
DO is=1,ns
WRITE(ouband,*)
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(1,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
ENDDO
C
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
C ---------------------------------------------------------------------------------------------
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
C In this case, the SO is necessary considered, spinor rotation matrices are used.
IF(crorb(icrorb)%ifsplit) THEN
C If only 1 irep is correlated
ind1=1
DO irep=1,reptrans(l,isrt)%nreps
IF(crorb(icrorb)%correp(irep)) THEN
ind2=ind1+reptrans(l,isrt)%dreps(irep)-1
DO m=ind1,ind2
WRITE(ouband,*)
& REAL(pr_crorb(icrorb,ik,1)%mat_rep(m,
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
ENDDO
DO m=ind1,ind2
WRITE(ouband,*)
& AIMAG(pr_crorb(icrorb,ik,1)%mat_rep(m,
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
ENDDO
ENDIF
ind1=ind1+reptrans(l,isrt)%dreps(irep)
ENDDO
ELSE
C If no particular irep is correlated
DO m=1,2*(2*l+1)
WRITE(ouband,*)
& REAL(pr_crorb(icrorb,ik,1)%mat_rep(m,
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
ENDDO
DO m=1,2*(2*l+1)
WRITE(ouband,*)
& AIMAG(pr_crorb(icrorb,ik,1)%mat_rep(m,
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
ENDDO
ENDIF
C
C If the basis representation can be reduce to the up/up block (basis without "mixing").
C --------------------------------------------------------------------------------------
ELSE
IF ((.not.(ifSP.AND.ifSO)).AND.crorb(icrorb)%ifsplit) THEN
C If only 1 irep is correlated (case without SO)
ind1=-l
DO irep=1,reptrans(l,isrt)%nreps
IF(crorb(icrorb)%correp(irep)) THEN
ind2=ind1+reptrans(l,isrt)%dreps(irep)-1
DO is=1,ns
DO m=ind1,ind2
WRITE(ouband,*)
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(m,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
ENDDO
ENDDO
DO is=1,ns
DO m=ind1,ind2
WRITE(ouband,*)
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(m,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
ENDDO
ENDDO
ENDIF
ind1=ind1+reptrans(l,isrt)%dreps(irep)
ENDDO
ELSE
C If no particular irep is correlated (case with and without SO)
DO is=1,ns
DO m=-l,l
WRITE(ouband,*)
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(m,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
ENDDO
ENDDO
DO is=1,ns
DO m=-l,l
WRITE(ouband,*)
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(m,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
ENDDO
ENDDO
END IF ! End of the ifsplit if-then-else
END IF ! End of the ifmixing if-then-else
END DO ! End of the icrorb loop
END DO ! End of the ik loop
C for each k-point and each correlated orbital, the corresponding projector is described by :
C - the real part of the "correlated" submatrix
C - the imaginary part of the "correlated" submatrix
C
C ======================================================
C Description of the Hamiltonian H(k) at each k_point :
C ======================================================
DO is=1,ns
DO ik=1,nk
C If SO is considered, the numbers of up and dn bands are the same.
IF (ifSO.and.is.eq.2) cycle
DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top
WRITE(ouband,*) kp(ik,is)%eband(ib)
ENDDO
ENDDO ! End of the ik loop
ENDDO ! End of the is loop
C for each spin value is and each k-point,
C - the energies of the band with spin is at point k
C
C ================================================================
C Description of the size of the basis for each included orbital :
C ================================================================
DO iorb=1,norb
WRITE(ouband,'(3(i6))') norm_radf(iorb)%n
ENDDO
C There is not more than 1 LO for each orbital (hence n < 4 )
C
C ====================================
C Description of the Theta projector :
C ====================================
DO iorb=1,norb
l=orb(iorb)%l
isrt=orb(iorb)%sort
C
C The case l=0 is a particular case of "non-mixing" basis.
C --------------------------------------------------------
IF (l==0) THEN
DO ik=1,nk
DO ir=1,norm_radf(iorb)%n
DO is=1,ns
WRITE(ouband,*)
& REAL(pr_orb(iorb,ik,is)%matn_rep(1,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
ENDDO
DO is=1,ns
WRITE(ouband,*)
& AIMAG(pr_orb(iorb,ik,is)%matn_rep(1,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
ENDDO
ENDDO ! End of the ir loop
ENDDO ! End of the ik loop
C
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
C ---------------------------------------------------------------------------------------------
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
C In this case, the calculation is necessary spin-polarized with SO, spinor rotation matrices are used.
DO ik=1,nk
DO ir=1,norm_radf(iorb)%n
DO m=1,2*(2*l+1)
WRITE(ouband,*)
& REAL(pr_orb(iorb,ik,1)%matn_rep(m,
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top,ir))
ENDDO
DO m=1,2*(2*l+1)
WRITE(ouband,*)
& AIMAG(pr_orb(iorb,ik,1)%matn_rep(m,
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top,ir))
ENDDO
ENDDO ! End of the ir loop
ENDDO ! End of the ik loop
C
C If the basis representation can be reduce to the up/up block (basis without "mixing").
C --------------------------------------------------------------------------------------
ELSE
DO ik=1,nk
DO ir=1,norm_radf(iorb)%n
DO is=1,ns
DO m=-l,l
WRITE(ouband,*)
& REAL(pr_orb(iorb,ik,is)%matn_rep(m,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
ENDDO
ENDDO ! End of the is loop
DO is=1,ns
DO m=-l,l
WRITE(ouband,*)
& AIMAG(pr_orb(iorb,ik,is)%matn_rep(m,
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
ENDDO
ENDDO ! End of the is loop
ENDDO ! End of the ir loop
ENDDO ! End of the ik loop
ENDIF ! End of the ifmixing if-then-else
ENDDO ! End of the iorb loop
C for each included orbital, for each k-point and each |phi_j> elmt,
C the corresponding Thetaprojector is described by :
C - the real part of the matrix
C - the imaginary part of the matrix
C
C =============================
C Description of the k-labels :
C =============================
DO i=1,nlab
WRITE(ouband,'(2i6,a)') i,labels(i)%pos,labels(i)%kname
ENDDO
C for each label, are written :
C - the number of the corresponding k-point in the k-path
C - the name associated to this label
C
RETURN
END