3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-13 14:29:01 +01:00

240 lines
11 KiB
FortranFixed
Raw Normal View History

2013-07-23 19:49:42 +02:00
c ******************************************************************************
c
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
c
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
c
c TRIQS is free software: you can redistribute it and/or modify it under the
c terms of the GNU General Public License as published by the Free Software
c Foundation, either version 3 of the License, or (at your option) any later
c version.
c
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
c details.
c
c You should have received a copy of the GNU General Public License along with
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
c
c *****************************************************************************/
SUBROUTINE rotdens_mat(Dmat,orbit,norbit)
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C %% %%
C %% This subroutine applies to each density matrix in Dmat %%
C %% the transformation to go from the global coordinates to the %%
C %% local coordinates associated to the considered orbital. %%
C %% %%
C %% This version can be used for SO computations. %%
C %% %%
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C Definition of the variables :
C ----------------------------
USE common_data
USE projections
USE symm
USE reps
IMPLICIT NONE
INTEGER :: norbit
TYPE(matrix), DIMENSION(nsp,norbit) :: Dmat
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: rot_dmat
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: tmp_mat
COMPLEX(KIND=8):: ephase
REAL(KIND=8):: factor
TYPE(orbital), DIMENSION(norbit) :: orbit
INTEGER :: iatom, isrt, iorb, is, is1, l, i, m
C
C
DO iorb=1,norbit
l=orbit(iorb)%l
isrt=orbit(iorb)%sort
iatom=orbit(iorb)%atom
C
IF(ifSP.AND.ifSO) THEN
C In this case, the complete spinor rotation approach (matrices of size 2*(2*l+1) ) is used for rotloc.
IF (l==0) THEN
C ------------------------------------------------------------------------------------------------------------
C For the s orbital, the spinor rotation matrix will be constructed directly from the Euler angles a,b and c :
C ------------------------------------------------------------------------------------------------------------
C Up/dn and Dn/up terms
ALLOCATE(tmp_mat(1:2,1:2))
ALLOCATE(rot_dmat(1:2,1:2))
IF (rotloc(iatom)%timeinv) THEN
factor=(rotloc(iatom)%a+rotloc(iatom)%g)/2.d0
tmp_mat(2,1)=EXP(CMPLX(0.d0,factor))*
& DCOS(rotloc(iatom)%b/2.d0)
tmp_mat(1,2)=-CONJG(tmp_mat(2,1))
C Up/dn and Dn/up terms
factor=-(rotloc(iatom)%a-rotloc(iatom)%g)/2.d0
tmp_mat(2,2)=-EXP(CMPLX(0.d0,factor))*
& DSIN(rotloc(iatom)%b/2.d0)
tmp_mat(1,1)=CONJG(tmp_mat(2,2))
C definition of the total density matrix
rot_dmat(1,1)=Dmat(1,iorb)%mat(1,1)
rot_dmat(2,2)=Dmat(2,iorb)%mat(1,1)
rot_dmat(1,2)=Dmat(3,iorb)%mat(1,1)
rot_dmat(2,1)=Dmat(4,iorb)%mat(1,1)
C going to the local basis
rot_dmat(1:2,1:2)=CONJG(MATMUl(
& rot_dmat(1:2,1:2),tmp_mat(1:2,1:2)))
rot_dmat(1:2,1:2)=MATMUl(
& TRANSPOSE(tmp_mat(1:2,1:2)),
& rot_dmat(1:2,1:2))
ELSE
factor=(rotloc(iatom)%a+rotloc(iatom)%g)/2.d0
tmp_mat(1,1)=EXP(CMPLX(0.d0,factor))*
& DCOS(rotloc(iatom)%b/2.d0)
tmp_mat(2,2)=CONJG(tmp_mat(1,1))
C Up/dn and Dn/up terms
factor=-(rotloc(iatom)%a-rotloc(iatom)%g)/2.d0
tmp_mat(1,2)=EXP(CMPLX(0.d0,factor))*
& DSIN(rotloc(iatom)%b/2.d0)
tmp_mat(2,1)=-CONJG(tmp_mat(1,2))
C definition of the total density matrix
rot_dmat(1,1)=Dmat(1,iorb)%mat(1,1)
rot_dmat(2,2)=Dmat(2,iorb)%mat(1,1)
rot_dmat(1,2)=Dmat(3,iorb)%mat(1,1)
rot_dmat(2,1)=Dmat(4,iorb)%mat(1,1)
C going to the local basis
rot_dmat(1:2,1:2)=MATMUl(
& TRANSPOSE(CONJG(tmp_mat(1:2,1:2))),
& rot_dmat(1:2,1:2))
rot_dmat(1:2,1:2)=MATMUl(
& rot_dmat(1:2,1:2),tmp_mat(1:2,1:2))
ENDIF
DEALLOCATE(tmp_mat)
C storing in Dmat
Dmat(1,iorb)%mat(1,1)=rot_dmat(1,1)
Dmat(2,iorb)%mat(1,1)=rot_dmat(2,2)
Dmat(3,iorb)%mat(1,1)=rot_dmat(1,2)
Dmat(4,iorb)%mat(1,1)=rot_dmat(2,1)
DEALLOCATE(rot_dmat)
ELSE
C -----------------------------------------------------------------------------------------------------
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) :
C -----------------------------------------------------------------------------------------------------
IF (reptrans(l,isrt)%ifmixing) THEN
C We use the complete spin-space representation, so no trick on indices is necessary.
C
C Application of the operation inverse(Rloc).Dmat.(Rloc) :
C -------------------------------------------------------
IF (rotloc(iatom)%timeinv) THEN
C In this case, the operators is antiunitary [ inverse(R)=transpose(R) ]
Dmat(1,iorb)%mat(:,:)=CONJG(
= MATMUL(Dmat(1,iorb)%mat(:,:),
& rotloc(iatom)%rotrep(l)%mat(:,:) ))
Dmat(1,iorb)%mat(:,:)=
= MATMUL(TRANSPOSE( rotloc(iatom)%
& rotrep(l)%mat(:,:) ),Dmat(1,iorb)%mat(:,:) )
C Dmat_{local} = inverse(Rloc) Dmat_{global}* Rloc*
C Dmat_{local} = transpose(Rloc) Dmat_{global}* Rloc*
ELSE
C In this case, all the operators are unitary [ inverse(R)=transpose(conjugate(R)) ]
Dmat(1,iorb)%mat(:,:)=
= MATMUL(Dmat(1,iorb)%mat(:,:),
& rotloc(iatom)%rotrep(l)%mat(:,:) )
Dmat(1,iorb)%mat(:,:)=
= MATMUL(TRANSPOSE(CONJG( rotloc(iatom)%
& rotrep(l)%mat(:,:) )),Dmat(1,iorb)%mat(:,:) )
C Dmat_{local} = <x_local | x_global> Dmat_{global} <x_global | x_local>
C Dmat_{local} = inverse(Rloc) Dmat_{global} Rloc
ENDIF
C
ELSE
C ----------------------------------------------------------------------------------------------
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
C ----------------------------------------------------------------------------------------------
C definition of the total density matrix
ALLOCATE(rot_dmat(1:2*(2*l+1),1:2*(2*l+1)))
rot_dmat(1:(2*l+1),1:(2*l+1))=
& Dmat(1,iorb)%mat(-l:l,-l:l)
rot_dmat(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
& Dmat(2,iorb)%mat(-l:l,-l:l)
rot_dmat(1:(2*l+1),2*l+2:2*(2*l+1))=
& Dmat(3,iorb)%mat(-l:l,-l:l)
rot_dmat(2*l+2:2*(2*l+1),1:(2*l+1))=
& Dmat(4,iorb)%mat(-l:l,-l:l)
IF (rotloc(iatom)%timeinv) THEN
C In this case, the operator is antiunitary [ inverse(R)=transpose(R) ]
rot_dmat(1:2*(2*l+1),1:2*(2*l+1))=CONJG(
= MATMUL(rot_dmat(1:2*(2*l+1),1:2*(2*l+1)),
& rotloc(iatom)%rotrep(l)
& %mat(1:2*(2*l+1),1:2*(2*l+1)) ))
rot_dmat(1:2*(2*l+1),1:2*(2*l+1))=
= MATMUL(TRANSPOSE( rotloc(iatom)%
& rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1)) ),
& rot_dmat(1:2*(2*l+1),1:2*(2*l+1)) )
C Dmat_{local} = inverse(Rloc) Dmat_{global}* Rloc*
C Dmat_{local} = transpose(Rloc) Dmat_{global}* Rloc*
ELSE
C In this case, all the operators are unitary [ inverse(R)=transpose(conjugate(R)) ]
rot_dmat(1:2*(2*l+1),1:2*(2*l+1))=
= MATMUL(rot_dmat(1:2*(2*l+1),1:2*(2*l+1)),
& rotloc(iatom)%rotrep(l)
& %mat(1:2*(2*l+1),1:2*(2*l+1)) )
rot_dmat(1:2*(2*l+1),1:2*(2*l+1))=
= MATMUL(TRANSPOSE(CONJG( rotloc(iatom)%
& rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1)) )),
& rot_dmat(1:2*(2*l+1),1:2*(2*l+1)) )
C Dmat_{local} = <x_local | x_global> Dmat_{global} <x_global | x_local>
C Dmat_{local} = inverse(Rloc) Dmat_{global} Rloc
ENDIF
C storing in dmat again
Dmat(1,iorb)%mat(-l:l,-l:l)=
& rot_dmat(1:(2*l+1),1:(2*l+1))
Dmat(2,iorb)%mat(-l:l,-l:l)=
& rot_dmat(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))
Dmat(3,iorb)%mat(-l:l,-l:l)=
& rot_dmat(1:(2*l+1),2*l+2:2*(2*l+1))
Dmat(4,iorb)%mat(-l:l,-l:l)=
& rot_dmat(2*l+2:2*(2*l+1),1:(2*l+1))
DEALLOCATE(rot_dmat)
ENDIF ! End of the if mixing if-then-else
ENDIF ! End of the if "l=0" if-then-else
ELSE
C ------------------------------------------------------------------------------
C The s-orbitals are a particular case of a "non-mixing" basis and is invariant.
C ------------------------------------------------------------------------------
IF(l==0) CYCLE
C ----------------------------------------------------------------------------------------------
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
C ----------------------------------------------------------------------------------------------
ALLOCATE(rot_dmat(-l:l,-l:l))
DO is=1,nsp
rot_dmat=0.d0
C
C Application of the operation inverse(Rloc).Dmat.(Rloc) :
C -------------------------------------------------------
C In this case, (either a paramagnetic calculation or a spin-polarized one
C but the symmetry operation does not change the magntization direction)
C all the operators are unitary [ inverse(R)=transpose(conjugate(R)) ]
rot_dmat(-l:l,-l:l)=
= MATMUL(Dmat(is,iorb)%mat(-l:l,-l:l),
& rotloc(iatom)%rotrep(l)%mat(-l:l,-l:l) )
rot_dmat(-l:l,-l:l)=
= MATMUL(TRANSPOSE(CONJG( rotloc(iatom)%
& rotrep(l)%mat(-l:l,-l:l) )),
& rot_dmat(-l:l,-l:l) )
C rotmat_{local} = <x_local | x_global> rotmat_{global} <x_global | x_local>
C rotmat_{local} = inverse(Rloc) rotmat_{global} Rloc
C
C Storing the new value in Dmat :
C -------------------------------
Dmat(is,iorb)%mat(-l:l,-l:l)=rot_dmat(-l:l,-l:l)
ENDDO
DEALLOCATE(rot_dmat)
C
ENDIF ! End of the ifSO-ifSP if-then-else
ENDDO ! End of the iorb loop
C
RETURN
END