3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 22:18:23 +01:00
dft_tools/doc/reference/lattice_tools/hilbert.rst

56 lines
1.6 KiB
ReStructuredText
Raw Normal View History

.. _hilbert_transform:
.. module:: pytriqs.dos.hilbert_transform
Hilbert Transform
=======================================
TRIQS comes with a Hilbert transform. Let us look at an example:
.. runblock:: python
from pytriqs.lattice.tight_binding import *
from pytriqs.dos import HilbertTransform
from pytriqs.gf.local import GfImFreq
# Define a DOS (here on a square lattice)
BL = BravaisLattice(units = [(1,0,0) , (0,1,0) ], orbital_positions= [(0,0,0)] )
t = -1.00 # First neighbour Hopping
tp = 0.0*t # Second neighbour Hopping
hop= { (1,0) : [[ t]],
(-1,0): [[ t]],
(0,1) : [[ t]],
(0,-1): [[ t]],
(1,1) : [[ tp]],
(-1,-1): [[ tp]],
(1,-1): [[ tp]],
(-1,1): [[ tp]]}
TB = TightBinding (BL, hop)
d = dos(TB, n_kpts= 500, n_eps = 101, name = 'dos')[0]
#define a Hilbert transform
H = HilbertTransform(d)
#fill a Green function
G = GfImFreq(indices = ['up','down'], beta = 20)
Sigma0 = GfImFreq(indices = ['up','down'], beta = 20); Sigma0.zero()
G <<= H(Sigma = Sigma0,mu=0.)
Given a density of states `d` (here for a tight-binding model), the Hilbert transform `H` is defined is defined in the following way::
H = HilbertTransform(d)
To construct a Green's function::
G = GfImFreq(indices = ['up','down'], beta = 20)
Sigma0 = GfImFreq(indices = ['up','down'], beta = 20); Sigma0.zero()
G <<= H(Sigma = Sigma0, mu=0.)
.. autoclass:: pytriqs.dos.HilbertTransform
:members: __call__
:undoc-members: