mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 14:08:24 +01:00
113 lines
4.3 KiB
Python
113 lines
4.3 KiB
Python
|
from scipy.optimize import leastsq
|
||
|
from tools import get_indices_in_dict
|
||
|
import _gf_plot
|
||
|
import numpy
|
||
|
|
||
|
def init( mesh= None, shape =None, name = 'g', **d):
|
||
|
"""
|
||
|
"""
|
||
|
if mesh is None :
|
||
|
from gf import MeshImFreq
|
||
|
if 'beta' not in d : raise ValueError, "beta not provided"
|
||
|
beta = float(d.pop('beta'))
|
||
|
n_points = d.pop('n_points',1025)
|
||
|
stat = d.pop('statistic','Fermion')
|
||
|
positive_only = d.pop('positive_only',True)
|
||
|
mesh = MeshImFreq(beta,stat,n_points, positive_only)
|
||
|
|
||
|
indices_pack = get_indices_in_dict(d)
|
||
|
if not shape :
|
||
|
assert indices_pack, "No shape, no indices !"
|
||
|
indicesL, indicesR = indices_pack
|
||
|
shape = len(indicesL),len(indicesR)
|
||
|
|
||
|
#data = d.pop('data') if 'data' in d else numpy.zeros((len(mesh),N1,N2), self.dtype )
|
||
|
#tail = d.pop('tail') if 'tail' in d else TailGf(shape = (N1,N2))
|
||
|
#symmetry = d.pop('symmetry', Nothing())
|
||
|
|
||
|
return (mesh, shape, indices_pack, name), {}
|
||
|
#return mesh, data, tail, symmetry, indices_pack, name
|
||
|
|
||
|
#-------------- PLOT ---------------------------------------
|
||
|
|
||
|
def plot(self, opt_dict):
|
||
|
""" Plot protocol. opt_dict can contain :
|
||
|
* :param RIS: 'R', 'I', 'S', 'RI' [ default]
|
||
|
* :param x_window: (xmin,xmax) or None [default]
|
||
|
* :param name: a string [default ='']. If not '', it remplaces the name of the function just for this plot.
|
||
|
"""
|
||
|
return _gf_plot.plot_base( self, opt_dict, r'$\omega_n$',
|
||
|
lambda name : r'%s$(i\omega_n)$'%name, True, [x.imag for x in self.mesh] )
|
||
|
|
||
|
#-------------- OTHER OPERATIONS -----------------------------------------------------
|
||
|
|
||
|
def replace_by_tail(self,start) :
|
||
|
d = self.data
|
||
|
t = self.tail
|
||
|
for n, om in enumerate(self.mesh) :
|
||
|
if n >= start : d[n,:,:] = t(om)
|
||
|
|
||
|
def fit_tail(self, fixed_coef, order_max, fit_start, fit_stop, replace_tail = True):
|
||
|
"""
|
||
|
Fit the tail of the Green's function
|
||
|
Input:
|
||
|
- fixed_coef: a 3-dim array of known coefficients for the fit starting from the order -1
|
||
|
- order_max: highest order in the fit
|
||
|
- fit_start, fit_stop: fit the data between fit_start and fit_stop
|
||
|
Output:
|
||
|
On output all the data above fit_start is replaced by the fitted tail
|
||
|
and the new moments are included in the Green's function
|
||
|
"""
|
||
|
|
||
|
# Turn known_coefs into a numpy array if ever it is not already the case
|
||
|
known_coef = fixed_coef
|
||
|
|
||
|
# Change the order_max
|
||
|
# It is assumed that any known_coef will start at order -1
|
||
|
self.tail.zero()
|
||
|
self.tail.mask.fill(order_max)
|
||
|
|
||
|
# Fill up two arrays with the frequencies and values over the range of interest
|
||
|
ninit, nstop = 0, -1
|
||
|
x = []
|
||
|
for om in self.mesh:
|
||
|
if (om.imag < fit_start): ninit = ninit+1
|
||
|
if (om.imag <= fit_stop): nstop = nstop+1
|
||
|
if (om.imag <= fit_stop and om.imag >= fit_start): x += [om]
|
||
|
omegas = numpy.array(x)
|
||
|
values = self.data[ninit:nstop+1,:,:]
|
||
|
|
||
|
# Loop over the indices of the Green's function
|
||
|
for n1,indR in enumerate(self.indicesR):
|
||
|
for n2,indL in enumerate(self.indicesL):
|
||
|
|
||
|
# Construct the part of the fitting functions which is known
|
||
|
f_known = numpy.zeros((len(omegas)),numpy.complex)
|
||
|
for order in range(len(known_coef[n1][n2])):
|
||
|
f_known += known_coef[n1][n2][order]*omegas**(1-order)
|
||
|
|
||
|
# Compute how many free parameters we have and give an initial guess
|
||
|
len_param = order_max-len(known_coef[n1][n2])+2
|
||
|
p0 = len_param*[1.0]
|
||
|
|
||
|
# This is the function to be minimized, the diff between the original
|
||
|
# data in values and the fitting function
|
||
|
def fct(p):
|
||
|
y_fct = 1.0*f_known
|
||
|
for order in range(len_param):
|
||
|
y_fct += p[order]*omegas**(1-len(known_coef[n1][n2])-order)
|
||
|
y_fct -= values[:,n1,n2]
|
||
|
return abs(y_fct)
|
||
|
|
||
|
# Now call the minimizing function
|
||
|
sol = leastsq(fct, p0, maxfev=1000*len_param)
|
||
|
|
||
|
# Put the known and the new found moments in the tail
|
||
|
for order in range(len(known_coef[n1][n2])):
|
||
|
self.tail[order-1][n1,n2] = numpy.array([[ known_coef[n1][n2][order] ]])
|
||
|
for order, moment in enumerate(sol[0]):
|
||
|
self.tail[len(known_coef[n1][n2])+order-1][n1,n2] = numpy.array([[ moment ]])
|
||
|
self.tail.mask.fill(order_max)
|
||
|
# Replace then end of the Green's function by the tail
|
||
|
if replace_tail: self.replace_by_tail(ninit);
|