3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/triqs/gfs/two_real_times.hpp

160 lines
5.9 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_TWO_TIMES_H
#define TRIQS_GF_TWO_TIMES_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./retime.hpp"
#include "./meshes/product.hpp"
namespace triqs { namespace gfs {
struct two_real_times {};
namespace gfs_implementation {
// the mesh
template<typename Opt> struct mesh<two_real_times,Opt> {
typedef typename mesh<retime,Opt>::type m1_t;
typedef mesh_product<m1_t,m1_t> type;
static type make (double tmax, double n_time_slices) {
#ifndef TRIQS_WORKAROUND_INTEL_COMPILER_BUGS
m1_t m1({},0, tmax,n_time_slices, full_bins);
return {m1,m1};
#else
m1_t m1(typename m1_t::domain_t(),0, tmax,n_time_slices, full_bins);
type m(m1,m1);
return m;
#endif
}
};
// h5 name
template<typename Opt> struct h5_name<two_real_times,matrix_valued,Opt> { static std::string invoke(){ return "GfTwoRealTime";}};
/// --------------------------- closest mesh point on the grid ---------------------------------
template<typename Opt>
struct get_closest_point <two_real_times,matrix_valued,Opt> {
typedef typename mesh<two_real_times, Opt>::type mesh_t;
// // NOT FINISHED, NOT TESTED
// template<typename G, typename T>
// static typename mesh_t::index_t invoke(G const * g, closest_pt_wrap<T,T> const & p) {
// return std::floor( double(p.value) / g->mesh().delta() + 0.5);
// }
};
/// --------------------------- evaluator ---------------------------------
template<typename Opt>
struct evaluator<two_real_times,matrix_valued,Opt> {
static constexpr int arity = 2;
template<typename G>
arrays::matrix<std::complex<double> > operator() (G const * g, double t0, double t1) const {
auto & data = g->data();
auto & m = std::get<0>(g->mesh().components());
size_t n0,n1; double w0,w1; bool in;
std::tie(in, n0, w0) = windowing(m,t0);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
std::tie(in, n1, w1) = windowing(m,t1);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
auto gg = [g,data]( size_t n0, size_t n1) {return data(g->mesh().index_to_linear(std::tuple<size_t,size_t>{n0,n1}), arrays::ellipsis());};
return w0 * ( w1*gg(n0,n1) + (1-w1)*gg(n0,n1+1) ) + (1-w0) * ( w1*gg(n0+1,n1) + (1-w1)*gg(n0+1,n1+1));
}
};
/// --------------------------- data access ---------------------------------
template<typename Opt> struct data_proxy<two_real_times,matrix_valued,Opt> : data_proxy_array<std::complex<double>,3> {};
// ------------------------------- Factories --------------------------------------------------
template<typename Opt> struct factories<two_real_times, matrix_valued,Opt> {
typedef gf<two_real_times, matrix_valued,Opt> gf_t;
typedef typename mesh<two_real_times, Opt>::type mesh_t;
static gf_t make_gf(double tmax, double n_time_slices, tqa::mini_vector<size_t,2> shape) {
auto m = mesh<two_real_times,Opt>::make(tmax, n_time_slices);
typename gf_t::data_non_view_t A(shape.front_append(m.size())); A() =0;
return gf_t (m, std::move(A), nothing(), nothing() ) ;
}
};
// ------------------------------- Path --------------------------------------------------
/*
struct path {
typedef typename mesh_t::index_t mesh_pt_t;
typedef triqs::arrays::mini_vector<long,2> delta_t;
delta_t pt, delta;
size_t L;
path( mesh_t const & m, pt_t const & start_pt, delta_t const & d_) : pt(start_pt), delta(d_), L(std::get<1>(m.components()).size()){}
void advance() { pt += delta;}
bool out_of_mesh () const { return (! ( (pt[1]>=0) && ( pt[0] >= pt[1]) && (pt[0]<= L)));}
typedef mesh_pt_generator<path> iterator;
iterator begin() const { return {this, false};}
iterator end() const { return {this, true};}
};
path make_path ( mesh_t const & m, typename mesh_t::index_t starting_point, delta) {
return path(m, starting_point,delta);
}
// for (auto & p : make_path(G.mesh(), make_tuple(i,j), make_tuple(di,dj) )) G(p) +=0;
*/
} // gfs_implementation
// ------------------------------- Additionnal free function for this gf --------------------------------------------------
// from g(t,t') and t, return g(t-t') for any t'>t
//
gf<retime> slice (gf_view<two_real_times> const & g, double t) {
auto const & m = std::get<0> (g.mesh().components()); //one-time mesh
long it = get_closest_mesh_pt_index(m, t); //index of t on this mesh
long nt = m.size() - it;
if (it+1 < nt) nt = it+1 ; //nt=length of the resulting GF's mesh
double dt = m.delta();
auto res = make_gf<retime>(0, 2*(nt-1)*dt, nt, g(t,t).shape());
res() = 0;
auto _ = arrays::range();// everyone
for(long sh=0; sh<nt; sh++){
res.data()(sh,_,_) = g.data()(g.mesh().index_to_linear(std::make_tuple( it+sh, it-sh) ),_,_);
}
return res;
}
// Get the 1 time mesh from the 2 times cartesian product (for cython interface mainly)
template<typename M>
auto get_1d_mesh_from_2times_mesh(M const & m) DECL_AND_RETURN(std::get<0>(m.components()));
}}
#endif