3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-18 00:21:54 +01:00

57 lines
2.1 KiB
C++
Raw Normal View History

#include <triqs/clef.hpp>
#include <triqs/clef/io.hpp>
// a general implementation type for all domain and summation methods
template<typename Domain, typename Options> struct sum_impl;
struct Riemann{}; // one sum method
template<typename Domain> struct sum_impl<Domain, Riemann> {
Domain d;
sum_impl(Domain const &d_):d(d_) {}
// Disabled when F is a lazy_expression
template <typename F>
typename std::enable_if< !triqs::clef::is_any_lazy <F>::value, double >::type
operator() (F const & f) const { double s=0; for (int u=0; u<10; ++u) s += f(u/10.0); return s;}
// Defines operator(). Enabled iff one argument is a clef expression.
template< typename... Args>
typename triqs::clef::result_of::make_expr_call<sum_impl,Args...>::type
operator()( Args&&... args ) const { return triqs::clef::make_expr_call (*this,args...);}
// How to print this object in the printing of clef expression
friend std::ostream & operator<<(std::ostream & out, sum_impl const & x) { return out<<"sum";}
};
template<typename Domain, typename Option>
sum_impl<Domain,Option> sum_functional (Domain && d, Option) {return d;}
//--------- MAIN ---------------------------------------
struct DOM{};
int main() {
// two placeholders
triqs::clef::placeholder <1> x_;
triqs::clef::placeholder <2> y_;
DOM d; // a domain
// integrate_on_d is the integration (!) over d with Riemann method
auto integrate_on_d = sum_functional( d, Riemann());
// This is a simple application of the sum to a function
std::cout<< integrate_on_d( x_ >> 2*x_ + 1 ) << std::endl;
// This creates a clef expression of placeholder y_, waiting to make the sum
// Indeed the argument is a clef expression of y_ returning a function
// composed by integrate_on_d, it is a clef expression of y_ returning a double
std::cout<< integrate_on_d( x_ >> 2*x_ + 1 + y_ ) << std::endl;
// Of course this expression can be mixed with others...
std::cout<< y_ + 2* integrate_on_d( x_ >> 2*x_ + 1 + y_ ) << std::endl;
// and it can be evaluated
std::cout<< eval (y_ + 2* integrate_on_d( x_ >> 2*x_ + 1 + y_ ) ,y_ =0) << std::endl;
}