3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 11:43:47 +01:00
dft_tools/triqs/gfs/imtime.hpp

163 lines
6.6 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_MATSUBARA_TIME_H
#define TRIQS_GF_MATSUBARA_TIME_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./domains/matsubara.hpp"
#include "./meshes/linear.hpp"
namespace triqs { namespace gfs {
struct imtime {};
// gf_mesh type and its factories
template<typename Opt> struct gf_mesh<imtime,Opt> : linear_mesh<matsubara_domain<false>> {
typedef linear_mesh<matsubara_domain<false>> B;
gf_mesh() = default;
gf_mesh (double beta, statistic_enum S, size_t n_time_slices, mesh_kind mk=half_bins):
B( typename B::domain_t(beta,S), 0, beta, n_time_slices, mk){}
};
namespace gfs_implementation {
// singularity
template<typename Opt> struct singularity<imtime,matrix_valued,Opt> { typedef local::tail type;};
template<typename Opt> struct singularity<imtime,scalar_valued,Opt> { typedef local::tail type;};
// h5 name
template<typename Opt> struct h5_name<imtime,matrix_valued,Opt> { static std::string invoke(){ return "ImTime";}};
/// --------------------------- data access ---------------------------------
template<typename Opt> struct data_proxy<imtime,matrix_valued,Opt> : data_proxy_array<double,3> {};
template<typename Opt> struct data_proxy<imtime,scalar_valued,Opt> : data_proxy_array<double,1> {};
/// --------------------------- closest mesh point on the grid ---------------------------------
template<typename Opt, typename Target>
struct get_closest_point <imtime,Target,Opt> {
// index_t is size_t
template<typename G, typename T>
static size_t invoke(G const * g, closest_pt_wrap<T> const & p) {
double x = (g->mesh().kind()==half_bins ? double(p.value) : double(p.value)+ 0.5*g->mesh().delta());
size_t n = std::floor(x/g->mesh().delta());
return n;
}
};
/// --------------------------- evaluator ---------------------------------
// NOT TESTED
// TEST THE SPPED when q_view are incorporated...
// true evaluator with interpolation ...
template<typename G, typename ReturnType>
ReturnType evaluator_imtime_impl (G const * g, double tau, ReturnType && _tmp) {
// interpolate between n and n+1, with weight
double beta = g->mesh().domain().beta;
int p = std::floor(tau/beta);
tau -= p*beta;
2013-09-06 18:13:38 +02:00
size_t n; double w; bool in;
std::tie(in, n, w) = windowing(g->mesh(),tau);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
auto gg = on_mesh(*g);
if ((g->mesh().domain().statistic == Fermion) && (p%2==1))
2013-09-06 18:13:38 +02:00
_tmp = - (1-w)*gg(n) - w*gg(n+1);
else
2013-09-06 18:13:38 +02:00
_tmp = (1-w)*gg(n) + w*gg(n+1);
//else { // Speed test to redo when incoparated qview in main branch
// _tmp(0,0) = w*g->data()(n, 0,0) + (1-w)*g->data()(n+1, 0,0);
// _tmp(0,1) = w*g->data()(n, 0,1) + (1-w)*g->data()(n+1, 0,1);
// _tmp(1,0) = w*g->data()(n, 1,0) + (1-w)*g->data()(n+1, 1,0);
// _tmp(1,1) = w*g->data()(n, 1,1) + (1-w)*g->data()(n+1, 1,1);
// }
return _tmp;
}
template<typename Opt>
struct evaluator<imtime,matrix_valued,Opt> {
private:
mutable arrays::matrix<double> _tmp;
public :
static constexpr int arity = 1;
evaluator() = default;
evaluator(size_t n1, size_t n2) : _tmp(n1,n2) {} // WHAT happen in resize ??
template<typename G>
arrays::matrix<double> const & operator()(G const * g, double tau) const { return evaluator_imtime_impl(g, tau, _tmp);}
template<typename G>
typename G::singularity_t const & operator()(G const * g,freq_infty const &) const {return g->singularity();}
};
template<typename Opt>
struct evaluator<imtime,scalar_valued,Opt> {
public :
static constexpr int arity = 1;
template<typename G> double operator()(G const * g, double tau) const { return evaluator_imtime_impl(g, tau, 0.0);}
template<typename G>
typename G::singularity_t const & operator()(G const * g,freq_infty const &) const {return g->singularity();}
};
// ------------------------------- Factories --------------------------------------------------
// matrix_valued
template<typename Opt> struct factories<imtime,matrix_valued,Opt> {
typedef gf<imtime,matrix_valued,Opt> gf_t;
template<typename MeshType>
static gf_t make_gf(MeshType && m, tqa::mini_vector<size_t,2> shape, local::tail_view const & t) {
typename gf_t::data_regular_t A(shape.front_append(m.size())); A() =0;
//return gf_t ( m, std::move(A), t, nothing() ) ;
return gf_t (std::forward<MeshType>(m), std::move(A), t, nothing(), evaluator<imtime,matrix_valued,Opt>(shape[0],shape[1]) ) ;
}
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax=1025, mesh_kind mk= half_bins) {
return make_gf(gf_mesh<imtime,Opt>(beta,S,Nmax,mk), shape, local::tail(shape));
}
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax, mesh_kind mk, local::tail_view const & t) {
return make_gf(gf_mesh<imtime,Opt>(beta,S,Nmax,mk), shape, t);
}
};
// scalar_valued
template<typename Opt> struct factories<imtime,scalar_valued,Opt> {
typedef gf<imtime,scalar_valued,Opt> gf_t;
template<typename MeshType>
static gf_t make_gf(MeshType && m, local::tail_view const & t) {
typename gf_t::data_regular_t A(m.size()); A() =0;
return gf_t (std::forward<MeshType>(m), std::move(A), t, nothing());
}
static gf_t make_gf(double beta, statistic_enum S, size_t Nmax=1025, mesh_kind mk= half_bins) {
return make_gf(gf_mesh<imtime,Opt>(beta,S,Nmax,mk), local::tail(tqa::mini_vector<size_t,2> (1,1)));
}
static gf_t make_gf(double beta, statistic_enum S, size_t Nmax, mesh_kind mk, local::tail_view const & t) {
return make_gf(gf_mesh<imtime,Opt>(beta,S,Nmax,mk), t);
}
};
} // gfs_implementation.
}}
#endif